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Abstract

The maximum satisfiability problem that is known to be nondeterministic polynomial
(NP) complete plays a central role problem in many applications in the fields of very
large-scale integration (VLSI) computer-aided design, computing theory, artificial intel-
ligence, and defense. Given a set of m clauses and n Boolean variables, the maximum
satisfiability problem refers to the task of finding an assignment of values to the vari-
ables that maximizes the number of satisfied clauses (or minimizes the number of
unsatisfied clauses) In this chapter, a multilevel evolutionary algorithm is proposed for
the maximum satisfiability problem. The multilevel process works by grouping the
variables defining the problem to form clusters, uses the clusters to define a new prob-
lem, and is repeated until the problem size falls below some threshold. The coarsest
problem is then given an initial assignment of values to variables and the assignment is
successively refined on all the problems starting with the coarsest and ending with the
original.

Keywords: maximum satisfiability problem, genetic algorithm, multilevel paradigm,
discrete optimization, effect size

1. Introduction

Combinatorial optimization is a lively field of applied mathematics, combining techniques

from combinatorics, linear programming, and the theory of algorithms, to solve optimization

problems over discrete structures. Utilizing classical methods of operations research often fails

due to the exponentially growing computational effort. It is commonly accepted that these

methods might be heavily penalized by the nondeterministic polynomial (NP)-hard nature of

the problems and consequently will then be unable to solve large-size instances of a problem.
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Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Therefore, in practice meta-heuristics are commonly used even if they are unable to guarantee

an optimal solution. The driving force behind the high performance of meta-heuristics is their

ability to find an appropriate balance between intensively exploiting areas with high-quality

solutions (the neighborhood of elite solutions) and moving to unexplored areas when neces-

sary. The evolution of meta-heuristics has taken an explosive upturn. The recent trends in

computational optimization move away from the traditional methods to contemporary

nature-inspired meta-heuristic algorithms though traditional methods can still be an important

part of the solution techniques for small-size problems. As many real-world optimization

problems become increasingly complex and hard to solve, better optimization algorithms are

always needed. Nature-inspired algorithms such as genetic algorithms (GAs) are regarded as

highly successful methods when applied to a broad range of discrete as well as continuous

optimization problems. This chapter introduces the multilevel paradigm combined with

genetic algorithm for solving the maximum satisfiability problem. Over the past few years, an

increasing interest has arisen in solving hard optimization problems using genetic algorithms.

These techniques offer the advantage of being flexible. They can be applied to any problem

(discrete or continuous) whenever there is a possibility for encoding a candidate solution to the

problem, and a mean of computing the quality of any candidate solution through the so-called

objective function. Nevertheless, GAs may still suffer from premature convergence. The per-

formance of GAs deteriorates very rapidly mostly due to two reasons. First, the complexity of

the problem usually increases with its size, and second, the solution space of the problem

increases exponentially with the problem size. Because of these two issues, optimization search

techniques tend to spend most of the time exploring a restricted area of the search space

preventing the search to visit more promising areas, and thus leading to solutions of poor

quality. Designing efficient optimization search techniques requires a tactical interplay

between diversification and intensification [1, 2]. The former refers to the ability to explore

many different regions of the search space, whereas the latter refers to the ability to obtain

high-quality solutions within those regions.

In this chapter, a genetic algorithm is used in a multilevel context as a means to improve its

performance. This chapter is organized as follows. Section 2 describes the maximum satisfiability

problem. Section 3 explains the hierarchical evolutionary algorithm. In Section 4, we report the

experimental results. Finally, Section 5 discusses the main conclusions and provides some guide-

lines for future work.

2. The maximum satisfiability problem

Given a set of n Boolean variables and a conjunctive normal form (CNF) of a set ofm disjunctive

clauses of literals, where each literal is a variable or its negation which takes one of the two

values True or False, the task is to determine whether there exists an assignment of truth values

of the variables that satisfy the maximum number k of clauses. Multilevel approaches are special

techniques which aim at producing smaller and smaller problems that are easier to solve than

the original one. These techniques were applied to different combinatorial optimization prob-

lems. Examples include graph-partitioning problem [3–7], the traveling salesman problem [8, 9],
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graph coloring and graph drawing [10, 11], feature selection problem in biomedical data [12],

and maximum satisfiability problem [13–16]. A recent survey over multilevel techniques can be

found in [1, 17, 18].

3. The multilevel evolutionary algorithm

3.1. Main idea

The multilevel paradigm works by merging the variables defining the problem to form clus-

ters, uses the clusters to define a new problem, and the process is repeated until the problem

size reaches some threshold. A random initial assignment is injected to the coarsest problem

and the assignment is successively refined on all the problems starting with the coarsest and

ending with the original. The multilevel evolutionary algorithm is described in Algorithm 1.

Algorithm 1. The multilevel evolutionary algorithm

input : Problem P0

output: Solution Sfinal P0ð Þ

1 begin

2 level := 0 ;

3 while Not reached the desired number of levels do

4 Plevelþ1:¼Reduce (Plevel) ;

5 level := level + 1 ;

6 /* Proceed with Memetic algorithm */ ;

7 Sstart Plevelð Þ ¼ Initial-Assignment (Plevel) ;

8 Sfinal Plevelð Þ ¼ Refinement (Plevel) ;

9 while level > 0ð Þ do

10 Sstart Plevel�1ð Þ:¼Project Sfinal Plevelð Þ
� �

;

11 Sfinal Plevel�1ð Þ:¼Refinement (Sstart Plevel�1ð Þ) ;

12 level := level – 1

13 end

3.2. Reduction phase

This process (lines 3–5 of Algorithm 1) is graphically illustrated in Figure 1 using an example

with 10 variables. The coarsening phase uses two levels to coarsen the problem down to three
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clusters. P0 corresponds to the original problem. The random-coarsening procedure is used to

randomly merge the literals in pairs leading to a coarser problem (level) with five clusters. This

process is repeated leading to the coarsest problem (P3) with three clusters. An initial popula-

tion is generated where the clusters are randomly assigned the value of true or false. The figure

shows an initial solution where one cluster is assigned the value of true and the remaining two

clusters are assigned the value false. Thereafter, the computed initial solution is then improved

with the evolutionary algorithm referred to as MA. As soon as the convergence criteria are

reached at P2, the uncoarsening phase takes the whole population from that level and then

extends it so that it serves as an initial population for the parent level P1 and then proceeds

with a new round of MA. This iteration process ends when MA reaches the stop criteria that is

met at P0.

3.3. Initial solution

The coarsening phase stops when the problem size reaches a threshold. A random procedure is

used to generate an initial solution at the coarsest level. The clusters of every individual in the

population are assigned the value of true or false in a random manner (line 7 of Algorithm 1).

Figure 1. The various phases of the multilevel evolutionary algorithm.

Machine Learning - Advanced Techniques and Emerging Applications206



3.4. Projection and refinement phases

The projection phase is the opposite process followed during the coarsening phase. The

assignment reached at levelmþ1 is now to be extended on is parent levelm. The extension

algorithm is simple; if a cluster which belongs to levelmþ1 is assigned the value of true, then

the grouped pair of clusters that it represents, which belong to levelm, are also assigned the true

value (line 10 of Algorithm 1). The evolutionary algorithm explained in the next section is used

to improve the assignment during each level. The population reached at levelmþ1 will serve as

the initial population for levelm. The projected population already contains individuals with

high fitness value leading MA to converge quicker within a few generations to a better

assignment (lines 8 and 11 of Algorithm 1).

3.5. Evolutionary algorithm (MA)

The evolutionary algorithm proposed in this chapter and described in Algorithm 2 combines a

genetic algorithms and local search. The algorithm maintains a population of solutions for the

problem at hand (i.e., a pool having several solutions simultaneously). Each of these solutions

is called an individual. Each generation consists of updating a population of individuals,

hopefully leading to better solutions. The individuals from the set of solutions, which is called

population, will evolve from generation to generation by repeated application of genetic

operators and a local search scheme. Over many generations, the population becomes uniform

and converges to optimal or near-optimal solutions.

Algorithm 2. Evolutionary algorithm

begin

Generate initial population ;

Evaluate the fitness of each individual in the population ;

while (Not Convergence reached) do

Select individuals according to a scheme to reproduce ;

Breed if necessary each selected pairs of individuals through crossover;

Apply mutation if necessary to each offspring ;

Apply local search to each chromosome ;

Evaluate the fitness of the intermediate population ;

Replace the parent population with a new generation

end

• Fitness function: it is a numerical value that expresses the performance of an individual

(solution) so that different individuals can be compared. The fitness function is defined as

the number of unsatisfied clauses.

A Multilevel Evolutionary Algorithm Applied to the Maximum Satisfiability Problems
http://dx.doi.org/10.5772/intechopen.72843

207



• Initial population: the initial population consists of individuals generated randomly in

which each gene’s allele is assigned randomly the value 0 (false) or 1 (true).

• Crossover: new solutions are produced by matching pairs of individuals in the popula-

tion and then applying a crossover operator to each chosen pair. An unmatched individ-

ual ik is matched randomly with an unmatched individual il. Thereafter, the two-point

crossover operator is applied using a crossover probability to each matched pair of

individuals. The two-point crossover draws two random points within a chromosome

and then interchanges the two parent chromosomes between these points to produce two

new offspring. The work presented in [19] shows that the results produced by the two-

point crossover are excellent especially when the problem is hard to solve.

• Mutation: let C ¼ c1, c2,…, cm be a chromosome represented by a binary chain where each

of whose gene ci is either 0 or 1. Each gene ci is mutated through flipping this gene’s allele

from 0 to 1 or from 1 to 0 if the probability test is passed. The mutation probability

guarantees that, theoretically, every part of the region of the search space is explored. The

mutation operator adds diversity to the population while increasing the likelihood of

generating individuals with better fitness values.

• Selection: based on each individual quality, the roulette method is used to determine the

next population. The selection is stochastic and biased toward the best individuals. The

first step is to calculate the cumulative fitness of the whole population through the sum of

the fitness of all individuals. After that, the probability of selection is calculated for each

individual as being PSelectioni ¼ f i=
PN

1 f i.

• Local search: the last part of the algorithm is the use of a local search. A fast and simple

heuristic is applied for each offspring during which it seeks for the new variable-value

assignment which best decreases the number of unsatisfied clauses being identified.

4. Experimental results

4.1. Benchmark instances

We evaluated the performance of the multilevel evolutionary algorithm (MLVMA) against its

single variant (MA) using a set of instances taken from SATLIB. (http://www.informatik.tu-

darmstadt.de/AI/SATLIB). Table 1 shows the instances used in the experiment. IBM SPSS Statis-

tics version 19was used for statistical analysis. Due to the randomization nature of the algorithms,

each problem instance was run 100 times with a cutoff parameter (max time) set to 15 min. The

100 runs were adopted because pilot runs had shown the size of the difference to be so large that

100 runs were enough for an acceptable statistical power (power > :95); this is in accordance with

the suggestions given in a recent report on statistical testing of randomized algorithms [20].

The tests were carried out on a DELL machine with 800 MHz CPU and 2 GB of memory. The

code was written in C and compiled with the GNU C compiler version 4.6. The list of parameters

used in the experiments are as follows:
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• Crossover probability = 0.85

• Mutation probability = 0.1

• Population size = 50

• Stopping criteria for the coarsening phase: the coarsening stops as soon as the size of the

smallest problem reaches 100 variables (clusters). At this level, MA generates an initial

population.

• Convergence: if the fitness of the best individual does not improve during 10 consecutive

generations, MA is assumed to have reached convergence and moves to a higher level.

5. Results

5.1. Observed trends

The time development of the multilevel evolutionary algorithm against its single variant in

solving the instances is shown in Figures 2–8. The plots show the 100 runs of both algorithms

with a cutoff at 15 min as well as the mean of these runs. The search occurs in two phases. In

the first phase, the best solution improves rapidly at first, and then flattens off as the search

reaches the plateau region, marking the start of the second phase. The plateau region corre-

sponds to a region in the search space where moves does not alter the best assignment, and

Instance Number of variables Number of clauses

2bitadd10:cnf 590 1422

2bitadd11:cnf 649 1562

2bitadd12:cnf 708 1702

2bitcomp5:cnf 125 310

2bitmax6:cnf 252 766

2bitadd31:cnf 8432 31,310

2bitadd32:cnf 8704 32,316

3block.cnf 283 9690

4blocks.cnf 758 47,820

4blocksb.cnf 410 24,758

e0ddr2-10-by-5-1.cnf 19,500 103,887

e0ddr2-10-by-5-4.cnf 1728 104,527

enddr2-10-by-5-1.cnf 20,700 111,567

enddr2-10-by-5-8.cnf 21,000 113,729

ewddr2-10-by-5-1.cnf 21,800 118,607

ewddr2-10-by-5-8.cnf 22,500 123,329

Table 1. Benchmark set of the SAT competition Beijing.
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Figure 2. MLVMA versus MA: (left) 2bitadd10:cnf, (right) 2bitadd11:cnf—time development for 100 runs in 15 min.

Figure 3. MLVMA versus MA: (left) 2bitadd12:cnf, (right) 2bitcomp5:cnf—time development for 100 runs in 15 min.

Figure 4. MLVMA versus MA: (left) 2bitmax6:cnf, (right) 3bitadd31:cnf—time development for 100 runs in 15 min.
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Figure 5. MLVMA versus MA: (left) 3bitadd32:cnf, (right) 3block:cnf—time development for 100 runs in 15 min.

Figure 6. MLVMA versus MA: (left) 4blocks:cnf, (right) 4blocksb:cnf—time development for 100 runs in 15 min.

Figure 7. MLVMA versus MA: (left) e0ddr2-10-by-5-1.cnf, (right) e0ddr2-10-by-5-4.cnf—time development for 100 runs

in 15 min.
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occurs more specifically once the refinement reaches the finest level. The plots show that

MLVMA offers a better asymptotic convergence compared to MA especially for large

instances. The test cases where both algorithms reach approximately the same solution quality

(with MLVMA being marginally better), the multilevel paradigm offers a cost-effective solu-

tion strategy considering the amount of time required (Figure 9).

This multilevel paradigm has two main advantages which enables the evolutionary algorithm

to become much efficient. The coarsening process offers a better mechanism for performing

diversification (i.e., searching different parts of the search space) and intensification (i.e.,

reaching better solutions within those regions). The coarsening allows the gene of each indi-

vidual to represent a cluster of variables, leading the search to become guided and restricted to

only those solutions in the solution space in which the variables grouped within a cluster are

assigned the same value. As the size of the clusters varies from one level to another, the

crossover and mutation operators are able to explore different regions in the search space

Figure 8. MLVMA versus MA: (left) enddr2-10-by-5-1.cnf, (right) enddr2-10-by-5-8.cnf—time development for 100 runs

in 15 min.

Figure 9. MLVMA versus MA: (left) ewddr2-10-by-5-1.cnf, (right) ewddr2-10-by-5-8.cnf—time development for 100 runs

in 15 min.
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while intensifying the search by exploiting the solutions from previous levels in order to reach

better solutions.

5.2. Statistical analysis

Tables 2 and 3 summarize the results. M and SD represent the mean standard deviation of

unsolved clauses for the MLVMA and MA algorithms. The range of solutions from each algo-

rithm is also shown in order to analyze the overlap between solution spaces for any given

instance. Statistical inferential analysis was done with an independent samples t-test which

compares the difference inmeans between the two groups. Comparison using the non-parametric

Mann-WhitneyU-test gave identical results. The non-parametric effect size measure bA12 [21] was

used to evaluate the relative dominance of one algorithm over the other. The bA12 effect size

measure is calculated using the rank sum which is a common component in any non-parametric

analysis such as theMann-WhitneyU-test [20]. Calculating bA12 is done according to the following

formula:

bA12 ¼ R1=m� mþ 1ð Þ=2ð Þ=n: (1)

where R1 is the rank sum of algorithm MLVMA, m is the number of observations in the first

#Case MLVMA MA

M (SD) Range M (SD) Range

2bitadd10:cnf 2.0 (.7) [1–3] 16.3 (2.3) [11–25]

2bitadd11:cnf 1.7 (.7) [1–4] 16.3 (3.2) [8–24]

2bitadd12:cnf 1.5 (.7) [1–3] 1.6 (.7) [1–4]

2bitcomp5:cnf 1.0 (0) [1–2] 1.0 (0.1) [1–2]

2bitmax6:cnf 1.0 (.2) [1–2] 1.0 (0.1) [1–2]

2bitadd31:cnf 132.6 (10.9) [122–216] 1106.2 (142.1) [923–2620]

3bitadd32:cnf 135.7 (11.9) [123–186] 1366.9 (179.1) [1125–1974]

3blocks 4.0 (1.8) [2–9] 7.2 (1.0) [4–9]

3blocks 8.2 (3.1) [2–14] 13.0 (1.0) [11–18]

4blocksb 5.2 (1.8) [2–8] 7.3 (0.7) [5–8]

e0ddr2-10-by-5-1 343.4 (119.0) [261–697] 10871.1 (324.5) [9895–11,527]

e0ddr2-10-by-5-4 320.6 (80.8) [271–718] 10969.1 (360.1) [10,190–11,784]

enddr2-10-by-5-1 371.9 (144.0) [281–1021] 12042.9 (378.1) [111,64–12,897]

enddr2-10-by-5-8 358.9 (136.1) [278–967] 12241.3 (400.0) [11,169–13,446]

ewddr2-10-by-5-1 399.8 (166.9) [289–1124] 12939.7 (407.9) [11,960–13,835]

ewddr2-10-by-5-8 354 (107.0) [293–710] 13537.5 (423.8) [12,393–14,736]

Table 2. Statistical comparisons.
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data sample, and n is the number of observations in the second data sample. Calculating bA12

results in a number between 0 and 1 which represent the probability that MLVMA will yield a

better solution than MA. If the two algorithms are equivalent, then bA12 ¼ :5, while a complete

dominance of algorithm MLVMA over MA would entail bA12 ¼ 1.

bA12 is more easily interpreted than the more common parametric Cohen’s d [22] which repre-

sents the mean difference between two groups in standard deviations for several reasons. First,

Cohen’s d assumes that the observed samples are normally distributed [20]. Second, when

dealing with solutions to optimization problems, a researcher or a practitioner would only be

interested in the single best solution given a sample of different solutions from one or more

algorithms. Hence, using an effect size measure that indicates the probability that one algorithm

would lead to a better solution than another (given the same amount of time) would be more

informative and more easily interpretable for an optimization practitioner. The 95% confidence

intervals of bA12 shown in Table 3 (where applicable) are calculated using a bootstrapping

procedure [23] which is used to estimate the 95% confidence interval of bA12. The procedure uses

a computer-intensive step-by-step process that consists of the following three steps:

#Case Difference Estimates of effect size

M diff. [95% CI of M diff.] p Obs. bA12
bA12[95% CI of bA12]

2bitadd10:cnf 14.4 [13.8,14.9] *** 1 c

2bitadd11:cnf 14.5 [13.9,15.2] *** 1 c

2bitadd12:cnf 0.1 [�0.1,0.3] .247 .548 .547 [.476,.622]

2bitcomp5 .5

2bitmax6 0.0 [�0.1,0.3] .653 .459 .459 [.475,.515]

2bitadd31 973.6 [945.5,1001.7] *** 1 c

3bitadd32 1231.1 [1195.8,1266.6] *** 1 c

3bloks 3.2 [2.8,3.6] *** .918 .920 [.877,.958]

4blocks 4.8 [4.1,5.4] *** .916 .917 [.878,.953]

4blocksb 2.1 [1.7,2.4] *** 1 c

e0ddr2-1-by-5-1 10527.7 [10459.5,10595.8] *** 1 c

e0ddr2-1-by-5-4 10648.5 [10575.8,10721.3] *** 1 c

enddr2-10-by-5-1 10671.0 [11591.2,11750.8] *** 1 c

enddr2-10-by-5-8 11882.4 [11799.1,11965.7] *** 1 c

ewddr2-10-by-5-1 12539 [12453.0,112626.8] *** 1 c

ewddr2-10-by-5-8 13182.9 [13096.7,13269.1] *** 1 c

*** means p < 0.0001.

Table 3. Comparing effect sizes.
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1. Random resampling with replacement from the original observations to create new data sets.

2. Calculation of the rank sum of MLVMA for each new data set.

3. Using the rank sum to calculate bA12 with Eq. (1). The three steps are then repeated 1000

times and the resulting statistic bA12 is saved to create a sampling distribution of the

statistic chat12.

The results show how MLVMA outperforms MA in 10 out of the 16 instances. MLVMA

dominates MA in three instances (the 3blocks, 4blocks, and 4blocksb-instances, bA12, is :918,

:916, and :847, respectively). For the remaining three problems (2bitadd10, 2bitadd11, and

2bitadd12), there is no statistically identifiable difference between the two algorithms. However,

when inspecting the time series for these instances it is clear that MLVMA reaches a solution

much faster than MA. To test possible causes for the difference in solution quality, the relation-

ship between the number of clauses and the quality of solutions provided by the two algo-

rithms was analyzed. The relationship between the mean percentage of unsolved clauses and

the number of clauses in each instance was estimated using a linear regression. The relation-

ship between the mean percentage of unsolved clauses and the number of clauses for the

MLVMA was much lower (t(15) = 3.059, = 2.041–8, 95% CI [1.163–8, 2.714–8], p = .008, r =

.633) than for the MA (t(15) = 10.067, = 9.341–7, 95% CI [8.232–7, 1.04–6], p < .001, r = .937)

indicating that the hierarchical paradigm is less affected by the size of the problem than the

standard single-level evolutionary algorithm.

6. Conclusion

In this chapter, a multilevel evolutionary algorithm for solving the maximum satisfiability

problem is presented. During the coarsening phase, a sequence of smaller problems, each with

fewer variables, is constructed. Each child level is constructed from its parent level by collapsing

pairs of variables. The new formed variables are used to define a new and smaller problem and

recursively iterate the coarsening process until the size of the problem reaches some desired

threshold. An evolutionary algorithm is applied through several optimization levels, where the

converged population at a child level will serve as the starting population for a parent level. A

set of instances were used to compare the performance of the new approach. The results

obtained assert the superiority of the evolutionary algorithmwhen combined with the multilevel

paradigm and always return a better solution for the equivalent run-time compared to MA.

Author details

Noureddine Bouhmala*, Kjell Ivar Øvergård and Karina Hjelmervik

*Address all correspondence to: noureddine.bouhmaa@usn.no

Department of Maritime Technology and Innovation, SouthEast University, Norway

A Multilevel Evolutionary Algorithm Applied to the Maximum Satisfiability Problems
http://dx.doi.org/10.5772/intechopen.72843

215



References

[1] Blum C, Puchinger J, Raidl GR, Roli A. Hybrid metaheuristics in combinatorial optimiza-

tion: A survey. Applied Soft Computing. 2011;11:4135-4151

[2] Blum C, Roli A. Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Computing Surveys. September 2003;35(3):268–308

[3] Barnard ST, Simon HD. A fast multilevel implementation of recursive spectral bisection

for partitioning unstructured problems. Concurrency: Practice and Experience. 1994;6(2):

101-117

[4] Hadany R, Harel D. A multi-scale algorithm for drawing graphs nicely. Discrete Applied

Mathematics. 2001;113(1):3-21

[5] Karypis G, Kumar V. A fast and high quality multilevel scheme for partitioning irregular

graphs. SIAM Journal on Scientific Computing. 1998;20(1):359-392

[6] Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular graphs. Journal

of Parallel and Distributed Computing. 1998;48(1):96-129

[7] Walshaw C, Cross M. Mesh partitioning: A multilevel balancing and refinement algo-

rithm. SIAM Journal of Scientific Computing. USA. 2000;22(1):63-80

[8] Walshaw C. Amultilevel approach to the traveling salesman problem. Operational Research.

2002;50(5):862-877

[9] Walshaw C. A multilevel Lin-Kernighan-Helsgaun algorithm for the travelling salesman

problem. Technical Report 01/IM/80, Mathematics and Computing Science. London, UK:

University of Greenwich; 2001

[10] Rodney D, Soper A, Walshaw C. The application of multilevel refinement to the vehicle

routing problem. In: Fogel D. et al., editors. Proceedings of the CISChed 2007. Piscataway,

NJ: IEEE Symposium on Computational Intelligence in Scheduling; 2007. pp. 212-219

[11] Walshaw C. A multilevel algorithm for forced-directed graph-drawing. Journal of Graph

Algorithms and Applications. 2003;7(3):253-285

[12] Oduntan IO, Toulouse M, Baumgartner R, Bowman C, Somorjai R, Crainic TG. A multilevel

tabu search algorithm for the feature selection problem in biomedical data. Computers &

Mathematics with Applications. 2008;55(5):1019-1033

[13] Bouhmala N. A multilevel genetic algorithm for the clustering problem. International

Journal of Information and Communication Technology. 2016;9(1):101-116

[14] Bouhmala N. A multilevel learning automata for MAX-SAT. International Journal of

machine Learning Cybernetics. Berlin Heidelberg: Springer-Verlag. 2015;6(6):911-921. DOI:

10.1007/s13042-015-0355-4

Machine Learning - Advanced Techniques and Emerging Applications216



[15] Bouhmala N, Hjelmervik K, Kjell Ivar O. Single vs hierarchical population-based evolu-

tionary algorithm for SAT-encoded industrial problems: A statistical comparison. Inter-

national Journal of Artificial Intelligence Applications. 2012;3(6):57-73

[16] Bouhmala N, Granmo OC. GSAT enhanced with learning automata and multilevel para-

digm. International Journal of Computer Science Issues. 2011;8(3)

[17] Pirkwieser S, Raidl GR. Multilevel variable neighborhood search for periodic routing

problems. In: Cowling PI, Merz P, editors. Proceedings of EvoCOP 2010 10th European

Conference on Evolutionary Computation in Combinatorial Optimization. Vol. 6022 of

Lecture Notes in Computer Science. Berlin, Germany: Springer-Verlag; 2010. pp. 226-238

[18] Walshaw C. Multilevel refinement for combinatorial optimization: Boosting metaheuristic

performance. In: Blum C. et al., editors. Heidelberg, Berlin, Germany: Springer; 2008. pp.

261-289

[19] Spears W. Adapting crossover in evolutionary algorithms. In: Proceedings of the Fourth

Annual Conference on Evolutionary Programming. MIT Press; 1995. pp. 367-384

[20] Arcuri A, Briand L. A Hitchhiker’s guide to statistical tests for assessing randomized

algorithms in software engineering. Technical report, simula research laboratory, number

13/2011

[21] Bouhmala N. A multilevel evolutionary algorithm for large SAT-encoded problems. Evolu-

tionary Computation. 2012;20(4):641-664

[22] Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. New York Univer-

sity: Lawrence Erlbaum; 1998

[23] Mooney CZ, Duval RD. Bootstrapping—A Nonparametric Approach to Statistical Infer-

ence. Sage University Press; 1993

A Multilevel Evolutionary Algorithm Applied to the Maximum Satisfiability Problems
http://dx.doi.org/10.5772/intechopen.72843

217




