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1. Introduction    

One of the most prominent domains of application for machine learning techniques is data 
mining, which focuses on the discovery of novel, structured and potentially useful patterns 
in data. Each machine learning algorithm makes assumptions regarding the underlying 
problems it needs to solve. These assumptions and the search strategy employed constitute 
the bias of the learning algorithm. This bias restricts the area of successful application of the 
algorithm. Also, recent research in machine learning has revealed the necessity to consider 
more complex evaluation measures for learning algorithms, in some problem domains. One 
such novel measure is the cost. There are various types of costs involved in inductive 
concept learning, but, for the domains we focus on, the most important are test costs and 
misclassification costs. 
This chapter presents ProICET (Vidrighin et al, 2007), a hybrid system for solving complex 
cost-sensitive problems. We focus both on the theoretical principles of the approach, as well 
as highlight some implementation aspects and comparative evaluations on benchmark data 
(using other prominent learning algorithms). 
The remainder of the chapter is structured as follows: section 2 reviews the search problem, 
and a few fundamental strategies, and provides basic definitions for data mining and 
decision trees. Section 3 presents the cost-sensitive problem, together with a brief survey of 
the most prominent cost-sensitive learners present in literature. Section 4 presents the theory 
behind ProICET, followed by the enhancements considered and an overview of the 
implementation. Section 5 presents the experimental work performed in order to validate 
the approach. The chapter summary is presented in the final section.      

2. Basic techniques for search and knowledge extraction    

Search is a universal problem-solving mechanism is various domains, including daily life. It 
also represents one of the main applications in computer science in general, and in artificial 
intelligence in particular (Korf, 1999). The problem can be formalized as finding a path (in 
the state space) from the root node to the goal node. In many cases, a particular path is 
requested, namely the one which obeys some optimization criterion. The main task here 
comes from the difficulty of finding the right search strategy for the particular problem to 
solve. In evaluating them several criteria are considered, such as completeness (the ability of 
the strategy to find the solution in case there is one), time/space complexity (the amount of O
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time/memory the search strategy needs to find the solution), optimality (the ability of the 
strategy to find the best solution, according to the optimization criterion).  
The next section presents two important search strategies, with their derivatives. Moreover, 
their performance criteria are discussed and compared. An uninformed search strategy 
(sometimes called blind search) performs in the absence of knowledge about the number of 
steps or the path cost from the current state to the goal. The most prominent approaches in 
this category are breadth first search and depth first search. As opposed to uninformed 
methods, the informed search strategy employs problem-specific knowledge. The best first 
search strategy from this category is reviewed, and one of its simplest, yet effective versions, 
greedy search. The common pattern in all strategies is the expansion of the current node (i.e. 
considering its successors as candidates for finding the path to goal), while the particularity 
consists in the order in which the neighbors are evaluated for expansion. 

2.1 Fundamental search strategies 

In the breadth first search strategy the root node is expanded first. In the second step, all 
nodes generated by it are expanded, in the third step, their successors, and so on. This 
means that at every step the expansion process occurs for nodes which are at the same 
distance from the root, and every expanded node in a step is on the boundary of the 
covered/uncovered region of the search space. Breadth first search considers a systematic 
approach, by exhaustively searching the entire state space without considering the goal until 
it finds it. Due to the fact that the whole space is covered, the strategy is complete (i.e. on a 
finite space, the solution is found, in case there is one). Moreover, the strategy is optimal. The 
drawback is the large complexity, both in time and space: O(bd), where b represents the 
branching factor (i.e. number of descendents of a node) and d the depth of the space. 
Breadth first search can be implemented using a general search strategy with a FIFO queue 
for the states (Russell & Norvig, 1995).  
Uniform cost search comes as a flavor of breadth first search. Assuming a cost function g(n) is 
considered, breadth first search is modified by expanding the lowest cost node (min g(n)) on 
the boundary. The default distance to the root, used by the breadth first search is replaced 
by some specific cost function g(n) (i.e. for breadth first search, g(n)=depth(n) by default). 
Thus, the systematic approach of covering the space is relaxed to reach the optimal solution 
faster. Dijkstra’s algorithm is a uniform cost search algorithm. 
The depth first search strategy has a similar approach, but instead of expanding nodes on the 

boundary, it always expands one node at the deepest level. In case the search reaches a dead 

end, where no expansion is possible, a node on a shallower level is considered. This way, 

the “horizontal” approach of covering the states space is replaced by a “vertical” one.  

Depth first search can be implemented by a general search strategy if a stack is used to keep 

the states. That is, the FIFO policy is replaced by a LIFO. The major advantage of this 

strategy is reduced space requirement: O(bm), where m is the maximum depth. The time 

complexity remains in the exponential domain: O(bm). The drawback is that the method is 

neither complete, nor optimal. This is the reason why it should be avoided for spaces with large 

or infinite max depths. 

By imposing an upper limit to the maximum depth of a path these pitfalls can be avoided. 
This modified strategy is implemented by depth-limited search. In this situation, the strategy 
becomes complete, if the depth of the solution is smaller than the threshold imposed, yet it 
is still not optimal.  
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The bidirectional search simultaneously searches both from the root (forward) and the goal 
(backward) and stops when the two meet in the middle. It has the advantage of being 
optimal and complete at the same time. Moreover, it reduces the time complexity to O(bd/2), 
with the cost of increasing the space complexity to O(bd/2). The disadvantage is that the 
backward search from the goal is not applicable to all problems. This requires expanding the 
predecessor node, rather than the successor. When the operators are reversible, computing 
the predecessor is not an issue. However, for some problems, calculating predecessors is 
very difficult. Moreover, the goal state may not be unique, meaning that the backward 
strategy should be started from several nodes. Finally, there is no unique way to perform 
the search in the two halves:  the strategy is strongly dependent on the problem. Other 
issues, such as checking the appearance of a node on the other half, have to be considered 
for the bidirectional approach as well.  
If some knowledge is added to the queuing function, which determines the node to expand 
next, the chances to find (completeness) the optimal (optimality) solution faster (time 
complexity) increases and we deal with an informed search strategy. The knowledge usually 
refers to some performance function, as a measure of the desirability of expanding a node.  
Best first search strategy expands the node for which the performance function is estimated to 
be the best. Emphasis on estimation is important: expansion applies to the most promising 
node, rather than to be the one which surely leads to the best solution. Thus, the strategy 
doesn’t necessarily deliver the optimal solution (but the one which appears to be the best 
according to the performance criterion). If the evaluation was precise, and we could expand 
the best node, it would not be a search strategy at all, but a straight path from the root to the 
goal. Selecting the best candidate for expansion is done using a priority queue. 
Greedy (best first) search is one of the simplest strategies in this category. The knowledge 

added here is the estimated cost of the cheapest path from the current node to the goal. As 

mentioned for the generic case, this cost cannot be determined exactly; the function that 

estimates the cost is called a heuristic function, h(n). The greedy strategy takes the best local 

decision, with no evaluation of further effort. The method resembles depth first search, as it 

follows a single path in the attempt to reach the goal, backing up in case a dead end is 

found. Because of the similarities, it has the same drawbacks with depth first search: it is not 

optimal, and incomplete. The time complexity is still exponential: O(bm). Even worse, due to 

the fact that the strategy memorizes all nodes, the space complexity is also O(bm). Although 

the optimality of the solution is not guaranteed, it usually finds a good solution (close to the 

optimal). Moreover, if some problem-specific knowledge is added, it can obtain the optimal 

solution. Both Prim’s and Kruskal’s algorithms for finding the minimum spanning tree are 

greedy search algorithms. Because it minimizes the estimated cost to the goal, h(n), greedy 

search decreases the search costs as well, by cutting search branches. This makes the 

strategy efficient, although not optimal.  

One trap greedy strategy falls in is estimating the performance function from the current 
node to the goal, without taking into account the component of the function from the root to 
the current node (which can actually be calculated exactly, not just estimated). This cost is 
the selection criterion for uniform cost search (g(n)). Thus, the choice can be based on a 
fusion of the two criteria. That is, the summation of h and g is considered as performance 
function: f(n)=g(n)+h(n). Such a strategy (similar to the branch and bound technique), of 
minimizing the total path cost defines the A* search. f(n) represents the estimated cost on the 
cheapest path from the start node to the goal, and it incorporates g(n) as an exact measure of 
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the path from the start node to the current node (as for uniform cost search), and h(n) as the 
estimation of the remainder path to the goal (as for greedy search). By finding a restriction 
that never overestimates the cost to reach the goal for h, the method is both complete and 
optimal (Russell & Norvig, 1995). Such a restriction is an admissible heuristic, which is 
optimistic by nature, by always underestimating the cost of solving the problem. Since h is 
admissible, the effect transfers to f as well (since f=g+h), and it underestimates the actual cost 
as well. A* search is a best first search using f as the evaluation function and an admissible h 
function.  

2.2 Enhanced search strategies 

Iterative improvement techniques are efficient practical approaches for boosting search 
strategies. They can be divided into two classes. The hill-climbing strategy makes changes to 
improve the current state. The algorithm does not maintain a search tree. Rather, it moves in 
the direction of increasing value within a loop. Although simple by nature, and efficient in 
practice, it suffers the drawback of becoming trapped in local optima. Simulated annealing 
represents the other class of iterative improvement strategies.  It simply allows escaping a 
local optimum, by taking some steps to break out.  It is an effective strategy for a good 
approximation of the global optimum in a large search space. 
In combinatorial search, the goal is to find the best possible solution out of the feasible ones. 
There are two main approaches here. In lazy evaluation the computation is delayed until it is 
really needed, in contrast to look-ahead where, before making a decision, a few input steps 
are evaluated, in order to avoid backtracking at later stages. Both methods try to save both 
time and space in their evaluation. 
Another distinctive technique is employed by genetic algorithms, which are essentially 

stochastic search methods, inspired from the principles of natural selection in biology. They 

employ a population of competing solutions—evolved over time—to converge to an optimal 

solution. Effectively, the solution space is searched in parallel, which helps in avoiding local 

optima, and provides straightforward parallelization possibilities. The search is an iterative 

process where each successive generation undergoes selection in the presence of variation-

inducing operators such as mutation and recombination (crossover). A fitness function is 

used to evaluate individuals, and reproductive success varies with fitness. 

Straightforward parallelization and the possibility of applying them in ill-defined problems 
make genetic algorithms attractive. 

2.3 Data mining 

Traditionally, data mining refers to the activity of extracting new, meaningful and potentially 
useful information from data. The term has recently expanded to the entire knowledge 
discovery process, encompassing several pre-/post- and processing steps. The learning step 
is central in any data mining process. It consists of presenting a dataset – the training set – to 
a learning algorithm, so that it learns the model “hidden” in the data. A dataset consists of a 
set of instances, each instance having a set of predictive attributes and a target attribute, the 
class. The aim is to predict the value of the class using the values of the predictive attributes 
and the model learned by the induction algorithm. In order to assess the generalization 
ability of the learned model (i.e. its quality), usually a test set is employed, consisting of 
instances that have not been “seen” by the model during the learning phase. Such a problem 
is known as a classification problem (if the class attribute is discrete), or a regression 
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problem (if the class is continuous). Another data mining task is clustering, which identifies 
similar characteristics and groups cases with similar characteristics together. In this case the 
class attribute is not present.  

2.4 Decision trees 

One of the most prominent techniques used for classification (and regression) problems in 

data mining are decision trees. They are tree structures, where each interior node corresponds 

to a decision attribute; an arc from a node to a child represents a possible value of that 

attribute. A leaf represents the value of the class attribute, given the values of the attributes 

present on the path from the root to that leaf. Decision tree algorithms apply a greedy search 

heuristic and construct the model in a top-down, recursive manner (“divide and conquer”). 

At every step, the algorithm considers the partition of the training set with respect to the 

“best” attribute (which becomes the decision attribute for that node). The selection of the 

“best” attribute is made according to some splitting measure. After an appropriate split has 

been selected, the training set is divided among the branches going out of that node into 

smaller subsets. The process continues until no split is considered good enough or a 

stopping criterion is satisfied. 

The decision on which attribute to choose at a given step is based on measures provided by 
the information theory, namely on the entropy. It measures the uncertainty associated with 
a random variable. The most common attribute selection criterion is the expected reduction 
in entropy due to splitting on that attribute – the information gain.  
While being rather simple and easy to understand, decision trees are also very robust with 
respect to the data quantity. Also, they require little data preparation, being able to handle 
both numerical and categorical data, as well as missing data. Furthermore, it is possible to 
validate the model using statistical tests, such as to determine its reliability. 

3. Cost-sensitive learning 

Traditionally, learning techniques are concerned with error minimization, i.e. reducing the 

number of misclassifications. However, in many real-world problems, such as fraud 

detection, loan assessment, oil-slick detection or medical diagnosis, the gravity of different 

types of classification errors is highly unbalanced. 

For example, in credit assessment, given a customer loan application, the goal is to predict 
whether the bank should approve the loan, or not. In this situation, false positives are much 
more dangerous than false negatives. This means that an incorrect prediction that the credit 
should be approved, when the debtor is not actually capable of sustaining it, is far more 
damaging than the reverse situation. Another domain where different errors bear different 
significance and consequences is medical diagnosis (classifying an ill patient as healthy is by 
far riskier than the reverse situation). 
In domains like these, the measure of total cost is introduced to determine the performance 
of learning algorithms. Total cost minimization is at least as important as minimizing the 
number of misclassification errors. This strategy is employed by cost-sensitive learning, a 
category of learning schemes which consider different approaches to achieve minimal costs. 
As presented in (Turney, 2000), there are several types of costs involved in inductive 
concept learning, the most important being the misclassification costs and the test costs. These 
are also the focus of most cost-sensitive algorithms. Misclassification costs try to capture the 
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unbalance in different misclassifications. They are modeled through the use of a cost matrix 
(Cij)nxn, where Cij is the cost of misclassifying an instance of class j as being of class i. Test 
costs quantify the “price” of an attribute, without being restricted to its economical value. 
For example, in the medical domain, a test cost could represent a combination between the 
costs of the equipments involved in the investigation, the time spent to gather the results, 
the impact on the patient (psychical or physical - pain), a.s.o. Test costs are specified as 
attribute – value pairs. 
In most real-world problems, setting the true costs is a difficult issue. If, in the case of test 
costs, the decision is made easier by the possibility of considering the different dimensions 
(time, monetary, pain, emotional implications, e.t.c.), when it comes to determining the 
misclassification costs we come across a more serious issue: we have to put a price on 
human life. Perhaps an appropriate approach here would be to experiment with several 
close proportions for the errors’ unbalance.   

3.1 Cost-sensitive algorithms 

Most cost-sensitive classifiers focus on minimizing the misclassification costs. There exist, 
however, several algorithms which tackle test costs. Significantly less work has been done in 
aggregating the two cost components. This section reviews some of the most prominent cost-
sensitive approaches in literature: stratification, MetaCost (Domingos, 1999) and AdaCost (Fan 
et. al., 2000) as misclassification cost-sensitive approaches, and Eg2 (Nunez, 1988), IDX 
(Norton, 1989) and CS-ID3 (Tan & Schlimmer, 1989, 1990) which consider test costs.    

3.1.1 Stratification 

Stratification is one of the earliest and simplest techniques for minimizing misclassification 
costs. It is a sampling procedure, which modifies the distribution of instances in the training 
set, such that the classes with a higher misclassification cost are better represented. 
Stratification can be achieved either through undersampling, or oversampling. While being 
a very simple and intuitive technique for considering the unbalance of different types of 
errors, the modification of the set distribution induces drawbacks, since it may bias the 
learning process towards distorted models. Also, each alternative has its own drawbacks: 
undersampling reduces the data available for learning, while oversampling increases the 
training time. However, the most serious limitation of this method comes from the fact that 
it restricts the dimension or the form of the cost matrix. For problems with more than two 
classes, or when the cost is dependent on the predicted class (Cij ≠ Ckj, where k≠i), the cost 
matrix may become too complicated, such that proportions for each class cannot be 
established (Domingos, 1999). 

3.1.2 MetaCost and AdaCost 

More complex approaches usually involve meta-learning, and can be applied to a variety of 
base classifiers. The most representative in this category are MetaCost (Domingos, 1999) and 
AdaCost (Fan et. al., 2000). 
MetaCost, introduced by Pedro Domingos, is a method for converting error-based classifiers 
into cost-sensitive approaches. It employs the Bayes minimal conditional risk principle to 
perform class re-labeling on the training instances. In order to determine the Bayes optimal 
prediction for each training example, i.e. the class which minimizes the conditional risk, an 
ensemble of classifiers is initially trained and employed to estimate the class probability for 
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each instance. After that, the risk for each class is computed, using the cost matrix settings. 
Each instance is then re-labeled with the class having the lowest risk. After obtaining the 
modified dataset, any error-based classifier will also minimize the cost while seeking to 
minimize zero-one loss (the error). 
AdaCost is the misclassification cost-sensitive variant of the AdaBoost.M1 algorithm. Being a 
boosting-based approach, AdaCost employs an ensemble method, which builds a new 
model at each phase. Weights are assigned to each instance, and they are modified after 
each boosting phase, using the cost of misclassifications in the weight-update mechanism. 
Initially, high weights are assigned to costly instances, as opposed to AdaBoost.M1, where 
uniform weights are assigned to the training instances for the first boosting phase. In the 
empirical evaluations performed, AdaCost yielded a consistent and significant reduction in 
misclassification costs over AdaBoost.M1. 

3.1.3 Eg2, CS-ID3 and IDX 

The category of algorithms which focus on minimizing test costs is largely based on decision 
trees. Eg2, CS-ID3 or IDX are basically decision trees which employ a modified attribute 
selection criterion such as to embed the cost of the attribute in the selection decision. Eg2’s 
criterion is detailed in the section regarding the algorithm ICET.  
IDX (Norton, 1989) uses a look-ahead strategy, by looking n tests ahead, where n is a 
parameter that may be set by the user. Its attribute selection criterion is: 

i

i

C

IΔ

 
(1) 

where ΔIi represents the information gain of attribute i, and Ci is its cost. 
CS-ID3 (Tan & Schlimmer, 1989, 1990) uses a lazy evaluation strategy, by only constructing 
the part of the decision tree that classifies the current case. Its attribute selection heuristic is: 

iC

I
2)(Δ

 
(2) 

4. ICET – Inexpensive Classification with Expensive Tests 

Introduced by Peter D. Turney as a solution to cost-sensitive problems, ICET (Inexpensive 

Classification with Expensive Tests) is a hybrid technique, which combines a greedy search 

heuristic (decision tree) with a genetic algorithm. Its distinctive feature is that it considers both 

test and misclassification costs, as opposed to the other cost-sensitive algorithms, which fail 

to consider both types of costs. Since it models real-world settings, where both the attributes 

and the different classification errors bear separate prices, the approach is more successful in 

true-life. 

The technique combines two different components, on two levels: 

• On the bottom level, a test cost-sensitive decision tree performs a greedy search in the 
space of decision trees 

• On the top level, the evolutionary component performs a genetic search through a space 
of biases; these are used to control the preference for certain types of decision trees in 
the bottom layer   
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The components used in the initial version of ICET are: Eg2 (Nunez, 1988) for the decision 
tree component and GENESIS (Grefenstette, 1986) for the genetic component. Eg2 has been 
implemented as a modified component of Quinlan’s C4.5 (Quinlan, 1993), using ICF 
(Information Cost Function) as attribute selection function. For the ith attribute, ICF may be 
defined as follows: 

w

i

I

i
C

ICF
i

)1(

12

+
−

=
Δ

 , where 0 ≤  w ≤  1   (3) 

This means that the attribute selection criterion is no longer based solely on the attribute’s 

contribution to obtaining a pure split, but also on its cost, Ci. Also, the Information Cost 

Function contains parameter w, which adjusts the strength of the bias towards lower cost 

attributes. Thus, when w = 0, the cost of the attribute is ignored, and selection by ICF is 

equivalent to selection by the information gain function. On the other hand, when w = 1, ICF 

is strongly biased by the cost component. 

The algorithm flow: the algorithm starts by the genetic component evolving a population of 

randomly generated individuals (an individual corresponds to a decision tree). Each 

individual in the initial population is then evaluated by measuring its fitness. Standard 

mutation and crossover operators are applied to the trees population and, after a fixed 

number of iterations, the fittest individual is returned (Fig. 1). 

Each individual is represented as a bit string of n + 2 numbers, encoded in Gray. The first n 

numbers represent the bias parameters (“alleged” test costs in the ICF function). The last 

two stand for the algorithm’s parameters CF and w; the first controls the level of pruning (as 

defined for C4.5), while w is needed by ICF. 
 

 

Fig. 1. The ICET technique 

An important remark is that, unlike Eg2, ICET does not minimize test costs directly. Instead, 

it uses ICF for the codification of the individuals in the population. The n costs, Ci, are not 

true costs, but bias parameters. They provide enough variation to prevent the decision tree 

learner from getting trapped in a local optimum, by overrating/underrating the cost of 

certain tests based on past trials’ performance. However, it is possible to use true costs, 

when generating the initial population, which has been shown to lead to some increase in 

performance. 
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Each trial on an individual consists in training and evaluating a decision tree on a given 
dataset, using the biases in the individual to set the attribute costs, CF and w. This is done by 
splitting the available dataset into two subsets: sub-training and sub-testing dataset. Since 
the split is random, there may be that two identical individuals will yield different outcomes 
(since the form of a decision tree is strongly related to the distribution in the training set – 
different training sets produce different trees).  
In ICET, the fitness function for an individual is computed as the average cost of classification 

of the corresponding tree (obtained by randomly dividing the training set in two subsets, 

the first used for the actual tree induction and the second for error estimation). The average 

cost of classification is obtained by normalizing the total costs (obtained by summing the 

test and misclassification costs) to the test set size. Test costs are specified as attribute - cost 

value pairs. The classification costs are defined by a cost matrix (Cij)nxn, where Cij - the cost 

of misclassifying an instance of class j as being of class i. If the same attribute is tested twice 

along the path (numeric attribute), the second time its cost is 0. 

The particularity presented by ICET, of allowing the test costs (encoded inside a genetic 

individual) to vary freely in the search domain, and then applying the fitness evaluation to 

guide the individuals towards an optimal solution, increases the variability in the heuristic 

component. Moreover, w and CF – two key features which influence the future form of a 

decision tree – are also encoded in the individual, providing even more possibility of 

variation in the decision trees search space. Theoretically, this variability is desirable, 

especially for greedy algorithms such as decision tree learners – that yield unique structures 

for a fixed training set. 

4.1 ProICET – improving the basic algorithm 

Although ICET has a strong theoretical background, some enhancements can be considered, 
in order to boost its performance in real-world settings. Most of the changes affect the 
genetic component, but the training process is slightly different as well. This section also 
presents other implementation details, and briefly reviews the two tools employed for the 
current implementation. 

4.1.1 Enhancements 

First, and most importantly, the single population technique is employed as replacement 

strategy (instead of the multiple populations). In this technique the population is sorted 

according to the fitness of its elements. At each step two individuals are generated and their 

fitness is evaluated. According to their score, they are added to the same population their 

parent elements came from. Then, the individuals with the lowest fitness values are 

eliminated, so that the size of the population remains the same.  

The single population technique has the advantage of directly implementing elitism: the best 

individuals of the current generation can survive unchanged in the next generation. Another 

prominent feature is the use of ranking in the fitness function estimation. The individuals in 

the population are ordered according to their fitness value, after which probabilities of 

selection are distributed evenly, according to their rank in the ordered population. Ranking 

is a very effective mechanism for avoiding the premature convergence of the population, 

which can occur if the initial pool has some individuals which dominate, having a 

significantly better fitness than the others. 
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Some amendments have been considered in the training process as well. Thus, the 
percentage of the training examples used when evaluating the fitness score of an individual 
in the population is now 70% of the original training set, as opposed to 50% (in the initial 
implementation).  
The number of evaluation steps has also been increased. Due to the fact that a new 
generation is evolved using single population, the final result yielded by the procedure is 
the best individual over the entire run, which makes the decision on when to stop the 
evolution less critical. More than that, experiments show that usually the best individual 
does not change significantly after 800 steps: in more than 90% of the cases the algorithm 
converges before the 800th iteration, while in the rest of the cases the variations after this 
point are small (less than 3.5%). Therefore, the number of steps in our implementation is 
1000. 

4.1.2 Implementation overview 

The current implementation of the improved ICET technique (ProICET) has been done 
starting from an existing implementation of revision 8 of the C4.5 algorithm, present in 
Weka (Witten, 2005) and a general genetic tool, GGAT (GGAT, 2002), developed at Brunel 
University.  
Weka (Waikato Environment for Knowledge Analysis) is a data mining tool developed at the 
University of Waikato, New Zealand. It is distributed under the GPL (Gnu Public License) 
and it includes a wide variety of state-of-the-art algorithms and data processing tools, 
providing extensive support for the entire process of experimental data mining (input 
filtering, statistical evaluation of learning schemes, data visualization, preprocessing tools). 
The command-line interface it provides was particularly useful when invoking the modified 
decision tree learner for computing the fitness function in the genetic algorithm part of the 
application.  
 

 
Fig. 2. ProICET main flow 
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GGAT is a generic GA library, developed at the Brunel University, London. It implements 
most genetic algorithm mechanisms. Of particular interest are the single population 
technique and the ranking mechanisms. 
In order to obtain the Eg2 attribute selection criterion, as presented in equation (3), the 

information gain function of J4.8 algorithm was modified, similarly to the implementation 

presented in (Turney, 1995). 

ProICET has been implemented within the framework provided by GGAT. For each 

individual, the n + 2 chromosomes are defined (n being the number of attributes in the data 

set, while the other two correspond to parameters w and CF); each chromosome is 

represented as a 14 bits binary string, encoded in Gray. The population size is 50 

individuals. The roulette wheel technique is used for parent selection; as recombination 

techniques, we have employed single point random mutation with mutation rate 0.2, and 

multipoint crossover, with 4 randomly selected crossover points. 

Since the technique involves a large heuristic component, the evaluation procedure assumes 

averaging the costs over 10 runs. Each run uses a pair of randomly generated training-

testing sets, in the proportion 70% - 30%; the same proportion is used when separating the 

training set into a component used for training and one for evaluating each individual (in 

the fitness function). 

5. Experimental work 

A significant problem related to the original ICET technique is rooted in the fact that costs 

are learned indirectly, through the fitness function. Rare examples are relatively more 

difficult to be learned by the algorithm. This fact was also observed in (Turney, 1995), 

where, when analyzing complex cost matrices for a two-class problem, it is noted that: it is 

easier to avoid false positive diagnosis [...] than it is to avoid false negative diagnosis [...]. This is 

unfortunate, since false negative diagnosis usually carry a heavier penalty, in real life.  

Turney, too, attributes this phenomenon to the distribution of positive and negative 
examples in the training set. In this context, our aim is to modify the fitness measure as to 
eliminate such undesirable asymmetries.  
Last, but not least, previous ICET papers focus almost entirely on test costs and lack a 

comprehensive analysis of the misclassification costs component. Therefore we attempt to 

fill this gap by providing a comparative analysis with some of the classic cost-sensitive 

techniques, such as MetaCost and Eg2, and prominent error-reduction based classifiers, 

such as J4.8 and AdaBoost.M1.  

5.1 Symmetry through stratification 

As we have mentioned before, it is believed that the asymmetry in the evaluated costs for 

two-class problems, as the proportion of false positives and false negatives misclassification 

costs varies, is owed to the small number of negative examples in most datasets. If the 

assumption is true, the problem could be eliminated by altering the distribution of the 

training set, either by oversampling, or by undersampling. This hypothesis was tested by 

performing an evaluation of the ProICET results on the Wisconsin breast cancer dataset. 

This particular problem was selected as being one of the largest two-class datasets presented 

in the literature. 

www.intechopen.com



 Advances in Greedy Algorithms 

 

162 

For the stratified dataset, the negative class is increased to the size of the positive class, by 
repeating examples in the initial set, selected at random, with a uniform distribution. 
Oversampling is preferred, despite of an increase in computation time, due to the fact that 
the alternate solution involves some information loss. Undersampling could be selected in 
the case of extremely large databases, for practical reasons. In that situation, oversampling is 
no longer feasible, as the time required for the learning phase on the extended training set 
becomes prohibitive. 
The misclassification cost matrix used for this analysis has the form: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=
01

0
100

p

p
C  ,  (4) 

where p is varied with a 0.05 increment. 
The results of the experiment are presented in Fig. 3. We observe a small decrease in 

misclassification costs for the stratified case throughout the parameter space. This reduction 

is visible especially at the margins, when costs become more unbalanced. Particularly in the 

left side, we notice a significant reduction in the total cost for expensive rare examples, 

which was the actual goal of the procedure.  
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Fig. 3. ProICET average costs for the breast cancer dataset 

Starting from the assumption that the stratification technique may be applicable to other 

cost-sensitive classifiers, we have repeated the procedure on the Weka implementation of 

MetaCost, using J4.8 as base classifier. J4.8 was also considered in the analysis, as baseline 

estimate. 

The results for the second set of tests are presented in Fig. 4. We observe that MetaCost 

yields significant costs, as the cost matrix drifts from the balanced case, a characteristic 

which has been described previously. Another important observation is related to the fact 

that the cost characteristic in the case of J4.8 is almost horizontal. This could give an 

explanation of the way stratification affects the general ProICET behavior, by making it 

insensitive to the particular form of the cost matrix. Most importantly, we notice a general 

reduction in the average costs, especially at the margins of the domain considered. We 
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conclude that our stratification technique could be also used for improving the cost 

characteristic of MetaCost. 
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Fig. 4. Improved average cost for the stratified Wisconsin dataset 

5.2 Comparing misclassification costs 

The procedure employed when comparing misclassification costs is similar to that described 

in the previous section. Again, the Wisconsin dataset was used, and misclassification costs 

were averaged on 10 randomly generated training/test sets. For all the tests described in 

this section, the test costs are not considered in the evaluation, in order to isolate the 

misclassification component and eliminate any bias. 

As illustrated by Fig. 5, MetaCost yields the poorest results. ProICET performs slightly 

better than J4.8, while the smallest costs are obtained for AdaBoost, using J4.8 as base 

classifier. The improved performance is related to the different approaches taken when 

searching for the solution. If ProICET uses heuristic search, AdaBoost implements a 

procedure that is guaranteed to converge to minimum training error, while the ensemble 

voting reduces the risk of overfitting. However, the approach cannot take into account test 

costs, which should make it perform worse on problems involving both types of costs. 

5.3 Total cost analysis 

When estimating the performance of the various algorithms presented, we have considered 

four problems from the UCI repository. All datasets involve medical problems: Bupa liver 

disorders, thyroid, Pima Indian diabetes and heart disease Cleveland. For the Bupa dataset, 

we have used the same modified set as in (Turney, 1995). Also, the test costs estimates are 

taken from the previously mentioned study. As mentioned before, the misclassification costs 

values are more difficult to estimate, due to the fact that they measure the risks of 

misdiagnosis, which do not have a clear monetary equivalent. These values are set 

empirically, assigning higher penalty for undiagnosed disease and keeping the order of 

magnitude as to balance the two cost components (the actual values are displayed in tables 

1, 2, 3 and 4). 
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Misclassification Cost Component
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Fig. 5. A comparison of average misclassification costs on the Wisconsin dataset 

Class less than 3 more than 

less than 3 0 5 

more than 3 15 0 

Table 1. Misclassification cost matrix for Bupa liver disorder dataset 

Class 3 2 1 

3 0 5 7 

2 12 0 5 

1 20 12 0 

Table 2. Misclassification cost matrix for the Thyroid dataset 

Class less than 3 more than 

less than 3 0 7 

more than 3 20 0 

Table 3. Misclassification cost matrix for the Pima dataset 

Class 0 1 2 3 4 

0 0 10 20 30 40 

1 50 0 10 20 30 

2 100 50 0 10 20 

3 150 100 50 0 10 

4 200 150 100 50 0 

Table 4. Misclassification cost matrix for the Cleveland heart disease dataset 

As anticipated, ProICET significantly outperforms all other algorithms, being the only one 
built for optimizing total costs (Fig. 6-9). ProICET performs quite well on the heart disease 
dataset (Fig. 6), where the initial implementation obtained poorer results. This improvement 
is probably owed to the alterations made to the genetic algorithm, which increase the 
population variability and extend the ProICET heuristic search. 
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Total Cost for Cleveland Dataset
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Fig. 6. Average total costs of the considered algorithms on the Cleveland dataset 

Total Cost for Bupa Dataset
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Fig. 7. Average total costs of the considered algorithms on the Bupa dataset 

On the Bupa dataset (Fig. 7), AdaBoost.M1 slightly outperforms ProICET, but this is more 

an exception, since on the other datasets, AdaBoost.M1 yields poorer results. Moreover, the 

cost reduction performed by ProICET relative to the other methods, on this dataset, is very 

significant.  

The cost reduction is relatively small in the Thyroid dataset (Fig. 8), compared to the others, 

but is quite large for the other cases, supporting the conclusion that ProICET is the best 

approach for problems involving complex costs. 

6. Chapter summary 

This chapter presents the successful combination of two search strategies, greedy search (in 

the form of decision trees) and genetic search, into a hybrid approach. The aim is to achieve 

increased performance over existing classification algorithms in complex cost problems, 

usually encountered when mining real-world data, such as in medical diagnosis or credit 

assessment. 
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Total Cost for Thyroid Dataset
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Fig. 8. Average total costs of the considered algorithms on the Thyroid dataset  

Total Cost for Pima Dataset
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Fig. 9. Average total costs of the considered algorithms on the Pima dataset 

Any machine learning algorithm is based on a certain search strategy, which imposes a bias 
on the technique. There are many search methods available, each with advantages and 
disadvantages. The distinctive features of each search strategy restrict its applicability to 
certain problem domains, depending on which issues (dimensionality, speed, optimality, 
etc.) are of importance. The dimension of the search space in most real-world problems 
renders the application of complete search methods prohibitive. Sometimes we have to 
trade optimality for speed. Fortunately, greedy search strategies, although do not ensure 
optimality, usually provide a sufficiently good solution, close to the optimal one. Although 
they have an exponential complexity in theory, since they do not explore the entire search 
space, they have a very good behaviour in practice, in speed terms. This makes them 
suitable even for complex problems. Their major drawback comes from the fact that they 
can get caught at local optima. Since the complexity of the search space is too large, such 
that the problem is intractable for other techniques, in most real problems this is an accepted 
disadvantage. Greedy search strategies are employed in many machine learning algorithms. 
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One of the most prominent classification techniques which employ such a strategy are 
decision trees.  
The main advantages of decision trees are: an easy to understand output model, robustness 
with respect to the data quantity, little data preparation, ability to handle both numerical 
and categorical data, as well as missing data. Therefore, decision trees have become one of 
the most widely employed classification techniques in data mining, for problems where 
error minimization is the target of the learning process.  
However, many real-world problems require more complex measures for evaluating the 
quality of the learned model. This is due to the unbalance between different types of 
classification errors, or the effort of acquiring the values of predictive attributes. A special 
category of machine learning algorithms focuses on this task – cost-sensitive learning. Most 
existing techniques in this class focus on just one type of cost, either the misclassification, or 
the test cost. Stratification is perhaps the earliest misclassification cost-sensitive approach (a 
sampling technique rather than an algorithm). It has been followed by developments in the 
direction of altering decision trees, such as to make their attribute selection criterion 
sensitive to test costs (in the early 90’s). Later, new misclassification cost-sensitive 
approaches emerged, the best known being MetaCost or AdaCost. More recent techniques 
consider both types of cost, the most prominent being ICET.  
Initially introduced by Peter D. Turney, ICET is a cost-sensitive technique, which avoids the 
pitfalls of simple greedy induction (employed by decision trees) through evolutionary 
mechanisms (genetic algorithms). Starting from its strong theoretical basis, we have 
enhanced the basic technique in a new system, ProICET. The alterations made in the genetic 
component have proven beneficial, since ProICET performs better than other cost-sensitive 
algorithms, even on problems for which the initial implementation yielded poorer results. 
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