
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

9

Enhancing Greedy Policy Techniques for
Complex Cost-Sensitive Problems

Camelia Vidrighin Bratu and Rodica Potolea
Technical University of Cluj-Napoca

Romania

1. Introduction

One of the most prominent domains of application for machine learning techniques is data
mining, which focuses on the discovery of novel, structured and potentially useful patterns
in data. Each machine learning algorithm makes assumptions regarding the underlying
problems it needs to solve. These assumptions and the search strategy employed constitute
the bias of the learning algorithm. This bias restricts the area of successful application of the
algorithm. Also, recent research in machine learning has revealed the necessity to consider
more complex evaluation measures for learning algorithms, in some problem domains. One
such novel measure is the cost. There are various types of costs involved in inductive
concept learning, but, for the domains we focus on, the most important are test costs and
misclassification costs.
This chapter presents ProICET (Vidrighin et al, 2007), a hybrid system for solving complex
cost-sensitive problems. We focus both on the theoretical principles of the approach, as well
as highlight some implementation aspects and comparative evaluations on benchmark data
(using other prominent learning algorithms).
The remainder of the chapter is structured as follows: section 2 reviews the search problem,
and a few fundamental strategies, and provides basic definitions for data mining and
decision trees. Section 3 presents the cost-sensitive problem, together with a brief survey of
the most prominent cost-sensitive learners present in literature. Section 4 presents the theory
behind ProICET, followed by the enhancements considered and an overview of the
implementation. Section 5 presents the experimental work performed in order to validate
the approach. The chapter summary is presented in the final section.

2. Basic techniques for search and knowledge extraction

Search is a universal problem-solving mechanism is various domains, including daily life. It
also represents one of the main applications in computer science in general, and in artificial
intelligence in particular (Korf, 1999). The problem can be formalized as finding a path (in
the state space) from the root node to the goal node. In many cases, a particular path is
requested, namely the one which obeys some optimization criterion. The main task here
comes from the difficulty of finding the right search strategy for the particular problem to
solve. In evaluating them several criteria are considered, such as completeness (the ability of
the strategy to find the solution in case there is one), time/space complexity (the amount of O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

152

time/memory the search strategy needs to find the solution), optimality (the ability of the
strategy to find the best solution, according to the optimization criterion).
The next section presents two important search strategies, with their derivatives. Moreover,
their performance criteria are discussed and compared. An uninformed search strategy
(sometimes called blind search) performs in the absence of knowledge about the number of
steps or the path cost from the current state to the goal. The most prominent approaches in
this category are breadth first search and depth first search. As opposed to uninformed
methods, the informed search strategy employs problem-specific knowledge. The best first
search strategy from this category is reviewed, and one of its simplest, yet effective versions,
greedy search. The common pattern in all strategies is the expansion of the current node (i.e.
considering its successors as candidates for finding the path to goal), while the particularity
consists in the order in which the neighbors are evaluated for expansion.

2.1 Fundamental search strategies

In the breadth first search strategy the root node is expanded first. In the second step, all
nodes generated by it are expanded, in the third step, their successors, and so on. This
means that at every step the expansion process occurs for nodes which are at the same
distance from the root, and every expanded node in a step is on the boundary of the
covered/uncovered region of the search space. Breadth first search considers a systematic
approach, by exhaustively searching the entire state space without considering the goal until
it finds it. Due to the fact that the whole space is covered, the strategy is complete (i.e. on a
finite space, the solution is found, in case there is one). Moreover, the strategy is optimal. The
drawback is the large complexity, both in time and space: O(bd), where b represents the
branching factor (i.e. number of descendents of a node) and d the depth of the space.
Breadth first search can be implemented using a general search strategy with a FIFO queue
for the states (Russell & Norvig, 1995).
Uniform cost search comes as a flavor of breadth first search. Assuming a cost function g(n) is
considered, breadth first search is modified by expanding the lowest cost node (min g(n)) on
the boundary. The default distance to the root, used by the breadth first search is replaced
by some specific cost function g(n) (i.e. for breadth first search, g(n)=depth(n) by default).
Thus, the systematic approach of covering the space is relaxed to reach the optimal solution
faster. Dijkstra’s algorithm is a uniform cost search algorithm.
The depth first search strategy has a similar approach, but instead of expanding nodes on the

boundary, it always expands one node at the deepest level. In case the search reaches a dead

end, where no expansion is possible, a node on a shallower level is considered. This way,

the “horizontal” approach of covering the states space is replaced by a “vertical” one.

Depth first search can be implemented by a general search strategy if a stack is used to keep

the states. That is, the FIFO policy is replaced by a LIFO. The major advantage of this

strategy is reduced space requirement: O(bm), where m is the maximum depth. The time

complexity remains in the exponential domain: O(bm). The drawback is that the method is

neither complete, nor optimal. This is the reason why it should be avoided for spaces with large

or infinite max depths.

By imposing an upper limit to the maximum depth of a path these pitfalls can be avoided.
This modified strategy is implemented by depth-limited search. In this situation, the strategy
becomes complete, if the depth of the solution is smaller than the threshold imposed, yet it
is still not optimal.

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

153

The bidirectional search simultaneously searches both from the root (forward) and the goal
(backward) and stops when the two meet in the middle. It has the advantage of being
optimal and complete at the same time. Moreover, it reduces the time complexity to O(bd/2),
with the cost of increasing the space complexity to O(bd/2). The disadvantage is that the
backward search from the goal is not applicable to all problems. This requires expanding the
predecessor node, rather than the successor. When the operators are reversible, computing
the predecessor is not an issue. However, for some problems, calculating predecessors is
very difficult. Moreover, the goal state may not be unique, meaning that the backward
strategy should be started from several nodes. Finally, there is no unique way to perform
the search in the two halves: the strategy is strongly dependent on the problem. Other
issues, such as checking the appearance of a node on the other half, have to be considered
for the bidirectional approach as well.
If some knowledge is added to the queuing function, which determines the node to expand
next, the chances to find (completeness) the optimal (optimality) solution faster (time
complexity) increases and we deal with an informed search strategy. The knowledge usually
refers to some performance function, as a measure of the desirability of expanding a node.
Best first search strategy expands the node for which the performance function is estimated to
be the best. Emphasis on estimation is important: expansion applies to the most promising
node, rather than to be the one which surely leads to the best solution. Thus, the strategy
doesn’t necessarily deliver the optimal solution (but the one which appears to be the best
according to the performance criterion). If the evaluation was precise, and we could expand
the best node, it would not be a search strategy at all, but a straight path from the root to the
goal. Selecting the best candidate for expansion is done using a priority queue.
Greedy (best first) search is one of the simplest strategies in this category. The knowledge

added here is the estimated cost of the cheapest path from the current node to the goal. As

mentioned for the generic case, this cost cannot be determined exactly; the function that

estimates the cost is called a heuristic function, h(n). The greedy strategy takes the best local

decision, with no evaluation of further effort. The method resembles depth first search, as it

follows a single path in the attempt to reach the goal, backing up in case a dead end is

found. Because of the similarities, it has the same drawbacks with depth first search: it is not

optimal, and incomplete. The time complexity is still exponential: O(bm). Even worse, due to

the fact that the strategy memorizes all nodes, the space complexity is also O(bm). Although

the optimality of the solution is not guaranteed, it usually finds a good solution (close to the

optimal). Moreover, if some problem-specific knowledge is added, it can obtain the optimal

solution. Both Prim’s and Kruskal’s algorithms for finding the minimum spanning tree are

greedy search algorithms. Because it minimizes the estimated cost to the goal, h(n), greedy

search decreases the search costs as well, by cutting search branches. This makes the

strategy efficient, although not optimal.

One trap greedy strategy falls in is estimating the performance function from the current
node to the goal, without taking into account the component of the function from the root to
the current node (which can actually be calculated exactly, not just estimated). This cost is
the selection criterion for uniform cost search (g(n)). Thus, the choice can be based on a
fusion of the two criteria. That is, the summation of h and g is considered as performance
function: f(n)=g(n)+h(n). Such a strategy (similar to the branch and bound technique), of
minimizing the total path cost defines the A* search. f(n) represents the estimated cost on the
cheapest path from the start node to the goal, and it incorporates g(n) as an exact measure of

www.intechopen.com

 Advances in Greedy Algorithms

154

the path from the start node to the current node (as for uniform cost search), and h(n) as the
estimation of the remainder path to the goal (as for greedy search). By finding a restriction
that never overestimates the cost to reach the goal for h, the method is both complete and
optimal (Russell & Norvig, 1995). Such a restriction is an admissible heuristic, which is
optimistic by nature, by always underestimating the cost of solving the problem. Since h is
admissible, the effect transfers to f as well (since f=g+h), and it underestimates the actual cost
as well. A* search is a best first search using f as the evaluation function and an admissible h
function.

2.2 Enhanced search strategies

Iterative improvement techniques are efficient practical approaches for boosting search
strategies. They can be divided into two classes. The hill-climbing strategy makes changes to
improve the current state. The algorithm does not maintain a search tree. Rather, it moves in
the direction of increasing value within a loop. Although simple by nature, and efficient in
practice, it suffers the drawback of becoming trapped in local optima. Simulated annealing
represents the other class of iterative improvement strategies. It simply allows escaping a
local optimum, by taking some steps to break out. It is an effective strategy for a good
approximation of the global optimum in a large search space.
In combinatorial search, the goal is to find the best possible solution out of the feasible ones.
There are two main approaches here. In lazy evaluation the computation is delayed until it is
really needed, in contrast to look-ahead where, before making a decision, a few input steps
are evaluated, in order to avoid backtracking at later stages. Both methods try to save both
time and space in their evaluation.
Another distinctive technique is employed by genetic algorithms, which are essentially

stochastic search methods, inspired from the principles of natural selection in biology. They

employ a population of competing solutions—evolved over time—to converge to an optimal

solution. Effectively, the solution space is searched in parallel, which helps in avoiding local

optima, and provides straightforward parallelization possibilities. The search is an iterative

process where each successive generation undergoes selection in the presence of variation-

inducing operators such as mutation and recombination (crossover). A fitness function is

used to evaluate individuals, and reproductive success varies with fitness.

Straightforward parallelization and the possibility of applying them in ill-defined problems
make genetic algorithms attractive.

2.3 Data mining

Traditionally, data mining refers to the activity of extracting new, meaningful and potentially
useful information from data. The term has recently expanded to the entire knowledge
discovery process, encompassing several pre-/post- and processing steps. The learning step
is central in any data mining process. It consists of presenting a dataset – the training set – to
a learning algorithm, so that it learns the model “hidden” in the data. A dataset consists of a
set of instances, each instance having a set of predictive attributes and a target attribute, the
class. The aim is to predict the value of the class using the values of the predictive attributes
and the model learned by the induction algorithm. In order to assess the generalization
ability of the learned model (i.e. its quality), usually a test set is employed, consisting of
instances that have not been “seen” by the model during the learning phase. Such a problem
is known as a classification problem (if the class attribute is discrete), or a regression

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

155

problem (if the class is continuous). Another data mining task is clustering, which identifies
similar characteristics and groups cases with similar characteristics together. In this case the
class attribute is not present.

2.4 Decision trees

One of the most prominent techniques used for classification (and regression) problems in

data mining are decision trees. They are tree structures, where each interior node corresponds

to a decision attribute; an arc from a node to a child represents a possible value of that

attribute. A leaf represents the value of the class attribute, given the values of the attributes

present on the path from the root to that leaf. Decision tree algorithms apply a greedy search

heuristic and construct the model in a top-down, recursive manner (“divide and conquer”).

At every step, the algorithm considers the partition of the training set with respect to the

“best” attribute (which becomes the decision attribute for that node). The selection of the

“best” attribute is made according to some splitting measure. After an appropriate split has

been selected, the training set is divided among the branches going out of that node into

smaller subsets. The process continues until no split is considered good enough or a

stopping criterion is satisfied.

The decision on which attribute to choose at a given step is based on measures provided by
the information theory, namely on the entropy. It measures the uncertainty associated with
a random variable. The most common attribute selection criterion is the expected reduction
in entropy due to splitting on that attribute – the information gain.
While being rather simple and easy to understand, decision trees are also very robust with
respect to the data quantity. Also, they require little data preparation, being able to handle
both numerical and categorical data, as well as missing data. Furthermore, it is possible to
validate the model using statistical tests, such as to determine its reliability.

3. Cost-sensitive learning

Traditionally, learning techniques are concerned with error minimization, i.e. reducing the

number of misclassifications. However, in many real-world problems, such as fraud

detection, loan assessment, oil-slick detection or medical diagnosis, the gravity of different

types of classification errors is highly unbalanced.

For example, in credit assessment, given a customer loan application, the goal is to predict
whether the bank should approve the loan, or not. In this situation, false positives are much
more dangerous than false negatives. This means that an incorrect prediction that the credit
should be approved, when the debtor is not actually capable of sustaining it, is far more
damaging than the reverse situation. Another domain where different errors bear different
significance and consequences is medical diagnosis (classifying an ill patient as healthy is by
far riskier than the reverse situation).
In domains like these, the measure of total cost is introduced to determine the performance
of learning algorithms. Total cost minimization is at least as important as minimizing the
number of misclassification errors. This strategy is employed by cost-sensitive learning, a
category of learning schemes which consider different approaches to achieve minimal costs.
As presented in (Turney, 2000), there are several types of costs involved in inductive
concept learning, the most important being the misclassification costs and the test costs. These
are also the focus of most cost-sensitive algorithms. Misclassification costs try to capture the

www.intechopen.com

 Advances in Greedy Algorithms

156

unbalance in different misclassifications. They are modeled through the use of a cost matrix
(Cij)nxn, where Cij is the cost of misclassifying an instance of class j as being of class i. Test
costs quantify the “price” of an attribute, without being restricted to its economical value.
For example, in the medical domain, a test cost could represent a combination between the
costs of the equipments involved in the investigation, the time spent to gather the results,
the impact on the patient (psychical or physical - pain), a.s.o. Test costs are specified as
attribute – value pairs.
In most real-world problems, setting the true costs is a difficult issue. If, in the case of test
costs, the decision is made easier by the possibility of considering the different dimensions
(time, monetary, pain, emotional implications, e.t.c.), when it comes to determining the
misclassification costs we come across a more serious issue: we have to put a price on
human life. Perhaps an appropriate approach here would be to experiment with several
close proportions for the errors’ unbalance.

3.1 Cost-sensitive algorithms

Most cost-sensitive classifiers focus on minimizing the misclassification costs. There exist,
however, several algorithms which tackle test costs. Significantly less work has been done in
aggregating the two cost components. This section reviews some of the most prominent cost-
sensitive approaches in literature: stratification, MetaCost (Domingos, 1999) and AdaCost (Fan
et. al., 2000) as misclassification cost-sensitive approaches, and Eg2 (Nunez, 1988), IDX
(Norton, 1989) and CS-ID3 (Tan & Schlimmer, 1989, 1990) which consider test costs.

3.1.1 Stratification

Stratification is one of the earliest and simplest techniques for minimizing misclassification
costs. It is a sampling procedure, which modifies the distribution of instances in the training
set, such that the classes with a higher misclassification cost are better represented.
Stratification can be achieved either through undersampling, or oversampling. While being
a very simple and intuitive technique for considering the unbalance of different types of
errors, the modification of the set distribution induces drawbacks, since it may bias the
learning process towards distorted models. Also, each alternative has its own drawbacks:
undersampling reduces the data available for learning, while oversampling increases the
training time. However, the most serious limitation of this method comes from the fact that
it restricts the dimension or the form of the cost matrix. For problems with more than two
classes, or when the cost is dependent on the predicted class (Cij ≠ Ckj, where k≠i), the cost
matrix may become too complicated, such that proportions for each class cannot be
established (Domingos, 1999).

3.1.2 MetaCost and AdaCost

More complex approaches usually involve meta-learning, and can be applied to a variety of
base classifiers. The most representative in this category are MetaCost (Domingos, 1999) and
AdaCost (Fan et. al., 2000).
MetaCost, introduced by Pedro Domingos, is a method for converting error-based classifiers
into cost-sensitive approaches. It employs the Bayes minimal conditional risk principle to
perform class re-labeling on the training instances. In order to determine the Bayes optimal
prediction for each training example, i.e. the class which minimizes the conditional risk, an
ensemble of classifiers is initially trained and employed to estimate the class probability for

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

157

each instance. After that, the risk for each class is computed, using the cost matrix settings.
Each instance is then re-labeled with the class having the lowest risk. After obtaining the
modified dataset, any error-based classifier will also minimize the cost while seeking to
minimize zero-one loss (the error).
AdaCost is the misclassification cost-sensitive variant of the AdaBoost.M1 algorithm. Being a
boosting-based approach, AdaCost employs an ensemble method, which builds a new
model at each phase. Weights are assigned to each instance, and they are modified after
each boosting phase, using the cost of misclassifications in the weight-update mechanism.
Initially, high weights are assigned to costly instances, as opposed to AdaBoost.M1, where
uniform weights are assigned to the training instances for the first boosting phase. In the
empirical evaluations performed, AdaCost yielded a consistent and significant reduction in
misclassification costs over AdaBoost.M1.

3.1.3 Eg2, CS-ID3 and IDX

The category of algorithms which focus on minimizing test costs is largely based on decision
trees. Eg2, CS-ID3 or IDX are basically decision trees which employ a modified attribute
selection criterion such as to embed the cost of the attribute in the selection decision. Eg2’s
criterion is detailed in the section regarding the algorithm ICET.
IDX (Norton, 1989) uses a look-ahead strategy, by looking n tests ahead, where n is a
parameter that may be set by the user. Its attribute selection criterion is:

i

i

C

IΔ

(1)

where ΔIi represents the information gain of attribute i, and Ci is its cost.
CS-ID3 (Tan & Schlimmer, 1989, 1990) uses a lazy evaluation strategy, by only constructing
the part of the decision tree that classifies the current case. Its attribute selection heuristic is:

iC

I
2)(Δ

(2)

4. ICET – Inexpensive Classification with Expensive Tests

Introduced by Peter D. Turney as a solution to cost-sensitive problems, ICET (Inexpensive

Classification with Expensive Tests) is a hybrid technique, which combines a greedy search

heuristic (decision tree) with a genetic algorithm. Its distinctive feature is that it considers both

test and misclassification costs, as opposed to the other cost-sensitive algorithms, which fail

to consider both types of costs. Since it models real-world settings, where both the attributes

and the different classification errors bear separate prices, the approach is more successful in

true-life.

The technique combines two different components, on two levels:

• On the bottom level, a test cost-sensitive decision tree performs a greedy search in the
space of decision trees

• On the top level, the evolutionary component performs a genetic search through a space
of biases; these are used to control the preference for certain types of decision trees in
the bottom layer

www.intechopen.com

 Advances in Greedy Algorithms

158

The components used in the initial version of ICET are: Eg2 (Nunez, 1988) for the decision
tree component and GENESIS (Grefenstette, 1986) for the genetic component. Eg2 has been
implemented as a modified component of Quinlan’s C4.5 (Quinlan, 1993), using ICF
(Information Cost Function) as attribute selection function. For the ith attribute, ICF may be
defined as follows:

w

i

I

i
C

ICF
i

)1(

12

+
−

=
Δ

 , where 0 ≤ w ≤ 1 (3)

This means that the attribute selection criterion is no longer based solely on the attribute’s

contribution to obtaining a pure split, but also on its cost, Ci. Also, the Information Cost

Function contains parameter w, which adjusts the strength of the bias towards lower cost

attributes. Thus, when w = 0, the cost of the attribute is ignored, and selection by ICF is

equivalent to selection by the information gain function. On the other hand, when w = 1, ICF

is strongly biased by the cost component.

The algorithm flow: the algorithm starts by the genetic component evolving a population of

randomly generated individuals (an individual corresponds to a decision tree). Each

individual in the initial population is then evaluated by measuring its fitness. Standard

mutation and crossover operators are applied to the trees population and, after a fixed

number of iterations, the fittest individual is returned (Fig. 1).

Each individual is represented as a bit string of n + 2 numbers, encoded in Gray. The first n

numbers represent the bias parameters (“alleged” test costs in the ICF function). The last

two stand for the algorithm’s parameters CF and w; the first controls the level of pruning (as

defined for C4.5), while w is needed by ICF.

Fig. 1. The ICET technique

An important remark is that, unlike Eg2, ICET does not minimize test costs directly. Instead,

it uses ICF for the codification of the individuals in the population. The n costs, Ci, are not

true costs, but bias parameters. They provide enough variation to prevent the decision tree

learner from getting trapped in a local optimum, by overrating/underrating the cost of

certain tests based on past trials’ performance. However, it is possible to use true costs,

when generating the initial population, which has been shown to lead to some increase in

performance.

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

159

Each trial on an individual consists in training and evaluating a decision tree on a given
dataset, using the biases in the individual to set the attribute costs, CF and w. This is done by
splitting the available dataset into two subsets: sub-training and sub-testing dataset. Since
the split is random, there may be that two identical individuals will yield different outcomes
(since the form of a decision tree is strongly related to the distribution in the training set –
different training sets produce different trees).
In ICET, the fitness function for an individual is computed as the average cost of classification

of the corresponding tree (obtained by randomly dividing the training set in two subsets,

the first used for the actual tree induction and the second for error estimation). The average

cost of classification is obtained by normalizing the total costs (obtained by summing the

test and misclassification costs) to the test set size. Test costs are specified as attribute - cost

value pairs. The classification costs are defined by a cost matrix (Cij)nxn, where Cij - the cost

of misclassifying an instance of class j as being of class i. If the same attribute is tested twice

along the path (numeric attribute), the second time its cost is 0.

The particularity presented by ICET, of allowing the test costs (encoded inside a genetic

individual) to vary freely in the search domain, and then applying the fitness evaluation to

guide the individuals towards an optimal solution, increases the variability in the heuristic

component. Moreover, w and CF – two key features which influence the future form of a

decision tree – are also encoded in the individual, providing even more possibility of

variation in the decision trees search space. Theoretically, this variability is desirable,

especially for greedy algorithms such as decision tree learners – that yield unique structures

for a fixed training set.

4.1 ProICET – improving the basic algorithm

Although ICET has a strong theoretical background, some enhancements can be considered,
in order to boost its performance in real-world settings. Most of the changes affect the
genetic component, but the training process is slightly different as well. This section also
presents other implementation details, and briefly reviews the two tools employed for the
current implementation.

4.1.1 Enhancements

First, and most importantly, the single population technique is employed as replacement

strategy (instead of the multiple populations). In this technique the population is sorted

according to the fitness of its elements. At each step two individuals are generated and their

fitness is evaluated. According to their score, they are added to the same population their

parent elements came from. Then, the individuals with the lowest fitness values are

eliminated, so that the size of the population remains the same.

The single population technique has the advantage of directly implementing elitism: the best

individuals of the current generation can survive unchanged in the next generation. Another

prominent feature is the use of ranking in the fitness function estimation. The individuals in

the population are ordered according to their fitness value, after which probabilities of

selection are distributed evenly, according to their rank in the ordered population. Ranking

is a very effective mechanism for avoiding the premature convergence of the population,

which can occur if the initial pool has some individuals which dominate, having a

significantly better fitness than the others.

www.intechopen.com

 Advances in Greedy Algorithms

160

Some amendments have been considered in the training process as well. Thus, the
percentage of the training examples used when evaluating the fitness score of an individual
in the population is now 70% of the original training set, as opposed to 50% (in the initial
implementation).
The number of evaluation steps has also been increased. Due to the fact that a new
generation is evolved using single population, the final result yielded by the procedure is
the best individual over the entire run, which makes the decision on when to stop the
evolution less critical. More than that, experiments show that usually the best individual
does not change significantly after 800 steps: in more than 90% of the cases the algorithm
converges before the 800th iteration, while in the rest of the cases the variations after this
point are small (less than 3.5%). Therefore, the number of steps in our implementation is
1000.

4.1.2 Implementation overview

The current implementation of the improved ICET technique (ProICET) has been done
starting from an existing implementation of revision 8 of the C4.5 algorithm, present in
Weka (Witten, 2005) and a general genetic tool, GGAT (GGAT, 2002), developed at Brunel
University.
Weka (Waikato Environment for Knowledge Analysis) is a data mining tool developed at the
University of Waikato, New Zealand. It is distributed under the GPL (Gnu Public License)
and it includes a wide variety of state-of-the-art algorithms and data processing tools,
providing extensive support for the entire process of experimental data mining (input
filtering, statistical evaluation of learning schemes, data visualization, preprocessing tools).
The command-line interface it provides was particularly useful when invoking the modified
decision tree learner for computing the fitness function in the genetic algorithm part of the
application.

Fig. 2. ProICET main flow

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

161

GGAT is a generic GA library, developed at the Brunel University, London. It implements
most genetic algorithm mechanisms. Of particular interest are the single population
technique and the ranking mechanisms.
In order to obtain the Eg2 attribute selection criterion, as presented in equation (3), the

information gain function of J4.8 algorithm was modified, similarly to the implementation

presented in (Turney, 1995).

ProICET has been implemented within the framework provided by GGAT. For each

individual, the n + 2 chromosomes are defined (n being the number of attributes in the data

set, while the other two correspond to parameters w and CF); each chromosome is

represented as a 14 bits binary string, encoded in Gray. The population size is 50

individuals. The roulette wheel technique is used for parent selection; as recombination

techniques, we have employed single point random mutation with mutation rate 0.2, and

multipoint crossover, with 4 randomly selected crossover points.

Since the technique involves a large heuristic component, the evaluation procedure assumes

averaging the costs over 10 runs. Each run uses a pair of randomly generated training-

testing sets, in the proportion 70% - 30%; the same proportion is used when separating the

training set into a component used for training and one for evaluating each individual (in

the fitness function).

5. Experimental work

A significant problem related to the original ICET technique is rooted in the fact that costs

are learned indirectly, through the fitness function. Rare examples are relatively more

difficult to be learned by the algorithm. This fact was also observed in (Turney, 1995),

where, when analyzing complex cost matrices for a two-class problem, it is noted that: it is

easier to avoid false positive diagnosis [...] than it is to avoid false negative diagnosis [...]. This is

unfortunate, since false negative diagnosis usually carry a heavier penalty, in real life.

Turney, too, attributes this phenomenon to the distribution of positive and negative
examples in the training set. In this context, our aim is to modify the fitness measure as to
eliminate such undesirable asymmetries.
Last, but not least, previous ICET papers focus almost entirely on test costs and lack a

comprehensive analysis of the misclassification costs component. Therefore we attempt to

fill this gap by providing a comparative analysis with some of the classic cost-sensitive

techniques, such as MetaCost and Eg2, and prominent error-reduction based classifiers,

such as J4.8 and AdaBoost.M1.

5.1 Symmetry through stratification

As we have mentioned before, it is believed that the asymmetry in the evaluated costs for

two-class problems, as the proportion of false positives and false negatives misclassification

costs varies, is owed to the small number of negative examples in most datasets. If the

assumption is true, the problem could be eliminated by altering the distribution of the

training set, either by oversampling, or by undersampling. This hypothesis was tested by

performing an evaluation of the ProICET results on the Wisconsin breast cancer dataset.

This particular problem was selected as being one of the largest two-class datasets presented

in the literature.

www.intechopen.com

 Advances in Greedy Algorithms

162

For the stratified dataset, the negative class is increased to the size of the positive class, by
repeating examples in the initial set, selected at random, with a uniform distribution.
Oversampling is preferred, despite of an increase in computation time, due to the fact that
the alternate solution involves some information loss. Undersampling could be selected in
the case of extremely large databases, for practical reasons. In that situation, oversampling is
no longer feasible, as the time required for the learning phase on the extended training set
becomes prohibitive.
The misclassification cost matrix used for this analysis has the form:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⋅=
01

0
100

p

p
C , (4)

where p is varied with a 0.05 increment.
The results of the experiment are presented in Fig. 3. We observe a small decrease in

misclassification costs for the stratified case throughout the parameter space. This reduction

is visible especially at the margins, when costs become more unbalanced. Particularly in the

left side, we notice a significant reduction in the total cost for expensive rare examples,

which was the actual goal of the procedure.

Stratification Effect on ProICET

0

0.5

1

1.5

2

2.5

3

3.5

0.05 0.2 0.35 0.5 0.65 0.8 0.95
p

A
v

e
ra

g
e

C

o
s

t

Normal

Stratified

Fig. 3. ProICET average costs for the breast cancer dataset

Starting from the assumption that the stratification technique may be applicable to other

cost-sensitive classifiers, we have repeated the procedure on the Weka implementation of

MetaCost, using J4.8 as base classifier. J4.8 was also considered in the analysis, as baseline

estimate.

The results for the second set of tests are presented in Fig. 4. We observe that MetaCost

yields significant costs, as the cost matrix drifts from the balanced case, a characteristic

which has been described previously. Another important observation is related to the fact

that the cost characteristic in the case of J4.8 is almost horizontal. This could give an

explanation of the way stratification affects the general ProICET behavior, by making it

insensitive to the particular form of the cost matrix. Most importantly, we notice a general

reduction in the average costs, especially at the margins of the domain considered. We

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

163

conclude that our stratification technique could be also used for improving the cost

characteristic of MetaCost.

Stratification Effect on

MetaCost and J4.8

0

3

6

9

12

15

18

21

0.05 0.2 0.35 0.5 0.65 0.8 0.95
p

A
v

e
ra

g
e

 C
o

s
t

MetaCost Normal

MetaCost Stratified

J4.8 Normal

J4.8 stratified

Fig. 4. Improved average cost for the stratified Wisconsin dataset

5.2 Comparing misclassification costs

The procedure employed when comparing misclassification costs is similar to that described

in the previous section. Again, the Wisconsin dataset was used, and misclassification costs

were averaged on 10 randomly generated training/test sets. For all the tests described in

this section, the test costs are not considered in the evaluation, in order to isolate the

misclassification component and eliminate any bias.

As illustrated by Fig. 5, MetaCost yields the poorest results. ProICET performs slightly

better than J4.8, while the smallest costs are obtained for AdaBoost, using J4.8 as base

classifier. The improved performance is related to the different approaches taken when

searching for the solution. If ProICET uses heuristic search, AdaBoost implements a

procedure that is guaranteed to converge to minimum training error, while the ensemble

voting reduces the risk of overfitting. However, the approach cannot take into account test

costs, which should make it perform worse on problems involving both types of costs.

5.3 Total cost analysis

When estimating the performance of the various algorithms presented, we have considered

four problems from the UCI repository. All datasets involve medical problems: Bupa liver

disorders, thyroid, Pima Indian diabetes and heart disease Cleveland. For the Bupa dataset,

we have used the same modified set as in (Turney, 1995). Also, the test costs estimates are

taken from the previously mentioned study. As mentioned before, the misclassification costs

values are more difficult to estimate, due to the fact that they measure the risks of

misdiagnosis, which do not have a clear monetary equivalent. These values are set

empirically, assigning higher penalty for undiagnosed disease and keeping the order of

magnitude as to balance the two cost components (the actual values are displayed in tables

1, 2, 3 and 4).

www.intechopen.com

 Advances in Greedy Algorithms

164

Misclassification Cost Component

0

3

6

9

12

15

18

21

0.05 0.2 0.35 0.5 0.65 0.8 0.95

p

A
v

e
ra

g
e

 C
o

s
t

AdaBoost.M1

ProICET

J4.8

MetaCost

Fig. 5. A comparison of average misclassification costs on the Wisconsin dataset

Class less than 3 more than

less than 3 0 5

more than 3 15 0

Table 1. Misclassification cost matrix for Bupa liver disorder dataset

Class 3 2 1

3 0 5 7

2 12 0 5

1 20 12 0

Table 2. Misclassification cost matrix for the Thyroid dataset

Class less than 3 more than

less than 3 0 7

more than 3 20 0

Table 3. Misclassification cost matrix for the Pima dataset

Class 0 1 2 3 4

0 0 10 20 30 40

1 50 0 10 20 30

2 100 50 0 10 20

3 150 100 50 0 10

4 200 150 100 50 0

Table 4. Misclassification cost matrix for the Cleveland heart disease dataset

As anticipated, ProICET significantly outperforms all other algorithms, being the only one
built for optimizing total costs (Fig. 6-9). ProICET performs quite well on the heart disease
dataset (Fig. 6), where the initial implementation obtained poorer results. This improvement
is probably owed to the alterations made to the genetic algorithm, which increase the
population variability and extend the ProICET heuristic search.

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

165

Total Cost for Cleveland Dataset

0

40

80

120

160

200

240

280

A
da

B
o
os

t.M
1

E
g2

P
ro

IC
ET

J4
.8

M
et

aC
os

t

A
v

e
ra

g
e

d
 T

o
ta

l
C

o
s

t

Fig. 6. Average total costs of the considered algorithms on the Cleveland dataset

Total Cost for Bupa Dataset

14

15

16

17

18

19

20

21

22

A
da

B
o
os

t.M
1

E
g2

P
ro

IC
E
T

J4
.8

M
et

aC
os

t

A
v

e
ra

g
e

d
 T

o
ta

l
C

o
s

t

Fig. 7. Average total costs of the considered algorithms on the Bupa dataset

On the Bupa dataset (Fig. 7), AdaBoost.M1 slightly outperforms ProICET, but this is more

an exception, since on the other datasets, AdaBoost.M1 yields poorer results. Moreover, the

cost reduction performed by ProICET relative to the other methods, on this dataset, is very

significant.

The cost reduction is relatively small in the Thyroid dataset (Fig. 8), compared to the others,

but is quite large for the other cases, supporting the conclusion that ProICET is the best

approach for problems involving complex costs.

6. Chapter summary

This chapter presents the successful combination of two search strategies, greedy search (in

the form of decision trees) and genetic search, into a hybrid approach. The aim is to achieve

increased performance over existing classification algorithms in complex cost problems,

usually encountered when mining real-world data, such as in medical diagnosis or credit

assessment.

www.intechopen.com

 Advances in Greedy Algorithms

166

Total Cost for Thyroid Dataset

0

5

10

15

20

25

30

35

40

A
da

B
o
os

t.M
1

Eg2

Pro
IC

E
T

J4
.8

M
et

aC
os

t

A
v

e
ra

g
e

d
 T

o
ta

l
C

o
s

t

Fig. 8. Average total costs of the considered algorithms on the Thyroid dataset

Total Cost for Pima Dataset

0

4

8

12

16

20

24

28

A
da

Bo
os

t.M
1

E
g2

Pro
IC

E
T

J4
.8

M
et

aC
os

t

A
v

e
ra

g
e

d
 T

o
ta

l
C

o
s

t

Fig. 9. Average total costs of the considered algorithms on the Pima dataset

Any machine learning algorithm is based on a certain search strategy, which imposes a bias
on the technique. There are many search methods available, each with advantages and
disadvantages. The distinctive features of each search strategy restrict its applicability to
certain problem domains, depending on which issues (dimensionality, speed, optimality,
etc.) are of importance. The dimension of the search space in most real-world problems
renders the application of complete search methods prohibitive. Sometimes we have to
trade optimality for speed. Fortunately, greedy search strategies, although do not ensure
optimality, usually provide a sufficiently good solution, close to the optimal one. Although
they have an exponential complexity in theory, since they do not explore the entire search
space, they have a very good behaviour in practice, in speed terms. This makes them
suitable even for complex problems. Their major drawback comes from the fact that they
can get caught at local optima. Since the complexity of the search space is too large, such
that the problem is intractable for other techniques, in most real problems this is an accepted
disadvantage. Greedy search strategies are employed in many machine learning algorithms.

www.intechopen.com

Enhancing Greedy Policy Techniques for Complex Cost-Sensitive Problems

167

One of the most prominent classification techniques which employ such a strategy are
decision trees.
The main advantages of decision trees are: an easy to understand output model, robustness
with respect to the data quantity, little data preparation, ability to handle both numerical
and categorical data, as well as missing data. Therefore, decision trees have become one of
the most widely employed classification techniques in data mining, for problems where
error minimization is the target of the learning process.
However, many real-world problems require more complex measures for evaluating the
quality of the learned model. This is due to the unbalance between different types of
classification errors, or the effort of acquiring the values of predictive attributes. A special
category of machine learning algorithms focuses on this task – cost-sensitive learning. Most
existing techniques in this class focus on just one type of cost, either the misclassification, or
the test cost. Stratification is perhaps the earliest misclassification cost-sensitive approach (a
sampling technique rather than an algorithm). It has been followed by developments in the
direction of altering decision trees, such as to make their attribute selection criterion
sensitive to test costs (in the early 90’s). Later, new misclassification cost-sensitive
approaches emerged, the best known being MetaCost or AdaCost. More recent techniques
consider both types of cost, the most prominent being ICET.
Initially introduced by Peter D. Turney, ICET is a cost-sensitive technique, which avoids the
pitfalls of simple greedy induction (employed by decision trees) through evolutionary
mechanisms (genetic algorithms). Starting from its strong theoretical basis, we have
enhanced the basic technique in a new system, ProICET. The alterations made in the genetic
component have proven beneficial, since ProICET performs better than other cost-sensitive
algorithms, even on problems for which the initial implementation yielded poorer results.

7. References

Baezas-Yates, R., Poblete, V. P. (1999). Searching, In: Algorithms and Theory of Computation
Handbook, Edited by Mikhail J. Atallah, Purdue University, CRC Press

Domingos, P. (1999). Metacost: A general method for making classifiers cost-sensitive.
Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining,
pp. 155-164, 1-58113-143-7, San Diego, CA, USA

Fan, W.; Stolfo, S.; Zhang, J. & Chan, P. (2000). AdaCost: Misclassification cost-sensitive
boosting. Proceedings of the 16th International Conference on Machine Learning, pp. 97–
105, Morgan Kaufmann, San Francisco, CA

Freund, Y. & Schapire, R. (1997). A decision-theoretic generalization of on- line learning and
an application to boosting. Journal of Computer and System Sciences, Volume
55, Number 1, August 1997 , pp. 119-139

General Genetic Algorithm Tool (2002), GGAT, http://www.karnig.co.uk/ga/content.html,
last accessed on July 2008

Grefenstette, J.J. (1986). Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man, and Cybernetics, 16, 122-128

Korf, R. E. (1999). Artificial Intelligence Search Algorithms, In: Algorithms and Theory of
Computation Handbook, Edited by Mikhail J. Atallah, Purdue University, CRC Press

Norton, S.W. (1989). Generating better decision trees. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, IJCAI-89, pp. 800-805. Detroit, Michigan.

www.intechopen.com

 Advances in Greedy Algorithms

168

Núñez, M. (1988). Economic induction: A case study. Proceedings of the Third European
 Working Session on Learning, EWSL-88, pp. 139-145, California, Morgan Kaufmann.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, ISBN:1-55860-
238-0, San Francisco, CA, USA

Quinlan, J. (1996) Boosting first-order learning. Proceedings of the 7th International Workshop
on Algorithmic Learning Theory, 1160:143–155

Russell, S., Norvig, P. (1995) Artificial Intelligence: A Modern Approach, Prentice Hall
Tan, M., & Schlimmer, J. (1989). Cost-sensitive concept learning of sensor use in approach

and recognition. Proceedings of the Sixth International Workshop on Machine Learning,
ML-89, pp. 392-395. Ithaca, New York

Tan, M., & Schlimmer, J. (1990). CSL: A cost-sensitive learning system for sensing and
grasping objects. IEEE International Conference on Robotics and Automation.
Cincinnati,Ohio

Turney, P. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research, Volume 2,
pp. 369–409

Turney, P. (2000). Types of cost in inductive concept learning. Proceedings of the Workshop on
Cost-Sensitive Learning, 7th International Conference on Machine Learning, pp. 15-21

Vidrighin, B. C., Savin, C. & Potolea, R. (2007). A Hybrid Algorithm for Medical Diagnosis.
Proceedings of Region 8 EUROCON 2007, Warsaw, pp. 668-673

Vidrighin, C., Potolea, R., Giurgiu, I. & Cuibus, M. (2007). ProICET: Case Study on Prostate
Cancer Data. Proceedings of the 12th International Symposium of Health Information
Management Research, 18-20 July 2007, Sheffield, pp. 237-244

Witten I. & Frank, E. (2005) Data Mining: Practical machine learning tools and techniques, 2nd ed.
 Morgan Kaufmann, 0-12-088407-0

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Camelia Vidrighin Bratu and Rodica Potolea (2008). Enhancing Greedy Policy Techniques for Complex Cost-

Sensitive Problems, Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available

from:

http://www.intechopen.com/books/greedy_algorithms/enhancing_greedy_policy_techniques_for_complex_cost

-sensitive_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

