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Abstract

A design strategy based on integration of the building form and structure with its
external environment in order to take advantage of natural forces (wind and buoyancy
effects) has been evaluated in terms of risk and reliability measures. Tools for the
probabilistic analysis (First-Order Reliability Method (FORM), Monte Carlo) have been
presented and applied in the probabilistic modelling and sensitivity analysis of the
response function of the studied building physics problem. Sensitivity analysis of the
influence of basic random variables on the probability distribution of a response func-
tion is straightforward in FORM methodology. The case-based studies of probabilistic
modelling of uncertainties coupled to wind speed and temperature difference through
the specified building/environment system have been presented (i.e., the distribution
models of the air change rate ACH and the dynamic U value characterising thermal
performance of dynamic insulation). Sensitivities of the probability model of ACH to the
parameters of wind speed and temperature distributions have been estimated for the
consecutive values of the air change rate using FORM methodology. Reliability of ACH
turned out to be most sensitive to the shape parameter of the wind speed distribution (in
two-parameter Weibull model). The probabilistic risk analysis along with the effective
tools for sensitivity analysis can be used to support design decisions and also to develop
better models for evaluation of building performance.

Keywords: building performance, environment, risk, reliability, probabilistic
approximation, FORM, sensitivity, climate, climate mitigation, wind, air infiltration,
ACH, dynamic U value

1. Introduction

Developing tools to support decision-making to ensure comfort and safety in built environ-

ment while taking into account climate change challenges becomes important. ‘Energy is the

dominant contributor to climate change, accounting for around 60% of total global greenhouse

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



gas emissions’ [1]. Reducing the carbon intensity of energy is a key objective in long-term climate

goals. Hence, choosing a strategy based on integrating the building form and structure with its

external environment in order to take advantage of natural forces (for natural ventilation, solar

heating, etc.) is an example of design decisions leading towards mitigation of climate change.

Decisions concerning the choice of the design solutions for the particular project have to be

taken under uncertainties related to the unknown and variable conditions, i.e. random climatic

conditions, uncertain material performance, uncertain user behaviour, etc. Confronted with

significant uncertainty, deterministic modelling supporting design process has been proved to

be insufficient for decision-making. However, as it is said in [2] ‘Existing engineering-based

models are unable to propagate uncertainties through the model, and are therefore limited in

their ability to display the impact of uncertainties to decision makers’. Facing that challenge,

the chapter includes the discussion of the models and the tools applied by the authors for the

probabilistic transformation of uncertainties of climatic parameters through a building/envi-

ronment system for the predictive modelling of building performance.

The method for the quantification of building performance in terms of probability of poor

performance (failure) and satisfactory performance (safe behaviour, in general meaning) is

presented. Next, the tools for the probabilistic analysis are described (FORM, Monte Carlo) in

relation to probabilistic modelling and possible applications of sensitivity analysis. One of the

important results of analysis is the probability distribution functions of different performances

as the responses of building/environment systems to the environmental loads. Such analysis

requires estimation of some climatic parameters in terms of frequency of occurrence and

appropriate statistics.

The chapter includes the case-based studies of probabilistic transformation of uncertainties

coupled to wind and temperature through the specified building/environment system to show

the effect on the distribution model of the air change rate and further on the distribution model

of the dynamic thermal transmittance (dynamicU value) of the building envelope. Furthermore,

the estimated distribution models could be included in risk/reliability calculations, carried out

with FORM tools. The analysis of the sensitivity of the distribution of ACH with respect to the

randomness of wind speed and outdoor temperature exemplifies the potential of the FORM

tools, which can be effectively used to find out the probabilistic characteristics typical for the

combination of the important variables influencing climate-structure interaction.

2. Risk perspective on design for sustainable development

Design for sustainable development can be approached using risk analysis tools. To minimalise

the risk of undesired consequences while increasing the chance to enhance the quality of life

becomes the basic design objective. The design goal can be expressed in other terms—how to

secure reliability of design under risk constraints [3]. To be clear about the terminology used

further, some definitions are given below.

• Risk—a state of uncertainty where some possible outcomes have an undesired effect or

significant loss [4]. It can be expressed in terms of adverse consequences scaled by the

probabilities of undesired outcomes.
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• Qualitative risk—Relative measure of risk based on ranking or separation into descrip-

tive categories such as low, medium and high or on a scale, e.g., from 1 to 10. The example

is the risk matrix of the failure mode [5] where failure severity is described by categories:

minor, major, critical and catastrophic, whereas failure frequency is described in terms of

very unlikely, remote, occasional, probably and frequent. A combination of both gives a

qualitative assessment of risk as low, moderate or high.

• Quantitative risk—The most common quantification of risk is the product of likelihood of

occurrence and the effect of the hazardous event [6]. Risk is treated as convolution of

hazard and vulnerability, and it refers to mutual conditioning of two phenomena [7].

• Risk assessment is the determination of quantitative or qualitative estimate of risk related

to the well-defined situation and the recognised hazard.

• Probabilistic risk assessment denotes the methods dealing with computation both the

likelihood of undesired event and severity of possible negative consequences due to

occurrence of such event.

• Risk management process—‘the systematic process of identification, assessment, moni-

toring and control of risk’ [8].

• Reliability—Ability of a system to satisfactorily perform under the specified conditions of

use over an intended period of time. It is quantified by the probability of satisfactory (or

safe) performance [9]. Unreliability is measured by the probability of failure (undesired

performance).

2.1. Risk perspective on climate change challenges

Climate change threatens life on our planet. In view of high uncertainty, qualitative or semi-

quantitative risk analysis based on the different scenarios is often applied. Following the

quantitative definition of risk, one can write

Risk ¼ P hazard½ � ∗Consequences (1)

P hazard½ � is the probability of occurrence of undesired events leading to possible Consequences

like loss, injury, or discomfort.

Risk reduction could be accomplished by decreasing the probability of undesired event as well

as diminishing the scale adverse consequences. Risk reduction of climate change and its

consequences can be accomplished by climate change mitigation (decrease of the probability

of occurrence of adverse events) or climate change adaptation (decrease of the adverse conse-

quences) described as follows:

Climate change mitigation—‘it consists of actions to limit the magnitude and/or rate of long-

term climate change’ [10]. ‘It generally involves reductions in human (anthropogenic) emis-

sions of greenhouse gases´ [11].

Climate change adaptation—‘anticipating the adverse effects of climate change and taking

appropriate action to prevent or minimize the damage they can cause, or taking advantage of

opportunities that may arise’ [12].
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2.2. Risk assessment as a tool supporting design of buildings

Designing for the integration of the building form and structure with its external environment

in order to use natural forces to secure comfort (passive strategies) is an example of activities

towards mitigation of climate change. If it is supported by probabilistic prediction of a local

climate changes, it can be viewed from the climate adaptation perspective too.

The needs for risk reduction related to the hazards induced by climate change become an

important boundary condition in the modelling of building/environment system to support

building design. Following the definition of risk (Eq. (1)), adverse consequences are indicated

by the set {yes = 1, no = 0}, and as a result, the probability P hazard½ � becomes the discriminating

factor for comparison of different design solutions. It means that certain design could be

chosen on the basis of comparison of probability of unsatisfactory performance or reliability,

evaluated by a set of alternative design proposals. In that way risk assessment becomes a tool

supporting design of buildings.

3. Transformation of uncertainties: probabilistic approach

Probability is a measure of uncertainty about future events. Probability of a performance of a

building/environment system depends on the theoretical model used and the randomness of

the influencing parameters. The epistemic uncertainty about the theoretical models applied

together with the aleatory uncertainty coupled to the randomness of important phenomena

contributes to the final uncertain outcome, as the result of transformation of uncertainties

throughout the model. Methods and tools for probabilistic reliability analysis can be used to

estimate the probabilistic response of the structure to the random climatic load. They could be

an important part of risk-based design process built upon the framework of risk management

methodology as proposed in [13].

3.1. Probabilistic analysis with FORM

Development of reliability methods resulted in variety of powerful algorithms to estimate

probability of failure for complicated physical and mathematical models of building systems

incorporating random variables (i.e. properties or actions). FORM denotes ‘First-Order Reli-

ability Method’, which has been developed by many researchers in about 40 years ago. Short

description of the FORM basics as well as sensitivity tools is presented below. For details,

check [14], and for application in building physics, look in [15]. First-order reliability method

(FORM) is the most popular approach applied in practice.

Once the response of a system characterised by a set of basic random variables and a mathe-

matical model describing the relationship among them has been established, the probability

density function of the response can be estimated with help of FORM tools.

In general, the performance of a system is analysed in the space ΩX ¼ X ∈Rnf g of basic

random variables X. For a given failure mode or serviceability requirement, represented by

the limit state surface g Xð Þ ¼ 0, the space ΩX is divided into the safe subset, i.e. satisfactory
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performance, ΩS ¼ X ∈Rn
; g Xð Þ > 0f g, and the failure subset, ΩF ¼ X ∈Rn

; g Xð Þ ≤ 0f g, i.e.,

unsatisfactory performance. If all random variables are continuous with the multivariate joint

probability density function (PDF) f X xð Þ, the failure probability is given by the integral

Pf ¼

ð

Ω
F

f x xð Þdx (2)

The integral (Eq. (2)) can be evaluated exactly for a few cases with the most important one: the

linear limit state surface and multidimensional normal (Gaussian) distribution function of

variables X.

FORM algorithm starts with the non-linear transformation. Non-normal random vector X is

transformed into a standard normal (Gaussian) vector Y with zero mean and unit covariance

matrix CYY ¼ I. The limit state surface g xð Þ ¼ 0 is mapped into a limit state surface G yð Þ ¼ 0.

Next, the design point y∗, i.e. the point on the limit state surface with the minimum distance to

the origin of the Y space, is determined by solving the non-linear optimisation problem with a

non-linear constrain G yð Þ ¼ 0:

β ¼ min
ffiffiffiffiffiffiffiffi

yTy
q

for y on G yð Þ ¼ 0 (3)

The hyperplane tangential to the limit state surface at the point y∗ is given by formula

β� α
Ty ¼ 0 (4)

where α is a unit outward normal vector to the hyperplane and β is the distance between the

hyperplane and the origin. Since the random vector Y ¼ Y Xð Þ has standard normal distribu-

tion, the first-order approximation of the failure probability is given by

Pf ffi P β� α
TY ≤ 0

� �

¼ Φ �β
� �

(5)

where Φ(…) is the Laplace function.

The non-linear constrained optimisation problem (Eq. (3)) can be solved with many standard

procedures as well as algorithms developed especially for this purpose, e.g. algorithm for the

case of independent, non-normal random variables [16] and algorithm for problems with

incomplete probability information [17].

All such solvers are iterative: for the assumed value of design point x∗kð Þ, the values of limit

state function g x∗kð Þ

� �

and its gradient ∇g x∗kð Þ

� �

are determined. Next, a new position of design

point x∗kþ1ð Þ is derived, and the process continues until the convergence criteria are fulfilled. If

the state of the analysed system is described by the performance function defined by analytical

formula, then the gradient can be evaluated easily, and one of algorithms solving the optimi-

sation problem (Eq. (3)) can be applied directly. Otherwise the stochastic finite element method

should be applied in order to calculate the value of the limit state function and its gradient

vector at following values of design points.
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The first-order reliability index β and the failure probability Pf ffi Φ �β
� �

depend on:

• Parameters p ¼ p1;…; pd
� �

of the probability distributions of basic random variables, e.g.

mean value, standard deviation, skewness or location, scale and shape parameters

• Any deterministic parameters Θ ¼ θ1;…;θg

� �

defining the form of the performance func-

tion g x;θ1;…;θg

� �

Practical experience shows that the failure probability is usually a strongly non-linear function

of the parameter θ, whereas the reliability index β is a rather linear function of the parameter θ.

Thus the change in the failure probability due to the change of the parameter θ can be

approximated as follows:

Pf θþ Δθð Þ ffi Φ �β� Δβ
� �

ffi Φ �β�
dβ

dθ
Δθ

	 


(6)

The sensitivity measures of the first-order reliability index do not depend on the curvature of

the limit state surface g xð Þ ¼ 0 at the design point. Therefore, the application of sensitivity

measures is limited to small changes of the values of the parameters.

The sensitivity of the first-order approximation of the failure probability Pf ffi Φ �β
� �

is

directly related to the sensitivity of the reliability index β, since

dPf

dθ
¼ �φ β

� � dβ

dθ
(7)

If θ is a parameter of the limit state function g x;θð Þ, then derivative of the reliability index with

respect to the parameter θ is equal to

dβ

dθ
¼

1

∇G y∗;θð Þj j

∂

∂θ
G y∗;θð Þ (8)

where vector Y contains independent standard normal variables related to the vector of basic

random variables by transformation Y ¼ Y Xð Þ, and the limit state surface g x;θð Þ ¼ 0 defined

in the space X has been mapped into the surface G y;θð Þ ¼ 0. Since the FORM index β is equal

to the minimum distance between the origin of the Y space and the limit state surface

G y;θð Þ ¼ 0, thus the design point y∗ is laying on the limit state surface; see Figure 1:

β ¼ �
∇G y∗;θð Þ

∇G y∗;θð Þj j
y∗ (9)

The limit state surface in the X space of basic random variables g x;θð Þ ¼ 0 does not depend on

any parameter pik of a random variableXi with the distribution function Fi xi; pik
� �

. However, the

limit state surface G y;θð Þ ¼ 0 depends on parameter pik due to the transformation Y ¼ Y Xð Þ.
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The derivative of the reliability index with respect to the parameter pik is given by relation

∂β

∂pik
¼

1

β
y∗ð ÞT

∂

∂pik
y∗ (10)

The derivative of the vector y∗ with respect to parameter pik have to be evaluated for each

specific transformation Y ¼ Y Xð Þ: For details, see [14].

Sensitivity analysis shows how the uncertainty in the output response function of a system can

be allocated to the different uncertainties in the basic variables. Sensitivity analysis is straight-

forward for FORM methodology. The influence of the basic random variable yi on the statistics

of the response can be quantified by the sensitivity indices αi [18]:

αi ¼ �
dβ

dyi
for yi ¼ y∗i (11)

where y∗ is the design point in the space of normalised reduced random variables.

For uncorrelated random variables, the sensitivity vector α coincides with the direction cosines

vector of the random variables [18]. Illustration of sensitivity indices is given in Figure 1.

3.2. FORM versus Monte Carlo simulation

An alternative technique applied for probability estimation of risk or reliability is Monte Carlo

simulation (MCS). For the purpose of the zero–one indicator-based MCS, Eq. (2) defining the

failure probability is given as follows:

Figure 1. Illustration of sensitivity indices αi (modified from [14]).
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Pf ¼

ð⬚

Ω
F

f XðxÞdx ¼

ð⬚

k∈Rn

khKðkÞdk (12)

where the random vector K has the non-negative sampling density function hK(k) and is

defined by the transformation

k ¼ I
�
gðkÞ ≤ 0

� f XðkÞ

hKðkÞ
(13)

and I uð Þ is an indicator function:

I uð Þ ¼
1 if u ≤ 0

0 if u > 0

�
(14)

In this way the failure probability is equal to the expectation of random vector with the non-

negative sampling density function hK kð Þ:

Pf ¼ E K½ � (15)

The average of N simulated values of the random vector K is the estimator of the failure

probability, which variance is equal to

Var bPf

h i
¼

1

N N � 1ð Þ

XN

i¼1

ki � E Ki½ �ð Þ2 (16)

Monte Carlo simulation technique is a powerful tool to calculate the probability of failure for the

system described by non-continuous performance function as well as discrete random variables.

However, the basic drawback of theMCS is long CPU time calculation, if the failure probability is

of the orders 10�2 � 10�6, since the sample sizemust be very large in order to obtain estimation of

failure probability with low variance and narrow confidence interval. Various variance reduction

techniques have been suggested to increase the efficiency of MCS. The basic idea is to assume a

sampling density function hY yð Þ that reduces the variance of the estimator bPf . In the case of highly

complicated systems, when time-consumingmethodmust be applied to evaluate a single value of

the limit state function, the MCS with the variance reduction technique is still an approach

demanding a lot of computer time. Another drawback of the MCS, especially important, in the

context of the chapter, is lack of the sensitivity analysis tools. It is simply impossible to run billions

of simulation in order to study sensitivity of the systemwith respect to specific parameters.

4. Case-based risk/reliability studies of climate-related building

performance

4.1. Building/Environment system performance

In the context of the ventilation design, air infiltration constitutes an important complement to air

exchange. Furthermore, air infiltration can influence on the properties (thermal and structural)
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of building components. For some building technologies, e.g. lightweight timber frame with

mineral wool filling, and loose mineral wool layers for roof insulation, the dependence of the

thermal properties of building components on air infiltration can be observed; thus the interaction

between, e.g. thermal transmittance and air infiltration should be taken into account. Therefore, it

is important to apply a systemic approach to building/environment system performance taking

into account different aspects of building physics. Due to the random natural driving forces

governing the rate of air infiltration, the approach based on probabilistic methodology seems to

be very well suited to handle these phenomena.

A building can be seen as a system transforming as well as resisting different loads (static and

dynamic loads—caused by flow of air, heat and moisture) which is designed to ensure safe and

comfortable living conditions inside the enclosure. The structure has to be designed in such a

way that the possibilities of adverse consequences of this transformation, for example, loss of

stability of the structure, inadequate ventilation or mould growth inside a building, have been

minimalised. This systemic approach provides a proper theoretical tool for the analysis of the

interrelations between the structure, its environment and its performance. An example of

systemic model of a building, applicable in building physics studies, is shown in Figure 2 [19].

The local environmental conditions interact with building structure to form a microclimate

around a building. Sources of heat, air and moisture, including the products of HVAC systems

as well as user behaviour, build up the internal load. Physical boundary conditions define the

level of integration of the structure with the environment.

The output of the system can be described by the performance of the building (structure and

enclosure). The performance can be considered in terms of safety, comfort and energy con-

sumption and described by various parameters depending on physical conditions of the

building structure and inside air. Those parameters should fulfil the performance requirements

in order to prevent undesired performance (failure state) occurrence.

4.2. Case description

4.2.1. Description of the test house

The object of the study is a timber-framed low-rise naturally ventilated building with aspect

ratio 2 and slope of the roof of 45� [20]. The building site in the district of Gothenburg has been

considered and can be described as a semi-urban area with the surface roughness equal

Figure 2. Building/Environment system applied in a traditional building physics analysis [19].

On Risk and Reliability Studies of Climate-Related Building Performance
http://dx.doi.org/10.5772/intechopen.71684

95



to 0.3 m. Example has been worked out for wind blowing from the west. It is assumed that the

building is surrounded by other obstructions (other buildings, topography, vegetation, trees

etc.) equivalent to half of its height. The following input data are used: volume of the house

V ¼ 486 m3, area of the building envelope A ¼ 336 m2 and internal temperature Tint ¼ 20
�

C.

The house was constructed in 1979 with the intention of using it for experimental studies in

building physics with focus on ventilation and energy saving. The garage with doors facing

south is located in the extended south part of the concrete cellar as shown in Figure 3.

4.2.2. Measurement programme

The following parameters have beenmeasured, as is shown in Figure 4: (1) leakage characteristics

of the house using blower door tests, (2) mean value of pressure difference across the six building

components with Validyne pressure transducers, (3) wind speed and wind direction with the

anemometer located on a small hill about 25 m from the house, (4) internal and external tempera-

tures and (5) limited number of tracer gas measurements ofACH. The measurement programme

has been carried out during 8months. As a result, hourlymean data have been registered.

The results of the pressure drop measurements have been used to validate the air infiltration

through the envelope. An opening under the garage door has been treated separately in the

calculation model for air change rate [20, 21].

4.3. Modelling of air change rate

The applied infiltration model takes into account the contribution of wind and stack effect to

the total air change rate (ACH) in the following form [22]:

ACH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ACH2
s þ ACH2

w

q

(17)

where ACHs is the air change rate caused by stack effect and ACHw is the air change rate

caused by wind.

Figure 3. Object of the study – the Building/Environment system [20].
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The model refers to low-rise building with light-weight construction, single ventilation zone,

single temperature zone and steady-state conditions of air flow.

The infiltration model developed by Pietrzyk [20] indicates the air change rate ACH as a

random function of three basic random variables: temperature difference, wind speed and

wind direction. Wind direction is divided into eight sectors and is treated as a uniformly

distributed within each sector. Finally, the air change rate conditioned by the wind direction

sector is given by the following expression:

ACHd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s1∆T
2 þ s2 ∆Tj j þ s3 ∆Tj j1,5 þ wd,1v

4
d þ wd,2v

2
d þ wd,3v

3
d

q

(18)

where d is a wind direction sector; s1, s2, s3, wd,1, wd,2 and wd,3 are the deterministic coefficients

related to the house dimensions, position of neutral pressure layer, level of external and internal

pressure coefficients; ∆T is an ext.-int. temperature difference; and v denotes wind speed.

Distributions of air change rate averaged over one hour (1-h) periods at a randomly chosen time

in the year have been estimated with the help of the model described by Eq. (18). One-hour mean

data ensure steady-state conditions of the airflow through the building envelope. Wind is the

most important source of variations in the process of air exchange. However, according to wind

energy spectrum presented in [23] for the frequency range 0:00014–0:0033 cycles=hour related to

time interval from 5 min to 2 h, the wind speed varies slightly. This range is called spectral gap.

Measurements carried out for periods of that duration can be regarded as representing the

steady-state conditions [24].

Performance criteria in terms of ACH should take into account the minimum threshold evalu-

ated with respect to unhygienic conditions. Then, probability of unsatisfactory performance is

equal to P ACH < threshold½ �.

Figure 4 presents how the building response such as ACH depends on the uncertain environ-

mental conditions. The wind speed is traced from the meteorological station to the site and

eventually to the building envelope which in turn influences the microclimatic conditions near

to structure. The zone of wind-structure interaction is included in the model of designed

system (see boundary conditions of the system presented by the solid lines). Serviceability

performance due to wind action can be evaluated in terms of probability of undesired perfor-

mance (failure). It is worth noticing that measurement data have been used to model the

building performance as well as to validate the results of analysis carried out with the help of

the established model.

The probability density function for air change rate as a function of basic random variables 1-h

mean wind speed and 1-h mean temperature difference at time points chosen randomly

during the year has been estimated with the help of the FORM sensitivity analysis for the

performance function

g x1; x2; að Þ ¼ ACH x1; x2ð Þ � a (19)

where ACH x1; x2ð Þ is given by Eq. (18), x1 ¼ ∆T and x2 ¼ vd.
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The parametric sensitivity analysis applied to FORM measures (reliability index or failure

probability) is used in order to determine the probability density function for the random

response ACH ¼ ACH x1; x2ð Þ. The cumulative distribution function of random function

ACH ¼ ACH x1; x2ð Þ is actually equivalent to the probability of failure defined for the perfor-

mance function Eq. (19):

FACH að Þ ¼ P ACH x1; x2ð Þ ≤ a½ � ¼ P g x1; x2; að Þ ≤ 0½ � (20)

Thus, the cumulative probability function can be estimated with the help of the FORM analysis:

FACH að Þ ≈Φ �βa
� �

(21)

where Φ uð Þ is the Laplace function and the reliability index βa has been determined for the

limit state surface g x1; x2ð Þ ¼ ACH x1; x2ð Þ � a ¼ 0 defined for a given value of parameter a.

Following the sensitivity measures presented earlier in the chapter, the probability density

function of the random response ACH can be estimated with the help of formula:

f ACH að Þ ≈ � φ βa
� � dβa

da
¼

φ βa
� �

∇G y; að Þj jfor y¼y∗
(22)

where φ uð Þ is the probability density function of the standard Gaussian distribution, G y; að Þ is

the limit state function in the space Y ¼ Y Xð Þ of normalised random variables and y∗ is the

design point, i.e. the point on the surface G y; að Þ ¼ at the shortest distance to the origin of the

Figure 4. Transformation of uncertainty within the modelling of building performance.
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coordinate system. The value of probability density function of random response function

fACH(ACH) can be obtained by means of FORM sensitivity analysis for consecutive values of

parameter a; for details, see [14].

4.3.1. Wind transformation – climate/local climate/microclimate

The input basic random variable for the infiltration model is wind speed in the vicinity of the

building envelope. Wind speed and direction are usually measured at the meteorological

stations. The mean value of 1-h mean wind speed can be evaluated from the mean value of

10-min mean wind speed obtained from meteorological station using the principle that the

mean velocity increases by 5% when the averaging period is reduced from 1 h to 10 min. The

transformation of the abovementioned data to the site of the building is often needed espe-

cially for wind that changes drastically due to the roughness of the ground surface.

The hourly mean wind speed v is assumed to follow the two-parameter Weibull distribution

with probability density function as follows:

f v; c;λð Þ ¼
λ

c

v

c

� �λ�1
exp �

v

c

� �λ
� �

(23)

where λ is a shape parameter and c is a scale parameter.

In general, parameters λ, c for wind speed averaged over 1-h should be estimated for different

wind direction sectors that shall result in quite different Weibull distributions due to two

reasons: directional variability in the terrain surrounding the house and the predominance of

certain wind directions. In particular, most building sites are subjected to sheltering effects

from topography, trees and buildings. The roughness of the ground surface changes the mean

wind speed and its turbulent characteristics and is described by the surface roughness height

(aerodynamic roughness length) denoted z0. Roughness height depends on the mean element

height of the roughness field. The results of laboratory measurements show that the value of z0
is approximately equal to 1/30 of the height of the roughness elements. Table 1 presents the

classification of roughness height for different types of surfaces with reference to the categories

of terrain roughness used in Swedish Code [24].

Transformation of the wind speed between terrains of different surface roughness is possible due

to the similarity theory [25], based on the equilibrium boundary layer height, which is according

to [26] equal to 1200 m. The wind flows with the gradient velocity vg along the isobars:

vg ¼
u∗
κ

ln
u∗
f z0

	 


� Au

 �

(24)

where z0 is the surface roughness height (m); κ is Karman’s constant, κ ¼ 0, 4; Au is const.;

assumed �1; f is Coriolis parameter (1/s), f ¼ 1, 12∗10�4 for latitude of order of 50� [25]; and

vg is gradient velocity (m/s).

u∗ is friction velocity depending on the surface shear stress τ0 as given in Eq. (25):

On Risk and Reliability Studies of Climate-Related Building Performance
http://dx.doi.org/10.5772/intechopen.71684

99



u∗ ¼
ffiffiffiffiffiffiffiffiffiffi

τ0=r
p

(25)

where τ0 is surface shear stress (kg/ms2) and r is air density (kg/m3).

The mean velocity profile u zð Þ near the ground, where z is the height above the ground

(z < 100 m), can be expressed by the log-law model described by Eq. (24) assuming ideal

conditions, i.e. the uniform height of roughness field and the neutrally stable atmosphere when

thermal gradient is weak or absent.

u zð Þ ¼
u∗
κ

ln
z

z0

	 


(26)

Eq. (26) is used for wind speeds greater than 10 m/s. For low wind speeds, the influence of

thermal gradient both for unstable and stable atmosphere should be taken into account. The

modified logarithmic formula can be found in [27].

The 10-min mean wind velocity measured at a meteorological station (usually at the level of

z ¼ 10 m above the ground) for upwind surface roughness z0m can be transformed to any other

location described by upwind surface roughness height z0s through similarity of the wind

speed at the gradient height for all terrain types [27]. Hence, the gradient velocity takes the

same value for both locations and can be expressed by Eq. (27):

vg ¼
u∗m
κ

ln
u∗m
f z0m

	 


� Au

 �

¼
u∗s
κ

ln
u∗s
f z0s

	 


� Au

 �

(27)

where u∗s is friction velocity at the building site (m/s) and u∗m is friction velocity at the

meteorological station (m/s).

Types of surface roughness Height z0 (m) Category

Calm open sea, water area 0.0001 I

Sand surface (smooth) 0.001 I

Snow surface 0.003 I

Bare soil 0.005 I

Airport runway area, mown grass 0.01 I

Farmland with very few buildings, trees, etc. 0.03 I

Farmland with open appearance 0.05 R

Farmland with closed appearance 0.1 II

Many trees and bushes 0.2 II

Shelter belts 0.3 II

Suburbs 0.5 II

City, forest 1.0 III

Table 1. Roughness height for different types and categories of surfaces, acc. to Swedish Code [24].
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The friction velocity at the meteorological station u∗m is computed from Eq. (28), which has

been derived on the basis of Eq. (27), by substituting the friction velocity at the site with friction

velocity at the meteorological station.

u∗m ¼
um zð Þκ

ln z
z0m

� � (28)

where um zð Þ is 10-min mean wind speed measured at the meteorological station at the height z.

The mean wind velocity us zð Þ at the site and at the height z characterised by upwind surface

roughness z0s can be estimated from Eq. (26):

us zð Þ ¼
u∗s

κ
ln

z

z0s

	 


(29)

The ratio between wind velocity at the site and the wind velocity measured at the meteorolog-

ical station denoted as η is a function of the surface roughness z0m and z0s:

η ¼
us z; z0sð Þ

um z; z0mð Þ
(30)

It can be shown that non-linear relationship η umð Þ can be approximated with errors of order of

7% or less by a constant factor η for specified surface roughness at the building site. As the

surface roughness appears in an implicit form in the expression for wind velocity (Eq. (29)), an

analytical expression is not available. Instead, values of the factor η have been computed for

different combinations of the surface roughness at the site and at the meteorological station

(Table 2).

Simple wind transformation between categories of roughness is possible for z < 20z0 [28].

Thus, for z ¼ 10 m, the transformation is valid for z0 < 0,5 m. In the case of non-homogeneous

upwind terrain, implementation for multiple roughness changes is required [26].

Values of wind speed measured at the meteorological station can be transformed using

Eqs. (27)–(29). The statistical parameters of wind speed evaluated for the site, i.e. the mean

value μ
us
and the standard deviation σus , can be easily evaluated on the basis of the mean wind

speed measured at the meteorological station μ
um

and the standard deviation of the wind

speed measured at the meteorological station σum , since the wind speed at site is related the

wind speed measured at the meteorological station by simple Eq. (30). Hence:

z0m = 0.01 z0m = 0.05 z0m = 0.3

z0s = 0.01 1.00 1.16 1.53

z0s = 0.05 0.86 1.00 1.31

z0s = 0.3 0.66 0.76 1.00

Table 2. Values of the ratio η corresponding to different roughness conditions.
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μus
¼ ημum

and σus ¼ ησum (31)

Concluding, the shape parameter λ characterising the distribution of wind speed at the site of

the building remains the same as the shape parameter λ for the meteorological station. The

scale parameter for the distribution of wind speed at the site is equal to ηc (Eq. (23)).

Hence, probability density function of wind speed transformed to building location is given by

2p–Weibull probability model:

f v; ηc;λð Þ ¼ λ

ηc

v

ηc

	 
λ�1

exp � v

ηc

	 
λ
( )

(32)

where c is a scale parameter and λ is a shape parameter of the PDF of wind speed measured at

the nearest meteorological station.

Modelling of microclimate around the structure takes into account the influence of structure

form, orientation and the quality of the surrounding. Usually, the effect of wind pressure on

the façade is estimated with the help of the tabulated values of wind pressure coefficients. In

the analysed case pressure differences across the six building components on the structure

were measured.

4.3.2. Air flow through the building envelope (influence of wind and temperature)

Some building performance aspects are dependent on the wind-structure interaction. Wind

together with temperature difference causes airflow through building envelope.

The probability distribution model of external temperature depends on the specific geo-

graphical region. For temperate regions characterised by four seasons evenly distributed over

the year, the normal (Gaussian) model with probability density function φ T;μT ; σT
� �

, given by

Eq. (33), can be used for 1-h mean external temperature at “a random time” [29, 30]:

f T;μT ; σT
� �

¼ 1

σT
ffiffiffiffiffiffi

2π
p exp � 1

2

T � μT

σT

	 
2
( )

(33)

Also the full-scale measurements carried out near Gothenburg indicate [20] that the outdoor

temperature can be approximated by the normal distribution.

Climatic data consist of 40-year record of observations made on meteorological stations at the

airport in Säve, near Gothenburg. External temperature at the building site has been assumed

to be equal to the temperature measured at the meteorological station, and its randomness is

modelled by the normal distribution with the mean value of 11:1 and the standard deviation of

6:1 as shown in Figure 5.

Temperature difference across the building envelope is also described by the normal PDF but

shifted towards positive values by the average value of internal temperature.
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The Weibull probability density function for a local wind speed has been evaluated on the

basis of 10-min mean values of wind speed measured at meteorological station (see Figure 5).

The meteorological station is located at the airport with assumed surface roughness 0.01. The

ratio between wind velocity at the site and the velocity measured at the meteorological station

has been calculated and is equal to 0.66 (Table 2). Probabilistic models of local wind speed

together with wind speed measured at the meteorological station are given in Table 3.

The probability density function of the random function ACH (Figure 6) has been evaluated

using FORM approach (Eq. (22)). Probabilistic inference leads to the conclusion that the

randomness of ACH is best described by the log-normal distribution with the mean value of

0.73 and the standard deviation of 0.38. Mean value and standard deviation are denoted,

respectively, by μ and σ. The PDF of the air change rate due to stack effect ACHs and the PDF

of air change rate due to wind ACHw are also shown in Figure 6. Randomness of air change

Mean value Standard dev. Scale parameter Shape parameter

Meteo 5.65 3.30 6.35 1.77

Local 3.73 2.18 4.19 1.77

Table 3. Stochastic parameters of the wind speed.

Figure 6. The probability density function for ACHs leftð Þ, ACHw middleð Þ and ACH (right) established with the help of

FORM analysis.

Figure 5. Normal PDF of ext. temperature T (*C) (left) and PDF of wind speed (m/s) for data coming from the Säve

meteorological station (dashed line) and for local wind (solid line).
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rate due to stack effect can be described by the normal distribution whereas due to wind by the

Weibull distribution skewed to the right.

4.3.3. Sensitivity analysis of the probabilistic variability of air change rate with respect to the variability

of wind and temperature

Dependence of ACH on the mean values of input variables follows the trends showed by

sensitivity indices for individual variables (see Figures 7–9) [31]. For the values of ACH above

1.0, where �αΔT approaches 0 and �αv is equal to 1, the changes of reliability indices are

dependent almost only on the changes of wind speed. Concluding, the wind velocity and

temperature difference contribute significantly to the variability of the air change rate with

sensitivity indices up to 0.8 for ΔT (for lower ACH) and up to near to 1 for wind speed (for

higher ACH (Table 4)).

Sensitivity of ACH distribution with respect to mean values and standard deviations of input

variables leads to the following conclusions: (1) strong dependence on wind variation, (2) temper-

ature difference variations affect only low values of ACH (up to 0.4), (3) variations of ΔT affect the

lowest values of the ACH distribution, and (4) variations of the wind speed are significant for

performance studies of ACH within the whole range of wind speed values.

Figure 7. Course of sensitivity index α, for variables ∆T and v.

Figure 8. ACH sensitivity to the μ
∆T solidð Þ and the σ∆T dashedð Þ leftð Þ and ACH sensitivity to the μv solidð Þ and the σv

(dashed) (right).
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Figure 9 shows the measure of sensitivity of the PDF of ACH with respect to scale or shape

parameter of the Weibull distribution of wind speed for consecutive values of air change rate.

The changes of shape parameter are the most important for the distribution of air change rate,

especially for the threshold values close to the tail of distribution.

4.4. Probabilistic modelling of airflow-dependent thermal transmittance

For lightweight timber framewith mineral wool filling, the dependence of the thermal properties

of building components on air infiltration is well acknowledged. An example is so-called

dynamic wall [32], specially designed to save energy. In such a wall, the ventilation air passes

through the insulation exchanging heat with a porous material reducing its conduction heat loss.

The air entering the building is preheated by the conduction heat of the insulation (infiltration

case), or the air leaving the building heats up the insulatingmaterial (exfiltration case) [33]. In the

case of dynamic wall, the thermal transmittance becomes the most interesting parameter that can

vary with the climatic data. Dynamic wall as a natural heat exchanger is a future of high-

performance housing. The interaction between thermal transmittance and airflow through the

components should be considered while calculating heat loss through a building envelope.

A modelling approach based on probabilistic methods is proposed in [34].

Probabilistic model of dynamic U value takes into account only some of the uncertainties

related to the properties of the thermal insulation described by the thermal transmittance U0,

the climatic load and the internal load coming from the building installations and occupants’

behaviour (ventilation strategy). The model described by Eq. (34) can be used to estimate a

probability distribution of the dynamic U value of the building envelope consisting of i-th

elements with total area of Atot:

Figure 9. ACH sensitivity to scale (dashed) and shape (solid) parameter of Weibull distribution of wind speed.

ACH = 0.32 ACH = 0.64 ACH = 3.0

αΔT 0.8 0.4 0.0

αv 0.6 0.8 1.0

Table 4. Some results from Figure 7.
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U ¼

1

4

Xn

i

NuiU
0
i
Ai (34)

The Nusselt number Nui is equal to 1 for the element without convection flow. In general, the

value of the Nusselt number depends on the velocity of the airflow through the insulation, the

direction of the flow and the thickness and the density of the insulation.

The example of approximation of the probability density functions of a dynamic U value has

been carried out with the help of FORM techniques. PDF of dynamic U value has been

evaluated using FORM sensitivity analysis (see Section 3.1.1). It depends on statistical

parameters of the joint distribution of two random variables: thermal transmittance U
0

(varying with the temperature) and wind as well as buoyancy-driven airflow in terms of air

change rate ACH (see Figure 10). It has been assumed that stochastic information is limited

to the parameters of marginal probability density functions of those variables and the

correlation coefficient between them.

Probability density functions of thermal transmittance depend on the direction of the airflow

through the envelope as well as on the probability model of the air change rate. Respectively, to

the contribution of the natural forces (wind, temperature) and mechanical forces, different proba-

bility distributions (normal, log-normal, Weibull and gamma) can be fitted to model randomness

of the air change rate [35]. In general, the probability density functions of the dynamicU value are

skewed to the left—in the case of infiltration—and are skewed to the right, in case of exfiltration.

The specific character of the relationship between Nusselt number and air change rate may

explain these results. For the case of infiltration, the best fit according to the Kolmogorov-Smirnov

test has been obtained for the Weibull distribution, while for the exfiltration case, the three-

parameter gamma (or alternatively Gumbel) distribution has been obtained (see Figure 10).

The model could be further developed to include uncertainties due to other mechanisms and

factors, e.g. influence of wind or radiation on external heat transfer coefficient or the influence

of non-homogeneity of the material characteristics.

Figure 10. Probability density functions of dynamic U value for the cases of infiltration (left) and exfiltration (right)

approximated for the building located near to Gothenburg for western winds.
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The probabilistic model for estimation of heat loss accounting for interactions between venti-

lation and transmission heat losses has been presented in [20, 33]. The model predicts the

probability density function of the heat loss distribution over a specified period of time (e.g. a

heating season) on the basis of the design parameters of the house, temperature characteristics

of the site as well as the air change rate due to mechanical or natural ventilation. The probabil-

ity of heat loss exceeding certain number of kW can be compared for different design options

concerning various ventilation strategies (natural or/and mechanical ventilation) and various

transmittance properties (tight envelope contra dynamic wall) of the building envelope.

Hence, rational engineering decisions promoting low-energy solution contributing to climate

change mitigation can be taken into account in the design process.

5. Conclusions

Risk analysis together with appropriate tools can support building design strategies concerning

climate change mitigation and adaptation. Lower levels of uncertainty can be handled by means

of risk analysis based on system’s risk or reliability estimations. In the case of higher order of

uncertainties [36], other strategies could be developed based on the concept of resilience.

Risk analysis of building performance enables the selection of the best design based on com-

parison of probabilities of undesired performance estimated for alternative design solutions.

Systemic approach gives opportunity to identify important relationships between variables.

For example, air infiltration as a result of climate/structure interaction may be a significant

variable in the thermal performance of building envelope. However, in order to handle the

whole complexity of the real system, multivariable decision models for different design solu-

tions should be further developed.

The examples of dynamic U values resulting in the different characters of distribution models

for the cases of infiltration and exfiltration show that the probabilistic methods and tools can

be effectively used to establish the probabilistic characteristics typical for the combination of

the important variables influencing climate-structure interaction.

The sensitivity measures are important in the case of risk or reliability-based design. Sensitivity

analysis of the distribution of a response variable (random function) with respect to the basic

random variables and its parameters is straightforward for FORMmethodology, whereas it is not

easy in the case of theMonte Carlo simulation. The results of case studies show that the air change

rate distribution depends on the temperature difference ∆T and the wind velocity significantly.

Dependence of PDFmodel ofACH on themean value of input variables is similar in the trends for

both studied variables: temperature and wind speed. Sensitivity analysis of ACH probability

distribution model to standard deviations of input variables shows the high contribution of wind

speed and limited to low values ofACH (up to 0.4) influence of temperature difference.

Approximate transformation of wind speed data from the meteorological station to a specific

location, where analysed building is situated, can be carried out by multiplying wind speed

by a constant factor η (with 7% error or less), established for a specific ranges of roughness
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conditions. The transformation of the probabilistic model of 10-min mean wind speed from

meteorological station to the probabilistic model of hourly mean speed for the site of the

building results in change of the scale parameter, while the shape parameter remains the same.

The form of PDF for ACH as well as reliability index is sensitive to the value of the shape

parameter of the Weibull distribution of wind speed and much less sensitive to the scale param-

eter. Hence, the transformation of probabilistic model of wind speed to the local site seems to be

robust for the analysed case.

As it was shown, the sensitivity analysis has helped to understand the relationships between

model inputs. It can also help to test the model outcome in terms of its robustness in the

presence of uncertainty. The probabilistic risk analysis along with the effective tools for sensi-

tivity analysis can be used to support design decisions and also to develop better models for

evaluation of building performance.

Author details

Krystyna Pietrzyk1* and Ireneusz Czmoch2

*Address all correspondence to: krystyna.pietrzyk@chalmers.se

1 Department of Architecture and Civil Engineering, Chalmers University of Technology,

Gothenburg, Sweden

2 Faculty of Civil Engineering, Warsaw University of Technology, Warsaw, Poland

References

[1] United Nations. Sustainable Development Goals. Available from: http://www.un.org/

sustainabledevelopment/energy/

[2] Booth AT, Choudhary R, Spiegelhalter DJ. Handling uncertainty in housing stock

models. Building and Environment. 2012;49:35-47

[3] Pietrzyk K. Quantification of building/environment system performance. In: The World

Sustainable Building Conference (SB08), Vol. 2; Melbourne, Australia; 2008. pp. 501-506

[4] Bedford T, Cooke R. Probabilistic risk analysis. Foundations andMethods. United Kingdom:

Cambridge University Press; 2001

[5] Rausand M, Høyland A. System Reliability Theory: Models, Statistical methods, and

Applications. 2nd ed. Hoboken: Wiley; 2004

[6] Corotis RB. Risk and risk perception for low probability, high consequence events in the

built environment. In: Haldar A, editor. Recent Developments in Reliability-Based Civil

Engineering. Singapore: World Scientific Publishing Co; 2006

Risk Assessment108



[7] Cardona OD. The need for rethinking the concepts of vulnerability and risk from a

holistic perspective: A necessary review and criticism for effective risk management. In:

Bankoff G, Frerks G, Hilhorst D, editors. Mapping Vulnerability: Disasters, Development

and People. London: Earthscan Publications; 2004. pp. 37-51

[8] CUP (Central Unit on Procurement). No. 41 Managing Risk and Contingency for Con-

struction Work. C.U.P. Guidance. London: HM Treasury; 1997

[9] Misra KB. Reliability engineering: A perspective. In: Misra KB, editor. Handbook of

Performability Engineering. London: Springer; 2008

[10] Fisher BS et al. Ch. 3: Issues related to mitigation in the long-term context. In: Contribution

of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on

Climate Change (IPCCAR4WG3); 2007 (3.5 interaction betweenmitigation and adaptation,

in the light of climate change impacts and decision-making under long-term uncertainty)

[11] IPCC. Summary for policymakers. Climate Change 2007: Working Group III: Mitigation of

Climate Change, Table SPM.3, C. Mitigation in the Short and Medium Term (until 2030)

(IPCC AR4 WG3); 2007

[12] Climate Action. European Commission https://ec.europa.eu/clima/policies/adaptation_en

[13] PietrzykK.Riskmanagement ofwindowsperformance. Energy Procedia. 2015;78:2476-2481

[14] Czmoch I. Influence of Structural Timber Variability on Reliability and Damage Tolerance

of Timber Beams [Doctoral Thesis]. Sweden: Division of Structural Mechanics of Luleå

University of Technology; 1998

[15] Pietrzyk K, Hagentoft C-E. Reliability analysis in building physics design. Building and

Environment. 2008;43(4):558-568

[16] Rackwitz R, Fiessler B. Structural reliability under combined load sequences. Computers

and Structures. 1978;9:489-494

[17] Der Kiureghian A, Liu P-L. Structural reliability under incomplete probability informa-

tion. Journal of Engineering Mechanics Division. 1986;112:85-104

[18] Haldar A, Mahadevan S. Probability, Reliability and Statistical Methods in Engineering

Design. John Wiley & Sons; 2000

[19] Pietrzyk K. A systemic approach to moisture problems in buildings for mould safety

modelling. Building and Environment. 2015;86:50-60

[20] Pietrzyk K. Probabilistic modelling of air infiltration and heat loss in low rise buildings

[PhD thesis]. Gothenburg, Sweden: School of Architecture, Chalmers University of Tech-

nology; 2000

[21] Pietrzyk K, Hagentoft C-E. Probabilistic analysis of air infiltration in low-rise buildings.

Building and Environment. 2008;43(4):537-549

[22] Etheridge D, Sandberg M. Building Ventilation: Theory and Measurements. John Wiley &

Sons; 1996

On Risk and Reliability Studies of Climate-Related Building Performance
http://dx.doi.org/10.5772/intechopen.71684

109



[23] Van der Hoven I. Power spectrum of horizontal wind speed in the frequency range from

0.0007 to 900 cycles per hour. Journal of Meteorology. 1957;14:160-164

[24] Handa K. Estimation of mean wind speeds for different surface roughness. Series on

Designing for Wind. Report No. 1. Sweden: Department of Architecture, Chalmers Univer-

sity of Technology; 1996

[25] Simiu E, Scanlan RH. Wind effect on structures fundamentals and applications to design.

Hoboken: John Wiley & Sons (Wiley-Interscience Publication); 1996

[26] Cook N. The Deaves and Harris ABL model applied to heterogeneous terrain. Journal of

Wind Engineering and Industrial Aerodynamics. 1997;66:197-214

[27] Azad RS, editor. The Atmospheric Boundary Layer for Engineers. Berlin: Springer Verlag;

1993

[28] Wieringa J. Updating the davenport roughness classification. Journal of Wind Engineer-

ing and Industrial Aerodynamics. 1992;41-44:357-368

[29] Kaczmarek Z. Statistical Methods in Hydrology and Meteorology (in Polish). Warszawa:

Wydawnictwa Komunikacji i Lacznosci; 1970

[30] Guyot G. Physics of the Environment and Climate. Paris: John Wiley & Sons; 1998

[31] Pietrzyk K, Czmoch I. Sensitivity analysis of air infiltration through the building enve-

lope to the stochastic characteristics of wind speed and air temperature. In: Proceedings

of the COBEE (2nd International Conference on Building Energy & Environment); USA.

2012

[32] Anderlind G, Johansson B. Dynamic insulation. In: A Theoretical Analysis of Thermal

Insulation through which a Gas or Fluid Flows. Stockholm: The Swedish Council for

Building Research; 1983

[33] Pietrzyk K. Thermal performance of a building envelope—A probabilistic approach.

Journal of Building Physics. 2010;34(1):77-96

[34] Pietrzyk K, Hagentoft C-E. Probabilistic modelling of dynamic U-value. In: Proceedings of

the Thermal Performance of the Exterior Envelopes of Buildings IX; American Society of

Heating, Refrigerating and Air-Conditioning Engineers, Inc. (ASHRAE); Florida, USA. 2004

[35] Pietrzyk K. Probability-based design in ventilation. The International Journal of Ventila-

tion. 2005;4(2):143-156

[36] Walker WE, Lempert RJ, Kwakkel JH. Deep uncertainty. In: Gass SI, Fu MC, editors.

Encyclopedia of Operations Research and Management Science. USA: Springer; 2013.

pp. 395-402

Risk Assessment110


