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1. Introduction 

The greedy method is a well-known technique for solving various problems so as to 
optimize (minimize or maximize) specific objective functions. As pointed by Dechter et al 
[1], greedy method is a controlled search strategy that selects the next state to achieve the 
largest possible improvement in the value of some measure which may or may not be the 
objective function. In recent years, many modern algorithms or heuristics have been 
introduced in the literature, and many types of improved greedy algorithms have been 
proposed. In fact, the core of many Meta-heuristic such as simulated annealing and genetic 
algorithms are based on greedy strategy.  
“The one with maximum benefit from multiple choices is selected” is the basic idea of 
greedy method. A greedy method arrives at a solution by making a sequence of choices, 
each of which simply looks the best at the moment. We refer to the resulting algorithm by 
this principle the basic greedy (BG) algorithm, the details of which can be described as 
follow: 

Procedure BG (partial solution S, sub-problem P) 

Begin 
        generate all candidate choices as list L for current sub-problem P; 
        while (L is not empty OR other finish condition is not met) 
                    compute the fitness value of each choice in L; 
                    modify S and P by taking the choice with highest fitness value;  
                    update L according to S and P; 
        end while; 
        return the quality of the resulting complete solution; 
End. 
 

For an optimization problem, what remains is called a sub-problem after making one or 
several steps of greedy choice. For problem or sub-problem P, let S be the partial solution, 
and L be the list of candidate choices at the current moment.  
To order or prioritize the choices, some evaluation criteria are used to express the fitness 
value. According to the BG algorithm, the candidate choice with the highest fitness value is 
selected, and the partial solution is updated accordingly. This procedure repeated step by 
step until a resulting complete solution is obtained. 
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Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,  
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria
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The representation of the BG algorithm can be illustrated by a search tree as shown in Fig.1. 
Each node in the search tree corresponds to a partial solution, and a line between two nodes 
represents the decision to add a candidate choice to the existing partial solution. 
Consequently, leaf nodes at the end of tree correspond to complete solutions.  
In Fig.1, the black circle at level 1 denotes an initial partial solution. At level 2, there are four 
candidate choices for current partial solution, which denotes by four nodes. In order to 
select the best node, promise of each node should be determined. After some evaluation 
function has been employed, the second node with highest benefit (the circle in gray at level 
2) is selected. Then, the partial solution and sub-problem are updated accordingly. 
 

 

Fig. 1. Representation of basic greedy algorithm 

Two important features of greedy method make it so popular are simple implementation and 
efficiency. Simple as it is, BG algorithm is highly efficient and sometimes it can produce an 
optimal solution for some optimization problem. For example, for problems such as activity-
selection problem, fractional knapsack problem and minimum spanning trees problem, BG 
algorithm can obtain optimal solution by making a series of greedy choice. For these problems 
that the BG algorithm can obtain optimal solution, there is something in common: the optimal 
solution to the problem contains within it optimal solutions to sub-problems. 
However, for other optimization problems that do not exhibit such property, the BG 
algorithm will not lead to optimal solution. Especially for the combinatorial optimization 
problems or NP-hard problem, the solution by BG algorithm is far away from satisfactory.  
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In BG algorithm, we make whatever choice seems best at the moment and then turn to solve 
the sub-problem arising after the choice is made. That is to say, the benefit is only locally 
evaluated. Consequently, even though we select the best at each step, we still missed the 
optimal solution. Just liking playing chess, a player who is focused entirely on immediate 
advantage is easy to be defeated, the player who can think several step ahead will win with 
more opportunity. 
In this chapter, a novel greedy algorithm is introduced in detail, which is of some degree of 
forward-looking. In this algorithm, all the choices at the moment are evaluated more 
globally before the best one is selected. The greedy idea and enumeration strategy are both 
reflected in this algorithm, and we can adjust the enumeration degree so we can balance the 
efficiency and speed of algorithm.  

2. Greedy Algorithm with forward-looking search strategy 

To evaluate the benefit of a candidate choice more globally, an improved greedy algorithm 
with forward-looking search strategy (FG algorithm) was proposed by Huang et al [2], 
which was first proposed for tackling packing problem. It is a kind of growth algorithm and 
it is efficient for problem that can be divided into a series of sub-problems.  
In FG algorithm, the promise of a candidate choice is evaluated not only by the current 
circumstance, but more globally by considering the quality of the complete solution that can 
be obtained from the partial solution represented by the node. The idea of FG algorithm can 
be illustrated by Fig.2: 
 

 
Fig. 2. Representation of greedy algorithm with forward-looking strategy 
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As shown in Fig.2 (a), there are four nodes at level 2 for the initial partial solution. We do 
not evaluate the promise of each node at once at the moment. Conversely, we tentatively 
update the initial partial solution by take the choices at level 2 respectively. For each node at 
level 2 (i.e., each partial solution at level 2), its benefit is evaluated by the quality of the 
complete solution resulted from it according to BG algorithm. From the complete solution 
with maximum quality, we backtrack it to the partial solution and definitely take this step. 
In other words, the node that corresponds to the complete solution with maximum quality 
(the gray circle in Fig.2 (a)) is selected as the partial solution. Then the search progresses to 
level 3. Level by level, this process is repeated until a complete solution is obtained.  
After testing the global benefit of each node at current level, the one with great prospect will 
be selected. This idea can be referred as forward-looking, or backtracking. More formally, 
the procedure above can be described as follows:  

Procedure FG (problem P) 

Begin 
        generate the initial partial solution S, and update P to a sub-problem; 
        generate all current candidate choice as a list L; 
        while (L is not empty AND finish condition is not met) 

                    max⇐ 0 

                    for each choice c in L 
                              compute the global benefit: GloableBenefit (c, S, P); 
                              update max with the benefit;       
                    end for;    
                    modify S by selecting the choice that the global benefit equal to max; 
                    update P and L; 
         end while; 
End. 
 

As shown in the above algorithm, in order to more globally evaluate the benefit of a choice 
and to overcome the limit of BG algorithm, we compute the benefit of a choice using BG 

itself in the procedure GlobalBenefit to obtain the so-called FG algorithm. 
Similarly to BG algorithm, we start from the initial partial solution and repeat the above 
procedure until a complete solution is reached. Note that if there are several complete 
solutions with the same maximum benefit, we will select the first one to break the tie.  
The global benefit of each candidate choice is described as: 

Procedure GlobalBenefit (choice c, partial solution S, sub-problem P) 

Begin 
         let S’and P’ be copies of S and P; 
         modify S’and P’ by taking the choice c; 
         return BG(S, P); 
End. 
 

Given a copy S’ of the partial solution and a copy P’of sub-problem, then we update S’by 
taking the choice c. For the resulted partial solution and sub-problem, we use BG algorithm 
to obtain the quality of the complete solution.  
It should be noted that Procedure FG only gives one initial partial solution. For some 
problems, there may be several choices for the initial partial solution. Similarly, the 
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Procedure globalBenefit() is implemented for the initial partial solutions respectively, and the 
one with maximum benefit should be selected.  

3. Improved version of FG algorithm 

3.1 Filtering mechanism  

For some problems, the number of nodes is rather large at each level of search. Therefore, a 
filtering mechanism is proposed to reduce the computational burden. During filtering some 
nodes will not be given chance to be evaluated globally and be discarded permanently based 
on their local evaluation value. Only the remaining nodes are subject to global evaluation. 
 

 

Fig. 3. Representation of filtering mechanism 

As shown in Fig.3, there are 7 nodes at level 2. Firstly, the benefit of each node is locally 
evaluated. Then, only the promising nodes whose local benefit is larger than a given 
threshold parameterτ will be globally evaluated. The FG algorithm can be modified as 

FGFM algorithm: 
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Procedure FGFM (problem P) 

Begin 
         generate the initial partial solution S, update P to a sub-problem; 
         generate all current candidate choice as a list L; 
         while (L is not empty AND finish condition is not met) 

                     max⇐ 0 

                      for each choice c in L 
                                   if (local benefit > parameterτ ) 

               compute the global benefit: GloableBenefit (c, S, P); 
                                              update max with global benefit;     
                                   end if;   
                      end for;    
                      modify S by selecting the choice that the global benefit equal to max; 
                      update P and L; 
           end while; 
End. 
 

Obviously, the threshold parameterτ is used to control the trade-off between the quality of 

the result and the computational time. Ifτ is set to be large enough, algorithm FGFM turns 

to be a BG algorithm; Ifτ is set to be small enough, algorithm FGFM turns to be a FG 

algorithm. 

3.2 Multiple level enumerations 

In the FG algorithm, the benefit of a node is globally evaluated by the quality of 
corresponding complete solution, which is resulted from the node level by level according 
to the BG algorithm.  In order to further improve the quality of the solution, the forward-
looking strategy can be applied to several levels. 
This multi-level enumeration can be illustrated by Fig.4. For the initial partial solution, there 
are three candidate choices at level 2. From each node at level 2, there are several branches 
at level 3. Then we use procedure GlobalBenefit () to evaluate the global benefit of each nodes 
at level 3. That is to say, the three nodes at level 2 have several global benefits. We will 
choose the highest one as its global benefit. Afterwards, the one with the maximum global 
benefit from the three nodes at level 2 are selected as the partial solution. 
If the number of enumeration levels is equal to (last level number - current level number-1) 
for each node, the search tree will become a complete enumeration tree, the corresponding 
solution of which will surely be optimal solution. However, the computational time 
complexity is unacceptable. Usually, the number of enumeration levels ranges from 1 to 4. 
Obviously, the filtering mechanism and multi-level enumeration strategy are the means to 
control the trade-off between solution quality and runtime effort.  

4. Applications 

FG algorithm has been successfully applied to job shop scheduling problem [3], circle 
packing problem [2, 4] and rectangular packing problem [5]. In this section, the two-
dimensional (2D) rectangle packing problem and its corresponding bounded enumeration 
algorithm is presented. 
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Fig. 4. The multi-level enumeration strategy 

4.1 Problem definition 

The 2D rectangular packing problem has been widely studied in recent decades, as it has 
numerous applications in the cutting and packing industry, e.g. wood, glass and cloth 
industries, newspapers paging, VLSI floor planning and so on, with different applications 
incorporating different constraints and objectives. 
We consider the following rectangular packing problem: given a rectangular empty 
container with fixed width and infinite height and a set of rectangles with various sizes, the 
rectangle packing problem is to pack each rectangle into the container such that no two 
rectangles overlap and the used height of the container is minimized. From this 
optimization problem, an associated decision problem can be formally stated as follows: 

Given a rectangular board with given width W and given height H, and n rectangles with 

length li and width wi, 1≤ i≤ n, take the origin of the two-dimensional Cartesian coordinate 

system at the bottom-left corner of the container (see Fig.5). The aim of this problem is to 

determine if there exist a solution composed of n sets of quadruples 11 11 12 12{ , , , }x y x y ,…, 

1 1 2 2{ , , , }n n n nx y x y , where ( 1 1,i ix y ) denotes the bottom-left corner coordinates of rectangle i, 

and ( 2 2,i ix y ) denotes the top-right corner coordinates of rectangle i. For all 1≤ i≤ n, the 

coordinates of rectangle i satisfy the following conditions: 

1. xi2−xi1 = li  ∧  yi2−yi1 = wi  or  xi2−xi1 = wi  ∧  yi2−yi1 = li; 
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2. For all 1≤ i, j≤ n, j ≠ i, rectangle i and j cannot overlap, i.e., one of the following 

condition should be met: xi1≥ xj2  or  xj1≥ xi2  or  yi1≥ yj2  or  yj1≥ yi2; 

3. 0≤ xi1, xi2≤ W  and  0≤ yi1, yi2≤ H. 

In our packing process, each rectangle is free to rotate and its orientation θ can be 0 (for “not 

rotated”) or 1 (for “rotated by π/2”). It is noted that the orthogonal rectangular packing 
problems denote that the packing process has to ensure the edges of each rectangle are 
parallel to the x- and y-axis, respectively. 
Obviously, if we can find an efficient algorithm to solve this decision problem, we can then 
solve the original optimization problem by using some search strategies. For example, we 
first apply dichotomous search to get rapidly a “good enough” upper bound for the height, 
then from this upper bound we gradually reduce it until the algorithm no longer finds a 
successful solution. The final upper bound is then taken as the minimal height of the 
container obtained by the algorithm. In the following discussion, we will only concentrate 
on the decision problem of fixed container. 

O

(x
i2
,y
i2

)

y

(x
i1
,y
i1

)
x

R
i

 
Fig. 5. Cartesian coordinate system 

4.2 Preliminary 

Definition Configuration. A configuration C is a pattern (layout) where m ( 0 m n≤ < ) 

rectangles have been already packed inside the container without overlap, and n−m 
rectangles remain to be packed into the container.  
A configuration is said to be successful if m=n, i.e., all the rectangles have been placed inside 
the container without overlapping. A configuration is said to be failure if m<n and none of 
the rectangles outside the container can be packed into the container without overlapping. A 
configuration is said final if it is either a successful configuration or a failure configuration. 
Definition Candidate corner-occupying action. Given a configuration with m rectangles 
packed, there may be many empty corners formed by the previously packed rectangles and 
the four sides of the container. Let rectangle i be the current rectangle to be packed, a 
candidate corner-occupying action (CCOA) is the placement of rectangle i at an empty 
corner in the container so that rectangle i touches the two items forming the corner and does 
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not overlap other previously packed rectangles (an item may be a rectangle or one of the 
four sides of the container). Note that the two items are not necessarily touching each other. 
Obviously, the rectangle to be packed has two possible orientation choices at each empty 
corner, that is, the rectangle can be placed with its longer side laid horizontally or vertically. 

A CCOA can be represented by a quadri-tuple (i, x, y, θ), where (x, y) is the coordinate of the 

bottom-left corner of the suggested location of rectangle i and θ is the corresponding 
orientation. 
 

R
1 R

4

R
3

R
2

2

3

5
1

4

 

Fig. 6.  Candidate corner-occupying action for rectangle R4 

Under current configuration, there may be several candidate packing positions for the 
current rectangle to be packed. At the configuration in Fig.6, three rectangles R1, R2 and R3 
are already placed in the container. There are totally 5 empty corners to pack rectangle R4, 
and R4 can be packed at any one of them with two possible orientations. As a result, there 
are 10 CCOAs for R4.  

In order to prioritize the candidate packing choices, we need a concept that expresses the 

fitness value of a CCOA. Here, we introduce the quantified measure λ , called degree to 

evaluate the fitness value of a CCOA. Before presenting the definition of degree, we first 
introduce the definition of minimal distance between rectangles as follows. 
 

R
1

R
2 R

3

 

Fig. 7.  Illustration of distance 

Definition Minimal distance between rectangles. Let i and j be two rectangles already placed in 
the container, and (xi, yi), (xj, yj) are the coordinates of arbitrary point on rectangle i and j, 
respectively. The minimal distance dij between i and j is:    
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2 2min{ ( ) ( ) }
ij i j i j
d x x y y= − + −   

In Fig.7, R3 is packed on the position occupying the corner formed by the upper side and the 
right side of the container. As shown in Fig.7, the minimal distance between R3 and R1, and 
the minimal distance between R3 and R2 are illustrated, respectively.  
Definition Degree of CCOA. Let M be the set of rectangles already placed in the container. 

Rectangle i is the current rectangle to be packed, (i, x, y, θ) is one of the CCOAs for rectangle 

i. If corner-occupying action (i, x, y, θ) places rectangle i at a corner formed by two items 

(rectangle or side of the container) u and v, the degreeλ of the corner-occupying action (i, x, 

y, θ) is defined as: 

min1 ( )
2

i iw l
dλ

+
= − /                                            

where wi and li are the width and the length of rectangle i, and dmin is the minimal distance 
from rectangle i to other rectangles in M and sides of the container (excluding u and v), that 
is,  

                
min 1 2 3 4

min{  | { , , , }, , }
ij

d d j M s s s s j u v= ∈ ≠∪                      

where s1, s2, s3 and s4 are the four sides of the container. 
It is clear that if a corner-occupying action place rectangle i at a position very close to the 
previously packed rectangles, the corresponding degree will be very high. Note that, if 
rectangle i can be packed by a CCOA at a corner in the container and touches more than two 

items, then dmin=0 and λ =1; otherwiseλ <1. The degree of a corner-occupying action 

describes how the placed rectangle is close to the already existing pattern. Thus, we use it as 
the benefit of a packing step.  
Intuitively, since one should place a rectangle as close as possible to the already existing 
pattern, it seems quite natural that the CCOA with the highest degree will be selected first to 
pack the rectangle into the container. We call this principle the highest degree first (HDF) 
rule. It is just the simple application of BG algorithm. 

4.3 The basic algorithm: A0 

Based on the HDF rule and BG algorithm, A0 is described as follows: 

Procedure A0 (C, L) 

Begin 
     while (L is not empty)  
           for each CCOA in L 
                       calculate the degree;    
            end for;     

            select the CCOA (i, x, y, θ) with the highest degree;  

            modify C by placing rectangle i at (x, y) with orientationθ;  
            modify L according to the new configuration C; 
    end while; 
    return C; 
End. 
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At each iteration, a set of CCOAs for each of the unpacked rectangles is generated under 
current configuration C. Then the CCOAs for all the unpacked rectangles outside the 
container are gathered as a list L. A0 calculates the degree of each CCOA in L and selects the 

CCOA (i, x, y,θ) with the highest degreeλ , and place rectangle i at (x, y) with orientationθ. 

After placing rectangle i, the list L is modified as follows: 
1.  Remove all the CCOAs involving rectangle i; 
2.  Remove all infeasible CCOAs. A CCOA becomes infeasible because the involved 

rectangle would overlap rectangle i if it was placed; 

3.  Re-calculate the degreeλ of the remaining CCOAs; 

4.  If a rectangle outside the container can be placed inside the container without overlap 
so that it touches rectangle i and a rectangle inside the container or the side of the 

container, create a new CCOA and put it into L, and compute the degreeλ of the new 

CCOA.  
If none of the rectangles outside the container can be packed into the container without 
overlap (L is empty) at certain iteration, A0 stops with failure (returns a failure 
configuration). If all rectangles are packed in the container without overlap, A0 stops with 
success (returns a successful configuration).  
It should be pointed out that if there are several CCOAs with the same highest degree, we 
will select one that packs the corresponding rectangle closest to the bottom left corner of the 
container.   
A0 is a fast algorithm. However, given a configuration, A0 only considers the relation 
between the rectangles already inside the container and the rectangle to be packed. It 
doesn’t examine the relation between the rectangles outside the container. In order to more 
globally evaluate the benefit of a CCOA and to overcome the limit of A0, we compute the 
benefit of a CCOA using A0 itself in the procedure BenefitA1 to obtain our main packing 
algorithm called A1.  

4.4 The greedy algorithm with forward-looking strategy: A1 

Based on current configuration C, CCOAs for all unpacked rectangles are gathered as a list 

L. For each CCOA (i, x, y, θ ) in L, the procedure BenefitA1 is designed to evaluate its benefit 
more globally. 

Procedure BenefitA1 (i, x, y, θ, C, L) 

Begin 
       let C’and L’be copies of C and L; 

       modify C’by placing rectangle i at (x, y) with orientationθ, and modify L’; 
       C’= A0 (C’,L’); 
       if (C’is a successful configuration)  
              Return C’; 
       else  

              Return density (C’); 
       end if-else 
End. 
 

Given a copy C’ of the current configuration C and a CCOA (i, x, y, θ) in L, BenefitA1 begins 

by packing rectangle i in the container at (x, y) with orientationθand call A0 to reach a final 
configuration. If A0 stops with success then BenefitA1 returns a successful configuration, 
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otherwise BenefitA1 returns the density (the ratio of the total area of the rectangles inside the 
container to the area of the container) of a failure configuration as the benefit of the CCOA 

(i, x, y, θ). In this manner, BenefitA1 evaluates all existing CCOAs in L. 
Now, using the procedure BenefitA1, the benefit of a CCOA is measured by the density of a 
failure configuration. The main algorithm A1 is presented as follow: 

Procedure A1 ( ) 

Begin 
        generate the initial configuration C; 
        generate the initial CCOA list L; 
        while (L is not empty)  
                    maximum benefit ← 0 

                    for each CCOA (i, x, y,θ ) in L 

                              d= BenefitA1 (i, x, y,θ , C, L); 

                              if (d is a successful configuration) 
                                        stop with success; 
                              else 
                                        update the maximum benefit with d; 
                              end if-else; 
                    end for; 

                    select the CCOA (
*i ,

*x ,
*y ,

*θ ) with the maximum benefit; 

                    modify C by placing rectangle 
*i at (

*x ,
*y ) with orientation

*θ ; 

                    modify L according to the new configuration C; 
        end while; 
        stop with failure 
End. 
 

Similarly, A1 selects the CCOA with the maximum benefit and packs the corresponding 
rectangle into the container by this CCOA at each iteration. If there are several CCOAs with 
the maximum benefit, we select one that packs the corresponding rectangle closest to the 
bottom left corner of the container. 

4.5 Computational complexity 

We analysis the complexity of A1 in the worst case, that is, when it cannot find successful 
configuration, and discuss the real computational cost to find a successful configuration.  
A0 is clearly polynomial. Since every pair of rectangles or sides in the container can give a 
possible CCOA for a rectangle outside the container, the length of L is bounded by 
O(m2(n−m)), if m rectangles are already placed in the container. For each CCOA in L, dmin is 
calculated using the dmin in the last iteration in O(1) time. The creation of new CCOAs and 
the calculus of their degree is also bounded by O(m2(n−m)) since there are at most 
O(m(n−m)) new CCOAs (a rectangle might form a corner position with each rectangle in the 
container and each side of the container). So the time complexity of A0 is bounded by O(n4).  
A1 uses a powerful search strategy in which the consequence of each CCOA is evaluated by 
applying BenefitA1 in full, which allows us to examine the relation between all rectangles 
(inside and outside the container). Note that the benefit of a CCOA is measured by the 
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density of a final configuration, which means that we should apply BenefitA1 though to the 
end each time. At every iteration of A1, BenefitA1 uses a O(n4) procedure to evaluate all 
O(m2(n−m)) CCOAs, therefore, the complexity of A1 is bounded by O(n8). 
It should be pointed out that the above upper bounds of the time complexity of A0 and A1 
are just rough estimations, because most corner positions are infeasible to place any 
rectangle outside the container, and the real number of CCOAs in a configuration is thus 
much smaller than the theoretical upper bound O(m2(n−m)).  
The real computational cost of A0 and A1 to find a successful configuration is much smaller 
than the above upper bound. When a successful configuration is found, BenefitA1 does not 
continue to try other CCOAs, nor A1 to exhaust the search space. In fact, every call to A0 in 
BenefitA1 may lead to a successful configuration and then stops the execution at once. Then, 
the real computational cost of A1 essentially depends on the real number of CCOAs in a 
configuration and the distribution of successful configurations. If the container height is not 
close to the optimal one, there exists many successful configurations, and A1 can quickly 
find such one. However, if the container height is very close to the optimal one, few 
successful configurations exist in the search space, and then A1 may need to spend more 
time to find a successful configuration in this case.  

4.6 Computational results  

The set of tests is done using the Hopper and Turton instances [6]. There are 21 different sized 
test instances ranging from 16 to 197 items, and the optimal packing solutions of these test 
instances are all known (see Table 1). We implemented A1 in C on a 2.4 GHz PC with 512 MB 
memory. As shown in Table 1, A1 generates optimal solutions for 8 of the 21 instances; for the 
remaining 13 instances, the optimum is missed in each case by a single length unit.  
To evaluate the performance of the algorithm, we compare A1 with two best meta-heuristic 
(SA+BLF) in [6], HR [7], LFFT [8] and SPGAL [9]. The quality of a solution is measured by 
the percentage gap, i.e., the relative distance of the solution lU to the optimum length lOpt. 
The gap is computed as (lU − lOpt)/lOpt. The indicated gaps for the seven classes are 
averaged over the respective three instances. As shown in Table 2, the gaps of A1 ranges 
form 0.0% to 1.64% with the average gap 0.72, whereas the average gap of the two meta-
heuristics and HR are 4.6%, 4.0% and 3.97%, respectively. Obviously, A1 considerably 
outperforms these algorithms in terms of packing density. Compared with two other 
methods, the average gap of A1 is lower than that of LFFT, however, the average gap of A1 is 
slightly higher than that of SPGAL. 
As shown in Table 2, with the increasing of the number of rectangles, the running time of 
the two meta-heuristics and LFFT increases rather fast. HR is a fast algorithm, whose time 
complexity is only O(n3) [7]. Unfortunately, the running time of each instance for SPGAL is 
not reported in the literature. The mean time of all test instances for SPGAL is 139 seconds, 
which is acceptable in practical applications. It can be seen that A1 is also a fast algorithm. 
Even for the problem instances of larger size, A1 can yield solutions of high density within 
short running time. 
It has shown from Table 2 that the running time of A1 does not consistently accord with its 
theoretical time complexity. For example, the average time of C3 is 1.71 seconds, while the 
average time of C4 and C5 are both within 0.5 seconds. As pointed out in the time 
complexity analysis, once A0 finds a successful solution, the calculation of A1 will terminate. 
Actually, the average time complexity is much smaller than the theoretical upper bound. 
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Test instance 
Class / 
subclass 

No. of 
pieces 

Object 
dimensions

Optimal 
height 

Minimum 
Height by A1

% of 
unpacked 

area 

CPU time 
(s) 

 C11 16 20×20 20 20 0.00 0.37 
C1 C12 17 20×20 20 20 0.00 0.50 

 C13 16 20×20 20 20 0.00 0.23 
 C21 25 15×40 15 15 0.00 0.59 

C2 C22 25 15×40 15 15 0.00 0.44 
 C23 25 15×40 15 15 0.00 0.79 
 C31 28 30×60 30 30 0.00 3.67 

C3 C32 29 30×60 30 30 0.00 1.44 
 C33 28 30×60 30 31 3.23 0.03 
 C41 49 60×60 60 61 1.64 0.22 

C4 C42 49 60×60 60 61 1.64 0.13 
 C43 49 60×60 60 61 1.64 0.11 
 C51 73 90×60 90 91 1.09 0.34 

C5 C52 73 90×60 90 91 1.09 0.33 
 C53 73 90×60 90 91 1.09 0.52 
 C61 97 120×80 120 121 0.83 8.73 

C6 C62 97 120×80 120 121 0.83 0.73 
 C63 97 120×80 120 121 0.83 2.49 
 C71 196 240×160 240 241 0.41 51.73 

C7 C72 197 240×160 240 241 0.41 37.53 
 C73 196 240×160 240 241 0.41 45.81 

Table 1. Computational results of our algorithm for the test instances from Hopper and 
Turton instances 

SA+BLF1 HR2 LFFT3 SPGAL4 A15 

Class 
Gap Time Gap Time Gap Time Gap 

Time 
(s) 

Gap Time 

C1 4.0 42 8.33 0 0.0 1 1.7 − 0.00 0.37 
C2 6.0 144 4.45 0 0.0 1 0.0 − 0.00 0.61 
C3 5.0 240 6.67 0.03 1.0 2 2.2 − 1.07 1.71 
C4 3.0 1980 2.22 0.14 2.0 15 0.0 − 1.64 0.15 
C5 3.0 6900 1.85 0.69 1.0 31 0.0 − 1.09 0.40 
C6 3.0 22920 2.5 2.21 1.0 92 0.3 − 0.83 3.98 
C7 4.0 250800 1.8 36.07 1.0 2150 0.3 − 0.41 45.02 

Average 
gap (%) 

 
4.0 

 
3.97 

 
0.86 

 
0.64 

 
0.72 

Table 2. The gaps (%) and the running time (seconds) for meta-heuristics, HR, LFFT, SPGAL 
and A1 

1 PC with a Pentium Pro 200MHz processor and 65MB memory [11]. 
2 Dell GX260 with a 2.4 GHz CPU [15]. 
3 PC with a Pentium 4 1.8GHz processor and 256 MB memory [14]. 
4 The machine is 2GHz Pentium [16]. 
5 2.4 GHz PC with 512 MB memory. 
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Fig. 8. Packing result of C31 

 

Fig. 9. Packing result of C73 

In addition, we give the packing results on test instances C31 and C73 for A1 in Fig.8~Fig.9. 
Here, the packing result of C31 is of optimal height, and the height C73 are only one length 
unit higher than the optimal height 

5. Conclusion 

The algorithm introduced in this chapter is a growth algorithm. Growth algorithm is a 
feasible approach for combinatorial optimization problems, which can be solved step by 
step. After one step is taken, the original problem becomes a sub-problem. In this way, the 
problem can be solved recursively. For the growth algorithm, the difficulty lies in that for a 
sub-problem, there are several candidate choices for current step. Then, how to select the 
most promising one is the core of growth algorithm. 
By basic greedy algorithm, we use some concept to compute the fitness value of candidate 
choice, then, we select one with highest value. The value or fitness is described by quantified 
measure. The evaluation criterion can be local or global. In this chapter, a novel greedy 
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algorithm with forward-looking strategy is introduced, the core of which can more globally 
evaluate a partial solution. 
For different problems, this algorithm can be modified accordingly. This chapter gave two 
new versions. One is of filtering mechanism, i.e., only part of the candidate choices with 
higher local benefit will be globally evaluated. A threshold parameter is set to allow the 
trade-off between solution quality and runtime effort to be controlled. The higher the 
threshold parameter, the faster the search will be finished., and the lower threshold 
parameter, the more high-quality solution may be expected. The other version of the greedy 
algorithm is multi-level enumerations, that is, a choice is more globally evaluated. 
This greedy algorithm has been successfully used to solve rectangle packing problem, circle 
packing problem and job-shop problem. Similarly, it can also be applied to other 
optimization problems.  
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