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Abstract

Hepatocellular carcinoma (hepatocarcinoma) is a major type of primary liver cancer and 
one of the most frequent human malignant neoplasms. Aflatoxins are I-type chemical 
carcinogen for hepatocarcinoma. Increasing evidence has shown that hepatocarcinoma 
induced by aflatoxins is the result of interaction between aflatoxins and hereditary factor. 
Aflatoxins can induce DNA damage including DNA strand break, adducts formation, 
oxidative DNA damage, and gene mutation and determine which susceptible individu-
als feature cancer. Inheritance such as alterations may result in the activation of proto-
oncogenes and the inactivation of tumor suppressor genes and determine individual 
susceptibility to cancer. Interaction between aflatoxins and genetic susceptible factors 
commonly involve in almost all pathologic sequence of hepatocarcinoma: chronic liver 
injury, cirrhosis, atypical hyperplastic nodules, and hepatocarcinoma of early stages. In 
this review, we discuss the biogenesis, toxification, and epidemiology of aflatoxins and 
signal pathways of aflatoxin-induced hepatocarcinoma. We also discuss the roles of some 
important genes related to cell apoptosis, DNA repair, drug metabolism, and tumor 
metastasis in hepatocarcinogenesis related to aflatoxins.

Keywords: hepatocellular carcinoma, molecular mechanism, aflatoxin

1. Introduction

Hepatocellular carcinoma (also called hepatocarcinoma or liver carcinoma) is a major type 

of primary liver cancer and one of the most frequent human malignant neoplasms. This 

malignancy has been proved to correlate with aflatoxins, especially aflatoxin B1 (AFB1) [1–3]. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Increasing evidence has exhibited that several mechanisms, including the toxic production 
from metabolism, the accumulation of DNA damage and genic mutation–induced aflatox-
ins, the decreasing DNA repair capacity, and dysregulation of signal pathways may play a 
central role in the tumorigenesis of aflatoxin-induced hepatocarcinoma [4–6]. In this review, 
we discuss the biogenesis, metabolism, and genic toxification of aflatoxins. We also discuss 
the molecular mechanisms of aflatoxin-induced hepatocarcinoma, involving in aflatoxin toxi-
fication, abnormal change of tumor relative genes, the interaction of aflatoxins and genetic 
factors, and signal pathway for tumorigenesis. The roles of some important genes related to 
cell apoptosis, DNA repair, drug metabolism, and tumor metastasis in hepatocarcinogenesis 
related to aflatoxins are further emphasized.

2. Aflatoxin biosynthesis, metabolism, and toxification

2.1. Aflatoxin biosynthesis

The biosynthesis of aflatoxins has been fully summarized in several previous reviews [7, 8]. 

In brief, aflatoxins are an important type of mycotoxins, which were the most early identi-
fied in the Aspergillus flavus (A. flavus) and regarded as causative agents of “turkey X” dis-
ease in the late 1950s and early 1960s. Thus, these toxins were named as “aflatoxins (namely 
A. flavus toxins)” according to their origin fungus [9]. Until now, 17 related aflatoxin iso-
forms and aflatoxin metabolites have been identified, and 4 of them often contaminated a 
number of agricultural commodities [10]. According to the amounts and fluorescent reac-
tions, four aflatoxins primarily identified in foodstuffs are named as AFB1, aflatoxin B2 
(AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2). Among these four known aflatox-
ins, AFB1 and AFB2 are named as B-type aflatoxins because they are attached to a penta-
none and can produce blue-color fluorescent under UV light, whereas AFG1 and AFG2 are 
termed as G-type aflatoxins because of their attachment to a 6-membered lactone and pro-
ducing green fluorescent color feature. These aflatoxins are mainly produced by A. flavus, 
Aspergillus parasiticus (A. parasiticus), Aspergillus nidulans (A. nidulans), Aspergillus pseudota-
marii (A. pseudotamarii), and Aspergillus bombycis (A. bombycis) [7, 8].

Toxigenic strains of A. flavus produce only B-type aflatoxins, but do not synthesize G-type 
aflatoxins due to the deletion of an unstable microsome enzyme and a-220 kDa cytosolic pro-
tein. The other aflatoxigenic species including A. parasiticus, A. nidulans, A. pseudotamarii, and 
A. bombycis can produce all four aflatoxins [8].

Numeral synthetical genes, such as aflatoxin regulatory protein gene (aflR), are required for 
aflatoxin biosynthesis and act as a huge neighbor gene cluster consisting of about 60–70 kb in 
original fungi (Figure 1) [8–10]. All corresponding gene-encoding enzymes and transcription 
factors produce aflatoxin production and regulate biosynthesis. Increasing evidence has proved 
that aflatoxin biosynthesis involves in at least 3 stages and 18 enzyme steps (Figures 2–4). The 

first stage, including the first (R01) to eighth reaction (R08) of biosynthesis, refers from ace-
tyl CoA to hydroxyversicolorone. The primary product hydroxyversicolorone will be formed 
and regulated by transcription factors aflR and aflJ (Figure 2) [8, 10]. The second (biosynthesis 
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reaction: R09–R12) (Figure 3) and third stages (biosynthesis reaction: R13–R18) (Figure 4) refer 

from hydroxyversicolorone to versicolorin B and from versicolorin B (VB) to the formation of 
ultimate products, respectively. These two stages involve in the formation of hydroxy- and 
non–hydroxy-versicolorone, and toxins. During the aflatoxin synthesis, more than 10 nicotin-
amide-adenine dinucleotide phosphate reduced form (NAPDH), one nicotinamide-adenine 
dinucleotide (NAD), and 2S-adenosylmethionine (SAM) are required. These cofactors may play 
a critical role in the control of aflatoxin biosynthesis [7–10].

2.2. The metabolism of aflatoxins in liver

Aflatoxins synthesized in the mycelia are finally excreted into such mediums as cereals (maize, 
wheat, sorghum, rice, and millet), nuts (peanuts, pistachios, walnuts, Brazil nut, and coco-
nut), spices (chili, turmeric, paprika, black pepper, and ginger), and seeds. Epidemiological 
studies have exhibited that AFB1 is the most common in contaminated human foods [8, 10]. 

Once this aflatoxin in the mediums is taken into body, it is metabolized via two-stage reac-
tions in the liver. The first-stage metabolisms include reduction reaction (ketoreduction to 
aflatoxicol), oxidative reaction (O-dealkylation to aflatoxin P1), and hydrolytic reactions 
(hydroxylation to aflatoxin M1, aflatoxin Q1, and aflatoxin B2). This stage reaction involves 
numerous enzymes such as cytochromes P450 (CYP450), monooxygenases, amino-oxidases, 

Figure 1. The aflatoxin gene cluster and their expression productions and functions. In the fungus-producing aflatoxins 
including A. nidulans, A. parasiticus, and A. flavus, genes encoding the enzymes and the transcription factors involving 
in aflatoxin biosynthesis commonly locate within a huge gene cluster of about 60–70 kb in the genomes. These genes, 
except for aflR and aflJ, involve in the 18 enzyme reaction steps (R01–R18) of aflatoxin biosynthesis, whereas aflR and aflJ 
expressing proteins are two important transcription factors and can regulate enzyme-related gene expression. “?” shows 
that the function of the corresponding gene is unknown (Note: adapted from Yabe and Nakajima [7]). Abbreviations. 

MCA, malonyl CoA; HAS, hexanoate synthase (also termed fatty acid synthase); PKS, polyketide synthase; NAS, 
Norsolorinic acid (NA) synthase; NAR, norsolorinic acid (NA) reductase; AVN, averantin; AVNM, averantin (AVN) 
monooxygenase; HAVN, 5′-hydroxyaverantin; HAVNR, 5′-hydroxyaverantin reductase; OVENC, 5′-oxoaverantin 
(OAVN) cyclase; AVRM, averufin (AVR) monooxygenase; VHAS, versiconal hemiacetal acetate (VHA) synthase; 
VHOHC, versiconal (VHOH) cyclase (also called versicolorin B synthase); VHAR, versiconal hemiacetal acetate (VHA) 
reductase; VBD, versicolorin B (VB) desaturase; DMSTSS, demethylsterigmatocystin (DMST) synthase system; OMTI, 
O-methyltransferase I; OMTII, O-methyltransferase II; OAE, OrdA enzyme.
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alcohol dehydrogenases, epoxide-hydrolases, aldehyde-reductases, and ketone-reductases. 
The second-stage reaction mainly comprises covalent binding reaction (toxic produces) and 
conjugation reaction (excretion and detoxification). Through these metabolites, aflatoxins 
ultimately transform into nontoxic secretions and toxic products [10, 11].

2.3. The toxification of aflatoxins in liver

Toxification of aflatoxins in liver is mainly divided into acute and chronic toxic effects. Data 
from epidemiological, experimental, and clinical studies have shown that above 6000 mg 
exposure of aflatoxin through digestion will cause acute severe liver damage and subsequent 

Figure 2. The first stage of aflatoxin biosynthesis. The first stage of aflatoxin biosynthesis, including the first (R01) to 
eighth reaction (R08) of biosynthesis, refers from acetyl CoA to hydroxyversicolorone. Abbreviations. MCA, malonyl 
CoA; HAS, hexanoate synthase (also termed fatty acid synthase); PKS, polyketide synthase; NAS, norsolorinic acid (NA) 
synthase; NAR, norsolorinic acid (NA) reductase; AVN, averantin; AVNM, averantin (AVN) monooxygenase; HAVN, 
5′-hydroxyaverantin; HAVNR, 5′-hydroxyaverantin reductase; OVENC, 5′-oxoaverantin (OAVN) cyclase; AVRM, 
averufin (AVR) monooxygenase; NADP, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide-adenine 
dinucleotide phosphate (reduced form); CoA, coenzyme A. Noted: adapted from Yabe and Nakajima [7].
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illness or death. This kind of acute effect is mainly associated with malfunction of the liver 
induced by toxic metabolic products. For chronic toxic effects, chronic exposure of aflatoxins 
can induce DNA damage and produce genotoxicity and carcinogenicity. In the past decades, 
increasing evidence has proved that AFB1 as aflatoxins often induce genic mutations such 
as TP53 and are among the most carcinogenic substances known and the major cancerous 
hepatocarcinoma risk factor.

Figure 3. The second stage of aflatoxin biosynthesis. The second stage of aflatoxin biosynthesis, including the ninth (R09) 
to twelfth reaction (R12) of biosynthesis, refers from hydroxyversicolorone to versicolorin B (VB). Abbreviations. VHAS, 
versiconal hemiacetal acetate (VHA) synthase; VHOHC, versiconal (VHOH) cyclase (also called versicolorin B synthase); 
VHAR, versiconal hemiacetal acetate (VHA) reductase; NADP, nicotinamide adenine dinucleotide phosphate; NADPH, 
nicotinamide-adenine dinucleotide phosphate (reduced form). Noted: adapted from Yabe and Nakajima [7].
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Figure 4. The third stage of aflatoxin biosynthesis. The third stage of aflatoxin biosynthesis, including the 13th (R13) to 
18th reaction (R18) of biosynthesis, refers from versicolorin B (VB) to the formation of aflatoxin B1 (AFB1), aflatoxin B2 
(AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2). Abbreviations. VBD, versicolorin B (VB) desaturase; DMSTSS, 
demethylsterigmatocystin (DMST) synthase system; OMTI, O-methyltransferase I; OMTII, O-methyltransferase II; OAE, 
OrdA enzyme; NADP, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide-adenine dinucleotide 
phosphate (reduced form). Noted: adapted from Yabe and Nakajima [7].
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3. The molecular mechanisms of aflatoxin-induced hepatocarcinoma

As described earlier, the main chronic toxification of aflatoxins is chronic liver damage and 
induced tumorigenesis of hepatocarcinoma. AFB1 has been proved as an I-type chemical car-
cinogen. Mechanisms of AFB1-induced hepatocarcinoma mainly involve in DNA damage 
and repair, the inactivation of tumor suppressor genes and the activation of oncogenes from 
genic mutations, abnormal immunoreaction, and inheritance alterations.

3.1. Aflatoxin-induced DNA damage

Increasing evidence has shown that the carcinogenicity of aflatoxins results from aflatoxin-
induced DNA damage, including the formation of DNA adducts, DNA single strand breaks 
(SSBs) or double strand breaks (DSBs), chromosomal aberration damage (CAD), unscheduled 
DNA synthesis (USDS), abnormal chromatid exchange (ACE), the formation of micronuclei 
and macronuclei, and oxidation DNA damage. Of these DNA damages, AFB1-DNA adducts 

Figure 5. The metabolite of aflatoxins in the liver. Aflatoxins are metabolized via four metabolic pathways: O-dealkylation 
to aflatoxin P1 (AFP1), ketoreduction to aflatoxicol (AFL), epoxidation to AFB1-8,9-epoxide (AFBO, highly toxic, 
mutagenic, and carcinogenic), and hydroxylation to aflatoxin M1 (AFM1, highly toxic), AFP1, aflatoxin Q1 (AFQ1), or 
aflatoxin B2a (AFB2a). Abbreviations. AFM2, aflatoxin M2; AFP2, aflatoxin P2; AFQ2, aflatoxin Q2; AFL-D, aflatoxicol 
dehydrogenase; AFB1-R, aflatoxin B1 reductase. Noted: adapted from Wu and Jezkova [10].
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are the most common damage types and consist of 8,9-dihydro-8-(N7-guanyl)-9-hydroxy–AFB1 
adduct (AFB1-GA) and ring-opened formamidopyrimidine AFB1 adduct (AFB1-FAPYA). The 
formation of AFB1-GA begins from AFB1 covalent binding to DNA and its product 8,9-epox-
ide-AFB1 (AFBE) by CYP450 [12, 13]. This adduct can automatically not only give rise to 

AFB1-FAYPA, which is accumulated using a time-dependence and nonenzyme pathway, but 
also be transferred into AFP1, AFM1, AFQ1, and other products by metabolic enzymes.

Additionally, AFB1 also induces oxidation DNA damage such as 8-oxodeoxyguanosine 
(8-oxyG). These damages induced by aflatoxins, if not timely repaired, can cause subsequent 
repair-resistant adducts and depurination or lead to error-prone DNA repair resulting in 
DSBs, SSBs, USDs, CAD, ACE, and frame shift mutations. Interestingly, the accumulation of 
DNA damages is positively associated with the time and the levels of aflatoxin exposure and 
modifies the risk of hepatocarcinoma through regulating the expression of some genes such 
as a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5) [14], X-ray 
repair complementing 4 (XRCC4) [15], microRNA-4651 [16], and so on (Table 1). For example, 
Huang et al. [14] investigated the association between AFB1-DNA adducts via a hospital-
based case control study and found increasing AFB1-DNA adducts negatively correlated with 
ADAMTS5 expression. It is known that ADAMTS5 may act as a tumor suppressor gene via 
decreasing vascular endothelial growth factor (VEGF) expression and inhibiting tumor angio-
genesis and metastasis [17]. The downregulation of XRCC4 by increasing AFB1-DNA adducts 
decreases repair capacity for SSBs and DSBs and increases risk of tumor suppressor gene TP53 
mutation and tumors [15, 18–22]. These genes progress the tumorigenesis and progression 

of hepatocarcinoma via regulating DNA repair capacity and angiogenesis. Although AFB1-
DNA adducts are mainly produced in liver cells, they are also found in the immune cells and 
may regulate the immune function. Thus, DNA damage may be an important molecular event 
and may play a crucial role in the carcinogenesis of hepatocarcinoma caused by aflatoxins.

3.2. The mutagenesis of aflatoxins

Aflatoxin-induced DNA adducts can produce depurination, DSBs, the substitution of DNA 
bases, and frame shift mutations. In the past decades, the in vivo and in vitro studies have 

shown that the mutagenesis of aflatoxins can induce the mutation from GC to TA. As previ-
ously shown, mispairing of the aflatoxin-DNA adducts can cause both transition and trans-
version mutations [25–27]. In an in vitro non-sense analysis, Foster et al. found that the action 
form of AFB1 (namely AFBE) can induce more than 90% of GC to TA mutation [28]. This 

Gene Expression change Role of change in the hepatocarcinoma carcinogenesis Ref

ADAMTS5 Down Angiogenesis, metastasis, prognosis [14]

XRCC4 Down Low DNA repair capacity, gene mutation [15]

MicroRNA-4651 Up Angiogenesis, metastasis, prognosis [16]

MicroRNA-24 Up Angiogenesis, metastasis, prognosis [23]

MicroRNA-429 Up Angiogenesis, metastasis, prognosis [24]

Table 1. The change of gene expression related to DNA damage induced by aflatoxins.
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mutation was further proved to locate in the GC-rich regions via the plasmid system identify-
ing mutational target enzyme and named as hot-spot regions for aflatoxin-induced mutations 
[29–31]. Results from quantitative analyses based on the in vitro cell model, which was trans-
fected by pS189 (a shuttle vector having mutative targets), also showed that more than 90% of 
mutative spectra caused by aflatoxins was GC to TA (about 50% of mutations) and GG to TC 
transversion (about 30% of mutations) [32]. It has been proved that the accumulation of these 
transversions will result in the mutations of some important genes such as TP53 and Ras and 
promote hepatocarcinogenesis [31, 33].

3.3. The abnormality of tumor suppressor genes induced by aflatoxins

Studies in vivo and in vitro have examined the abnormality of tumor suppressor genes by 
aflatoxin exposure (Table 2). Among these known genes, the abnormality of TP53 induced 
by aflatoxins has been proved to be an important molecule change [34, 35]. In high aflatoxin-
exposure areas, the mutations of TP53 gene, especially hot-spot mutation at codon 249, are 
present among more than 40% of patients with AFB1-related hepatocarcinoma, whereas 
this kind of mutation is very rare among cases with null or low AFB1 exposure [14, 36, 37]. 

Therefore, the mutation at codon 249 of TP53 gene has been defined as a molecular symbol for 
hepatocarcinoma caused by AFB1 exposure. Results from clinical sample and experimental 
studies further display that consistent exposure of aflatoxins may result in the accumulation 
of TP53 mutant protein and abnormal DNA damage repair, apoptosis, and immunoreaction 
[38]. Other genes such as bcl2, p27, p16, and p21 are found to produce different expression 
or abnormal structural change under the conditions of aflatoxin expression (Table 2). Taken 
together, inactivation of tumor suppressor genes from mutation and increasing mutant 
expression may be a crucial step of malignant transformation for liver cells.

3.4. The abnormality of oncogenes induced by aflatoxins

In the past decades, the abnormality of oncogenes induced by aflatoxins has mainly been 
focused on c-myc and ras genes, involving in the activation, expression, and mutation of 
proto-oncogenes (Table 3). For example, Tashiro et al. investigated the effects of AFB1 expo-
sure on oncogenes based on rat model with AFB1-induced hepatomas and found that the 
expression of both c-myc and c-Ha-ras was upregulated in all the tumors [65]. They also 

observed c-Ha-ras amplification and rearrangement [65]. In Fischer rat models with AFB1- 
and AFG1-induced liver tumors, Sinha et al. observed that aflatoxins can induce activation 
of N-ras and spot mutation of G to A at codon 12 of Ki-ras [66]. This type of activation and 

mutation will increase in the tissues with liver cancer than those with noncancers [66–69]. 

Results from in vitro studies have further proved that aflatoxins can induce gene mutations of 
oncogenes [70]. Together, these data suggest that aflatoxins may activate proto-oncogenes by 
inducing gene mutations and promote the carcinogenesis of hepatocarcinoma.

3.5. The interaction of aflatoxins and hepatitis B virus promoting 
hepatocarcinogenesis

The interaction of aflatoxins and hepatitis B virus (HBV) has been proved in the carcinogenesis 
of hepatocarcinoma by molecular epidemiological and clinicopathological studies and sys-
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Gene Study design Change Significance Ref

TP53 Mice model with HNP Expression ↑ DNA damage ↑ [39]

bcl2 Mice model with HNP Expression ↓ DNA damage ↑ [39]

p27 Hepatocytes in vitro Expression ↓ DNA damage ↑ [40]

p21 Hepatocytes in vitro Expression ↓ DNA damage ↑ [40]

TP53 HCCs (n = 223) Expression ↑, multiplot mutation Carcinogenesis [41]

TP53 HCCs (n = 124) Mutation at codon 249: 60% Carcinogenesis [42]

H2AX HCC cells in vitro Phosphorylation Carcinogenesis [43]

BP1 HCC cells in vitro Phosphorylation Carcinogenesis [43]

TP53 HCCs (n = 52) Mutation at codon 249: 50% Carcinogenesis [44]

p16 HCCs (n = 40) Methylation Carcinogenesis [45]

p53 HCCs (n = 40) Multiplot mutation Carcinogenesis [45]

p53 AFB1-induced mutation 
in vitro

Multiplot mutation at CpG Carcinogenesis [46]

TP53 HCCs (n = 64) plus a 

meta-analysis
Mutation at codon 249: 36%, protein 
accumulation: 50%

Carcinogenesis [47]

TP53 Mice model with HNP Multiplot mutation Carcinogenesis [48]

TP53 HCC cells in vitro AFB1-induced mutation at codon 249 
promoting IGF-II expression

Carcinogenesis [49]

TP53 Atcc-Ccl13 in vitro Mutation at codon 249 Carcinogenesis [50]

TP53 HCCs (n = 36) Mutation at codon 249 Carcinogenesis [51]

TP53 Mice model Mutation at codon 249 and 346, mutant 
protein increasing

Carcinogenesis [52–57]

TP53 HCCs (n = 60) Mutation at codon 249: 69% Carcinogenesis [58, 59]

TP53 Hepatocytes in vitro Multiplot mutation Carcinogenesis [60]

TP53 HCCs (n = 110) Mutation at codon 249: 69% DNA damage, 
carcinogenesis

[61]

TP53 HCCs (n = 15) Mutation at codon 249 and 254 Carcinogenesis [62]

TP53 HCC cells in vitro AFB1-induced Mutation at codon 249 Carcinogenesis [63]

TP53 HCCs (n = 18) Mutation at codon 249: 53% Carcinogenesis [64]

Abbreviations. HNP, hepatic neoplasms; HCC, hepatocarcinoma.

Table 2. The change information of tumor suppressor genes induced by aflatoxins in hepatic cells and hepatocarcinoma cells.
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tematically reviewed by several studies [73–75]. In brief, the first clinicopathological evidence 
of aflatoxins interacting with HBV was provided by Yeh et al. [76]. Through a case-control 
study design conducted in Guangxi Area, they found that these HBV-positive individuals 
with high AFB1 exposure consumption featured 10-times the mortality rate compared with 
those with low exposure consumption. Results from multivariable interactive analyses have 
further convinced that AFB1 multiplicatively interacted with HBV status for promoting hepa-
tocarcinoma risk [77–80]. For example, Williams et al. reported that the risk of developing 
hepatocarcinoma was 6.37 for aflatoxin exposure, 11.3 for HBV infection, and 73.0 for the com-
bination of aflatoxin and HBV [77]. The following several molecular epidemiological studies 
with large-size samples from areas with high aflatoxin exposure and high HBV infection in 
China showed remarkably multiplicative effect for hepatocarcinoma risk (multiplicative inter-
action: 63.2 

(both positive)
 > 1.9 (AFB1 positive) × 9.5 (HBV positive) [78–80].

This interaction of two hepatocarcinogenic causes has been proved in the transgenic mice 
models with overexpressing HBV large envelope polypeptide [81]. Results from this study 
exhibited that animals will produce more rapid and extensive hepatic dysplasia and hepato-
carcinoma under the conditions with aflatoxin consumption [81]. Similar findings have also 
shown in the studies based on woodchuck and duck models [82–84].

The aflatoxins interacting with HBV infection promoting hepatocarcinoma development 
mechanically involve in the following aspects. First, HBV infection directly or indirectly 
increases the sensitivity of hepatocytes on the toxification of aflatoxins. Evidence from 
observation studies have displayed that HBV-positive carriers have more amount of afla-
toxin adducts than those with negative HBV status, although they are from the same high 
aflatoxin exposure area [85, 86]. The active product of aflatoxin AFBE is found to signifi-
cantly increase the risk of viral DNA integrating into damaged DNA strand [87]. This 

promotes malignant transformation of damaged hepatocytes by aflatoxins. Second, HBV 

Gene Study design Change Significance Ref

N-ras HCCs (n = 36) Mutation at codon 61 Carcinogenesis [51]

c-myc Mice model with HNP Expression ↑, amplification, rearrangement Carcinogenesis [65]

c-Ha-ras Mice model with HNP Expression ↑, amplification, rearrangement Carcinogenesis [65]

Ki-ras Mice model with HNP Activation Carcinogenesis [69]

N-ras Mice model with HNP Activation Carcinogenesis [66]

Ki-ras Mice model with HNP Mutation at codon 12 Carcinogenesis [66]

N-ras Mice model with HCC Activation Carcinogenesis [67]

Ki-ras Mice model with HCC Activation Carcinogenesis [67]

c-Ha-ras Mice model with HNP Mutation at codon 61: 40–60% Carcinogenesis [71, 72]

Abbreviations. HNP, hepatic neoplasms; HCC, hepatocarcinoma.

Table 3. The change information of oncogenes induced by aflatoxins.
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infection increases the mutation frequency at codon 249 of TP53 gene and coordinates with 
aflatoxins for abrogating the normal functions of TP53 (such as the control of cell cycle, 
DNA damage repair, and cell apoptosis), which contributes to multisteps of hepatic carci-
nogenesis [64, 88]. Third, the HBV X gene–expressing protein inhibits base excision repair 
potential and results in an increasing accumulation of aflatoxin-DNA adducts [89]. Finally, 
HBV infections can cause hepatocytic necrosis, inflammatory proliferation, and oxygen/
nitrogen active products, which may increase the likelihood of aflatoxin-induced mutations 
and the cellular clonal expansion containing mutations [90–92].

3.6. The interaction of aflatoxins and inheritance alterations promoting 
hepatocarcinogenesis

Increasing evidence has exhibited that the genetic alterations in DNA repair genes increase 
the amount of AFB1-DNA adducts and the frequency of hot-spot mutation at codon 249 of 
TP53 gene and may promote hepatic toxification of aflatoxins [1, 19, 20, 22, 37, 93–98]. Joint 
analyses based on meta-analyses further showed this kind of toxic effects (Table 4) [1, 22]. The 

genetic variants in other genes, such as CYP450, glutathione S-transferase T1 (GSTT1), gluta-
thione S-transferase M1 (GSTM1), and microsomal epoxide hydrolase (HEHY), also display 
similar modificative effects on aflatoxin-induced hepatocarcinoma [98–101]. Interestingly, the 
multiplicatively interactive effects between aflatoxins and genetic alterations in these genes 
have been identified in the risk elucidation of hepatocarcinoma related to aflatoxins [22]. 

Taken together, genetic deficiency in the DNA repair and detoxification capacity may play a 
vital role in the carcinogenetic process of aflatoxin-induced hepatocarcinoma.

3.7. The aflatoxin-caused immunosuppression promoting hepatocarcinogenesis

Increasing evidence from in vitro and in vivo studies has proved that the immunosuppres-
sion induced by aflatoxins plays an important role in the carcinogenesis of hepatocarcinoma. 
Several known mechanisms may involve in this progression step. First, aflatoxins can signifi-
cantly suppress the functions of macrophages via affecting the expression and secretions of 
cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-2, IL-3, IL-6, and reac-
tive intermediates (including nitric oxide, hydrogen peroxide, and superoxide anion) [102, 
103]. The suppression of macrophages by aflatoxins may be also correlated with the arrest in 
the G1/G0 phase [104] and altered expression of CD14 (a cell surface protein functionally regu-
lating immunoreaction) [105]. This suppression may result in the dysregulation of the immune 

response and homeostasis, which contributes to the accumulation of abnormal cells with DNA 
damage and altered genome induced by aflatoxins, and ultimately progresses tumorigenesis. 
Second, aflatoxin exposure can decrease the secretion of antibody such as IgA [106]. For exam-
ple, Turner et al. investigated effects of aflatoxin exposure on antibody production based on 
a large molecular epidemiological study [106]. In their study, they tested the levels of saliva 
secretory IgA (sIgA) in Gambian children (n = 472) with different degree exposure of aflatoxins 
and found that these individuals with high aflatoxin exposure featured lower level of sIgA in 
their saliva compared to those without high exposure (50.4 vs. 70.2 μg/mg protein). Finally, 
aflatoxins may alter T-cell functions (including decreased T-cell populations and suppressed 
CD4+ T-cell function) and increase individuals’ susceptibility to other carcinogens [77, 107]. 
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Altogether, the data available to date make it clear that aflatoxins can exert an immunosup-
pressive effect via different pathways. However, more detailed mechanisms by which this 
effect is mediated remain unknown.

4. Limitation and further direction

In the past decades, the advance in pathological mechanisms of aflatoxin-related hepatocarci-
noma held great promise. However, we are still far from a comprehensive view of this kind of 
potentials. First, the detailed metabolic step and corresponding enzymes, especially the first-stage 

Gene RS# Genotype TP53M DNA adducts

% Risk P Mean P

XRCC1 rs25487 CC 46.51 Reference 3.276

CT 45.25 2.419 3.371 × 10−11 3.264 0.899

TT 8.24 5.028 6.651 × 10−6 3.640 0.026

XRCC3 rs861539 GG 32.17 Reference 2.990

GA 43.55 1.380 0.018 3.216 0.025

AA 24.28 1.524 0.011 3.897 4.962 × 10−14

XRCC7 rs7003908 AA 21.24 Reference 2.879

AC 46.06 1.883 1.372 × 10−5 3.347 1.663 × 10−5

CC 32.71 2.089 4.368 × 10−6 3.550 1.751 × 10−8

XRCC4 rs28383151 GG 67.03 Reference 3.308

GA 21.68 1.688 0.001 3.405 0.069

AA 11.29 3.829 7.387 × 10−6 3.721 2.867×10−4

XRCC4 rs3734091 GG 72.31 Reference 3.229

GT 17.56 2.799 9.191 × 10−7 3.439 0.095

TT 10.13 5.104 3.826 × 10−6 3.654 0.005

XPD rs13181 TT 34.41 Reference 2.926

TG 41.85 1.458 0.005 3.253 0.011

GG 23.75 1.744 0.001 4.062 4.265 × 10−6

XPC rs2228001 TT 34.05 Reference 3.083

TG 48.30 1.500 0.002 3.332 0.001

GG 17.65 1.818 0.001 3.666 3.404 × 10−22

Noted: Adapted from Refs. [13] and [84]. Abbreviations. TP53M, hot-spot mutation at codon 249 of TP53 gene; RS#, the 
number of polymorphism.

Table 4. Polymorphisms in DNA repair genes and HCC risk.
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reaction and toxicity mechanisms, have not been elucidated. Second, although the activation of 
aflatoxins is found to act as a crucial step, it is unclear how the tumorigenesis of hepatocarci-
noma is triggered by aflatoxins. Third, the vast literature for aflatoxin-induced hepatocarcinoma 
mainly focuses on the studies on AFB1, and some important information may have been lost. 
Fourth, in spite of some evidence of AFB1 inducing abnormal immunoreaction and interacting 
with hepatitis virus and genetic factors, they are at the primary stage and still far from elucida-
tion. Therefore, the detailed toxicity mechanisms of aflatoxins and corresponding carcinogen-
esis mechanism will greatly benefit our understanding of aflatoxin-related hepatocarcinoma.

5. Summary

It has been shown that increasing exposure of aflatoxins may promote the carcinogenesis of 
hepatocarcinoma. Molecular mechanisms of aflatoxin-induced hepatocarcinoma involve in 
DNA damage, gene mutations, the inactivation of such tumor suppressor gene as TP53, the acti-
vation of proto-oncogenes, abnormal immunoreaction, and the interaction between aflatoxins 
and other carcinogens such as HBV. However, an understanding of aflatoxin-induced hepato-
carcinoma is far from complete, and further research in this field is looked forward to elucidating 
more detailed mechanisms responsible for hepatocarcinoma related to aflatoxins in the future.
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