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Abstract

Semi-analytical methods are commonly used to solve contact problems. These methods
require the discretization of the domain into a mesh of pressure elements. In general, it
can be said that their accuracy increases as the pressure element mesh is refined. How-
ever, the refinement of the pressure element mesh also implies an increase in their
computational cost. So, in the great majority of the cases, a commitment between accu-
racy and computational cost must be achieved. In this work, a new approach is
presented, whose main purpose is to improve the efficiency of the semi-analytical
methods that are used to solve contact problems. To do so, an adaptive refinement of
the pressure element mesh is implemented. This strategy allows for a reduction of the
computational cost of the method, while its accuracy remains unaffected.

Keywords: contact analysis, semi-analytical methods, adaptive refinement

1. Introduction

The contact stress analysis plays an important role during the design process of several

mechanical elements like bearings, gears, etc. In order to accomplish a contact analysis, the

so-called contact problem must be solved to obtain the following relevant information:

i. The contact area, which involves the determination of the size, shape, and location of the

true contact area in each one of the contacting bodies.

ii. The contact stresses, which involve the determination of the contact pressure distribution

on the surface of the bodies and the stress distribution underneath the surfaces.

iii. The deformation of the bodies produced by the contact pressure.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Different approaches have been used to solve contact problems, which can be classified into

three groups: numerical, analytical, and semi-analytical methods. Compared to the numerical

methods, it can be said that the analytical methods are more efficient in terms of computational

cost, but they have severe applicability limitations imposed by the hypotheses of the underly-

ing theory. On the other hand, the numerical methods can overcome these limitations, but at a

much higher computational cost.

The semi-analytical methods (SAMs) can be considered as an intermediate approach: they are

potentially faster than the numerical methods, while they allow overcoming some of the

limitations of the analytical methods. SAMs are usually based on the discretization of the

potential contact area into a mesh of n pressure elements, with a uniform pressure distribution

assumed to be acting over each one of them. Influence coefficients are used to relate the

pressure applied over each pressure element with the displacements that this pressure pro-

duces at the centroid of the other elements of the mesh. Using these influence coefficients, the

solution to the contact problem can be numerically found in terms of the contact pressure

distribution that satisfies the contact conditions.

As usual, in numerical methods based on the discretization of the domain, the election of the

number of pressure elements in which the domain is divided involves a commitment between

accuracy and computational cost. Kalker [1] stated that the computational cost of these semi-

analytical methods can be defined by the number of influence coefficients that need to be

calculated to solve the contact problem (that, in general, is proportional to n
2). He also argued

that the accuracy of the solution to the contact problem, in terms of contact area and contact

pressure distribution, depends on the refinement of the pressure element mesh, especially in

those regions close to the border of the contact area. Consequently, an improvement of the

accuracy of the results necessarily implies an increment of the computational cost.

When both shape and location of the true contact area are known in advance, the efficiency

of the method can be maximized by discretizing an area similar to the true contact area. But

when the true contact area is unknown, it is difficult to optimize the efficiency of the method,

since the whole potential contact area must be discretized to consider any possible shape and

location of the true contact area. In those cases, it is common to use a uniform pressure element

mesh for the whole domain, being more or less dense depending on the desired accuracy and

on the capabilities of the computer used to solve the contact problem. In consequence, there

could be many pressure elements in the discretization out of the true contact area, what causes

a loss in the efficiency of the method.

These difficulties could be partially overcome using adaptive mesh refinement strategies.

These techniques have been previously used to improve the efficiency of numerical methods

based in the discretization of the domain, especially in FEM procedures [2]. However, no

previous use of adaptive refinement has been found in the literature for the solution of contact

problems using semi-analytical methods.

In this work, an approach to solve frictionless elastic contact problems is presented, whose main

purpose is to improve the efficiency of the semi-analytical methods that are used to solve contact

problems. To do so, an adaptive refinement of the pressure element mesh is implemented, which
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is based on the discrete rate of change of any magnitude that is related with the solution of the

contact problem. This strategy allows for a reduction of the computational cost of the method,

while its accuracy remains unaffected. The theoretical background and the computational

implementation of the method are described, and its performance is illustrated with numerical

examples.

2. Theoretical background

This section describes the theoretical background under which the proposed approach to solve

frictionless elastic contact problems is developed. The concept of pressure element is described,

as well as those considerations required to solve contact problems between bodies of finite

dimensions. Finally, the quadtree decomposition of the domain is introduced, which is a useful

strategy to perform adaptive mesh refinement.

2.1. Pressure elements and surface normal deflection in an elastic half-space

Consider a body that, because of its main features, can be approached to an elastic half-space,

as the one shown in Figure 1a. A Cartesian coordinate system is defined over the surface of

this body, which X and Y axes define a plane that is coincident with its surface, and the Z axis

points inward him. A normal pressure distribution pð Þ is applied over the surface of the body,

acting over an area that is denoted by S.

Now consider a generic point C within the area S, whose position is defined by the vector

r
0 x; y; zð Þ, being z ¼ 0. Consider another point H in the surface of the body, whose position is

defined by the vector r x; y; zð Þ, being z ¼ 0. The normal elastic deflection produced at a point H

due to a normal pressure distribution applied over the area S can be determined by the

superposition of the Boussinesq relation [3]:

ω rð Þ ¼
1� ν

2πG

ð
S

p r
0ð Þ

r � r
0j j
dS (1)

where ν is the Poisson coefficient andG is the shear modulus of the material of the considered body.

Figure 1. Pressure distributions applied over an elastic half-space.
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Obtaining a generic closed-form solution for Eq. (1) is not possible, since it depends on the

shape of the area S and on the considered pressure distribution. However, several closed-form

solutions can be found in the literature for certain pressure distributions applied over areas

with a specific shape (such as triangles, rectangles, hexagons, etc.).

Let’s focus on the closed-form solution for Eq. (1) that Love [4] obtained for uniform pressure

distributions acting over areas with rectangular shape, as the one shown in Figure 1b. From

now on, this combination of shape and pressure distribution will be called pressure element,

and will be denoted by Δj. The area of the pressure element shown in Figure 1b is Aj ¼ 2a� 2b,

and the uniform pressure distribution that acts over this area is p r
0ð Þ ¼ pj. Under these condi-

tions, the closed-form solution for Eq. (1) is

ω rð Þ ¼ f j rð Þ∙pj (2)

where f j rð Þ is the influence coefficient of pressure element ∆j over the point H, which can be

analytically determined as

f j rð Þ ¼
1� ν

2πG
C∙ln

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ C2
p

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þD2
p

" #

þ A∙ln
Cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ C2
p

Dþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þD2
p

" #

þD∙ln
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þD2
p

Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þD2
p

" #(

þB∙ln
Dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þD2
p

Cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þ C2
p

" #)

(3)

where coefficients A, B, C, and D are calculated as

A ¼ dy þ b C ¼ dx þ a

B ¼ dy � b D ¼ dx � a

These pressure elements can be useful to determine the normal displacement produced at the

surface of a body due to a non-uniform pressure distribution applied over a complex area. To

illustrate this methodology, consider a complex area S, as the one shown in Figure 2a, over

which an arbitrary pressure distribution is acting. To determine the displacement field produced

by this pressure distribution, the area S is discretized into a mesh of n rectangular pressure

elements Δj, as shown in Figure 2b. Then, the arbitrary pressure distribution is approached by

assigning a uniform pressure value pj to each pressure element, as shown in Figure 1c.

Figure 2. Normal deflection produced by a complex pressure distribution.

Contact and Fracture Mechanics62



Finally, the displacement at any point of the surface of the body can be determined by

superposition of the displacements produced at this point by uniform pressures acting over

each pressure element of the mesh as

ω rð Þ ¼
X

n

j¼1

pj∙f j rð Þ
h i

(4)

This methodology can be applied with different types of pressure elements, having different

shapes and pressure distributions acting over them. However, using rectangular pressure

elements has some advantages, which are discussed in [5].

2.2. Semi-analytical method to solve frictionless elastic contact problems

The solutions exposed in the previous section can be used to obtain the pressure distribution

that is produced when two bodies are pressed together in the absence of friction. For such a

purpose, it is necessary that the two bodies can be approached to elastic half-spaces in the

vicinity of the area in which the contact between them is produced.

Consider two bodies 1 and 2 in its undeformed contact position, contacting at the initial point

of contact OL (Figure 3a). At this point, a common tangent plane Π is defined, which is

assumed to be so close to the surface of the bodies in the vicinity of the contact area that the

deformation of the surfaces of both bodies can be referred to it in the linear small strain theory

of elasticity.

A Cartesian coordinate system is defined with origin at point OL, being the local axis ZL

normal to the plane Π and pointing inward the body 2. Consider a generic point Q in the plane

Π, whose position is defined by the vector r xL; yL; zL
� �

, being zL ¼ 0. The gap between the two

bodies, measured along ZL axis, is denoted by the function B rð Þ, which in the first instance is

assumed to be smooth and continuous.

The two bodies are pressed together in the absence of friction by the effect of the force FT
(Figure 3b), causing a normal approach between them that is denoted by δ. Since penetration is

physically inadmissible, a contact pressure distribution p rð Þ is generated in the true contact

area S that deforms the contacting bodies. In this way, elastic normal deflections are produced

Figure 3. Contact between two bodies: (a) undeformed position and (b) deformed position.
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in the surfaces of the bodies 1 and 2, which are denoted by ω
1ð Þ rð Þ and ω

2ð Þ rð Þ, respectively. The

total normal deflection is denoted by ω rð Þ and can be calculated as

ω rð Þ ¼ ω
1ð Þ rð Þ þ ω

2ð Þ rð Þ (5)

The essence of the resulting contact problem is to determine the pressure distribution that

fulfills the contact conditions, both inside and outside the contact area, whose geometry and

size are unknown

p rð Þ > 0 and B rð Þ þ ω rð Þ � δ ¼ 0 inside S

p rð Þ ¼ 0 and B rð Þ þ ω rð Þ � δ > 0 outside S
(6)

Kalker [5] demonstrated that the solution to this contact problem can be found minimizing the

total complementary energy V∗ð Þ under the condition that the contact pressure is equal or

greater than zero in all the domain of the problem. The total complementary energy is defined

as the sum of the internal complementary energy of the stressed bodies and the external

complementary energy as

V∗ ¼
1

2

ð

S

p rð Þ∙ω rð Þ∙dSþ

ð

S

p rð Þ∙ B rð Þ � δ½ �∙dS (7)

To enable the numerical solution, the potential contact area is discretized into a set of n

pressure elements Δj (described in Section 2.1), with a uniform pressure distribution assumed

to be acting over each one of them, as shown in Figure 4. The position of the centroid of each

pressure element Δj is denoted by vector rj.

Under a discretized domain, the total complementary energy may be expressed as

V∗ ¼
1

2

X

n

i¼1

pi

ð

Ai

ω rð Þ∙dAi

� �

þ
X

n

i¼1

pi

ð

Ai

B rð Þ � δ½ �∙dAi

� �

(8)

Taking into account Eq. (4), Eq. (5) may be rewritten as

Figure 4. Discretization of the potential contact area into a pressure element mesh.
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ω rð Þ ¼
X

n

j¼1

pj∙f
1ð Þ
j rð Þ

h i

þ
X

n

j¼1

pj∙f
2ð Þ
j rð Þ

h i

¼
X

n

j¼1

pj∙tj rð Þ
h i

(9)

where tj rð Þ is defined as the cumulated influence coefficient of pressure element Δj over point Q

tj rð Þ ¼ f
1ð Þ
j rð Þ þ f

2ð Þ
j rð Þ (10)

Considering Eq. (9), Eq. (8) can be rewritten as:

V∗ ¼
1

2

X

n

i¼1

pi∙
X

n

j¼1

pj

ð

Ai

tj rð Þ∙dAi

2

4

3

5þ
X

n

i¼1

pi

ð

Ai

B rð Þ � δ½ �∙dAi

� �

(11)

To reduce the computational cost of the calculations, two assumptions are made:

i. The distance between the surfaces of the bodies B rð Þ is assumed to be constant in all the

pressure element Δi, and equal to the distance between the surface of the two bodies at its

centroid, in such a way that B rð Þ ¼ B rið Þ ¼ Bi.

ii. The cumulated influence coefficient tj rð Þ is assumed to be constant over all the pressure

element Δi, and equal to the value in its centroid, in such a way that tj rð Þ ¼ tj rið Þ ¼ tj, i.

The coefficient tj, i can be defined as the cumulated influence coefficient of element Δj

over the centroid of element Δi, and it may be expressed as:

tj, i ¼ f
1ð Þ
j, i þ f

2ð Þ
j, i

where f
1ð Þ
j, i and f

2ð Þ
j, i are the influence coefficients of element Δj over the centroid of element Δi,

which can be determined for each contacting body using Eq. (3).

Under these assumptions, the total complementary energy can be expressed as

V∗ ¼
1

2

X

n

i¼1

X

n

j¼1

pi∙pj∙tj, i∙Ai þ
X

n

i¼1

pi∙ Bi � δ½ �∙Ai (12)

The solution to the contact problem, in terms of contact pressure distribution, can be found by

minimizing Eq. (12) under the following restrictions:

∂V∗

∂pi
¼

X

n

j¼1

pj∙tj, i∙Ai þ Bi � δ½ �∙Ai ¼ 0 if pi > 0

∂V∗

∂pi
¼

X

n

j¼1

pj∙tj, i∙Ai þ Bi � δ½ �∙Ai ≥ 0 if pi ¼ 0

(13)

The true contact area is then defined, within the precision of the mesh size, by the boundary

between the elements with zero and non-zero pressures. The total contact load FTð Þ can be

calculated as
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FT ¼
Xn

i¼1

pi∙Ai (14)

2.3. Contact between bodies of finite dimensions

The method described in the previous section is based on the utilization of influence coeffi-

cients that relate the contact pressures with the surface displacements. These influence coeffi-

cients can be determined in several ways, but in the great majority of the cases, they are

calculated using the superposition of the Boussinesq relation (described in Section 2.1).

Because of the hypotheses under which this relation is established, influence coefficients

determined using the Boussinesq relation should only be used to solve contact problems

between contact bodies that can be approached to half-spaces. Otherwise, the application of

the described method can lead to erroneous solutions of the contact problem.

However, the influence coefficients determined using the Boussinesq relation can be corrected, so

they can be used to solve contact problems between bodies that a priori cannot be approached to

elastic half-spaces. Among the correction methods that can be found in the literature, a correction

method to consider contact bodies of finite dimensions is described in this section.

In this correction method, the finiteness of the contacting bodies is characterized by stress-free

surfaces that are perpendicular to the length direction of the bodies, as illustrated in Figure 5.

To leave those areas of the half-space that coincide with these surfaces free of normal and

shear stresses, the correction method proposed by de Mul [6] is used, which consist in modi-

fying the calculation of the influence coefficients f j, i for each body with finite dimensions in

the following way:

f j, i ¼ f jo, i þ 1:29�
1

1� ν
∙ 0:08� 0:5∙νð Þ

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Ψ

∙

Xn

m¼1

f jm, i (15)

where f j0, i is the influence coefficient of the original pressure element Δjo, Ψ is a correction

factor proposed by Guilbault [7], and f jm, i are the influence coefficients of the pressure ele-

ments Δjm, that are mirrored instances of the element Δjo respect to the planes that coincide

with the n free-stress surfaces of the body.

This method involves the calculation of additional influence coefficients of the mirrored pres-

sure elements, and hence the computational cost of the method is multiplied by nþ 1ð Þ, being n

the number of finite dimensions taken into account in the problem.

2.4. Quadtree decomposition of the domain

According to Samet [8], the basic concept of the quadtree is to enclose the domain of the

problem Γð Þ into a containing cell, usually a square, which is denoted as the root of the

quadtree, as shown in Figure 6a. This cell is then subdivided into four sons of the same size

(Figure 6b), one in each direction: North-West (NW), Nord-East (NE), South-West (SW), and

South-East (SE).
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Each one of these cells is subdivided recursively until a stopping criterion is reached, which may

be based upon the local geometry of the domain or in user-defined parameters (Figure 6c and d).

The information related to the quadtree decomposition of the domain is stored in a hierarchical

tree structure, as shown in Figure 6e. For every cell, references to its ancestor and sons are

stored. This kind of structure eases the performance of several operations, such as the neighbor

finding in a defined direction, which will play an important role in the proposed method.

Each corner of a cell is called vertex. The level of a cell j in the structure is denoted by Lj, and

represents the number of divisions performed from the root of the quadtree. According to this

definition, Lj is also related to the relative size of the cell inside the quadtree structure and the

degree of mesh refinement that this size represents. Given the size of the root cell of the quadtree,

the size of any cell can be determined if its degree of refinement Lj is known. The root cell of the

quadtree is usually denoted by level 0. Any cell that is not subdivided anymore is a leaf cell

(displayed in gray in Figure 6e), while subdivided cells are referred to as non-leaf cells.

Figure 5. Contact between bodies of finite dimensions.

Figure 6. Example of a quadtree decomposition of the domain.
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3. Computational approach to solve frictionless elastic contact problems

using adaptive mesh refinement

In this section, the major topics of the computational implementation of the semi-analytical

method to solve frictionless elastic contact problems described in Section 2.2 are discussed. As

it has been said before, this method is based on the discretization of the potential contact area

Γð Þ into a mesh of pressure elements. The potential contact area is defined as the Boolean

intersection of the projection of the bodies on the plane Π, as shown in Figure 7.

In the classical approach, the potential contact area is discretized using a uniform mesh of

pressure elements. In contrast, to improve the efficiency of the method, adaptive mesh refine-

ment is implemented in this approach. To do so, a quadtree decomposition (described in

Section 2.4) of the potential contact area is performed, where all the leaf cells of the quadtree

are considered pressure elements. The use of a quadtree offers two interesting features to this

implementation. In first place, the recursive division of the cells provides a robust local mesh

refinement strategy. In second place, transverse operations such as neighbor finding algo-

rithms are computationally efficient and easy to implement.

The main algorithm of the approach to solve contact problems using adaptive mesh refinement

is shown in Figure 8. The following inputs are required by the algorithm:

i. The geometry and position of the contact surfaces in undeformed contact position.

ii. The initial point of contact OLð Þ and a vector defining the contact normal.

iii. The magnitude of the contact force FTð Þ.

iv. The initial level of uniform mesh density Lunið Þ, which is a parameter that describes the

size of the elements of the initial uniform pressure element mesh.

The algorithm starts determining the common tangent plane Π, where a local Cartesian

coordinate system is defined, being the ZL axis normal to the plane Π (step A1). The

Figure 7. Definition of the potential contact area Γ:
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boundaries of the contacting bodies are normally projected onto the plane Π to determine the

potential contact area Γ (step A2).

The potential contact area is enclosed by the root cell of a quadtree, which is recursively

subdivided until the desired initial level of uniform mesh density Luni is reached for all the

cells of the quadtree (stepA3). All leaf cells of the quadtree are considered pressure elements Δi

for the initial iteration of the algorithm, which is performed using a uniform pressure element

mesh. All the elements are marked with the flag Λi ¼ TRUE, indicating that their properties

(associated area Ai, normal gap Bi, contact pressure pi, and cumulated influence coefficients tj, i)

are not computed yet.

To maximize the efficiency of the proposed approach, it is important to minimize the number

of pressure elements located outside of the potential contact area. This can be achieved by

Figure 8. Main algorithm of the proposed approach and algorithm to determine elements to split.
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ensuring that the potential contact area is enclosed by a root cell of the quadtree coincident

with the minimum bounding rectangle (MBR), defined as the minimum rectangle that contains

every point in the region [9].

Then, an iterative process starts whose first step is the determination of the normal gap Bi for

all the pressure elements (step A4) where Λi ¼ TRUE. The cumulated influence coefficients tj, i

of those elements are also determined (step A5), using Eq. (3). Finally, the contact problem is

solved using Eq. (13) (step A6), in the way indicated in [5], obtaining a contact pressure value

pi for each element Δi of the discretization.

The flagΛi is defined as FALSE for all the elements present in the discretization, indicating that

the properties of these elements have already been computed.

At this point, the adaptive mesh refinement is performed. For such a purpose, the algorithm

that determines the elements that must be split (that is described in section 3.1) is called (step

A7), which returns an array with the indexes of these elements. Then, the selected elements are

split (step A8) and the quadtree data structure is updated with the information of the new

elements, which are marked with the flag Λi ¼ TRUE, indicating that their properties are not

computed yet. If no new elements are created, the iterative process finishes and the contact

results are displayed (step A9). In contrast, if new elements are created, the iterative process

starts again (step A4), and it is repeated until no new elements are created.

The main advantage of this implementation is that only the normal gap and the influence

coefficients related to the new elements are computed for each iteration, decreasing the global

computational cost of the method. The number of influence coefficients calculated in the

proposed approach Nf

� �

can be determined afterwards using the following equation:

Nf ¼
X

t

i¼1

2∙n ið Þ∙nnew ið Þ � n2new ið Þ

h i

(16)

where t is the number of iterations performed by the algorithm, n ið Þ is the number of elements

in iteration i, and nnew ið Þ is the number of new elements in iteration i.

3.1. Algorithm to determine elements to split

An adaptive mesh refinement may be based upon several criteria. In this work, the rate of

change of a given physical magnitude (denoted by λ) related with the solution of the contact

problem is used to perform adaptive refinement of the pressure element mesh. Since the

proposed approach works under a discretized domain, each pressure element Δi will have an

associated value λi of the observed physical magnitude, and in consequence, a discrete rate of

change wj, i of λ can be established between an element Δi and any of its neighbors Δj as

wj, i ¼
λj � λi

�

�

�

�

max λj

�

�

�

�

; λij j
� � (17)

If the discrete rate of change wj, i between a pressure element Δi and any of its neighbors Δj is

higher than an arbitrarily defined value wmax (representing the maximum allowed rate of
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change of the observed physical magnitude), then the pressure element Δi is marked as a

candidate to be split.

However, in some situations, the rate of change of λ is so high that the condition wj, i < wmax

cannot be reached, and the refinement strategy based on the rate of change of λ would refine

the pressure element mesh endlessly. In order to limit the number of iterations performed by

the algorithm, an additional stopping criterion based on the minimum size allowed for a

pressure element needs to be included. As mentioned before, the level Lj that a pressure

element occupies in the quadtree structure is related to its size, so limiting the former will also

limit the latter. This limit is defined by an user-defined parameter Lmax, referred to as the

maximum degree of mesh refinement.

It is important to point out that wmax is a target value and may not be always reached. If the

maximum degree of mesh refinement Lmax is reached for all pressure elements before the target

value for wmax is achieved, the mesh refinement will finish.

The main routine of the algorithm to determine elements to split is shown in Figure 8b. The

following input information is required by the algorithm:

i. The properties associated with the pressure elements (area Ai, normal gap Bi, contact

pressure pi, and cumulated influence coefficients tj, i).

ii. The quadtree data structure.

iii. The maximum degree of mesh refinement Lmaxð Þ.

iv. The maximum allowed rate of change of the observed physical magnitude wmaxð Þ.

The algorithm starts defining the flag Ki as FALSE for all the elements present in the current

discretization. The flag Ki indicates when a pressure element must be split, so in principle, it is

assumed that none of the elements will be divided.

Then, the iterative process starts searching the k neighbors of every pressure element Δi in the

domain (step B1). For this purpose, the algorithm proposed by Samet [8] is used, which is

based in the quadtree data structure. As a result, this algorithm provides an array that contains

the indexes of the k neighbors of a given pressure element.

For each pair of neighboring pressure elements Δi and Δj, the algorithm determines the

associated physical magnitudes λi and λj (step B2). These magnitudes can be already given

by the main algorithm (as in the case of the contact pressures), or they can be specifically

determined from these values by performing additional calculations.

Then, the discrete rate of change wj, i of the observed magnitude between pressure element Δi and

his neighbor Δj is obtained using Eq. (17) (step B3). If wj, i is lower than the user-defined value wmax,

the next neighbor pressure elementΔjþ1 is evaluated. In contrast, if the discrete rate of change of the

observed magnitude between both elements is greater than wmax, then element Δi is considered as a

candidate to be split. Two additional conditions must be fulfilled so Δi can be marked to be split:

i. On one hand, Li must be lower than Lmax, to avoid that the algorithm refines the mesh

indefinitely in those cases where wmax cannot be reached.
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ii. On the other hand, Li must be less than or equal to Lj, to ensure that the level difference

between two adjacent elements does not differ more than one level in the quadtree

structure, avoiding unbalanced meshes.

If these conditions are met, the pressure element Δi is marked to be split by defining

Ki ¼ TRUE. The algorithm finishes when all the pressure elements have been evaluated,

returning an array that contains the indices of those elements where Ki ¼ TRUE.

3.2. Final remarks

In contact problems, there are different physical magnitudes that can be observed to perform

the adaptive mesh refinement, having each one its advantages and disadvantages. In this

work, the observed magnitude to perform the adaptive mesh refinement is the contact pres-

sure (λi ¼ pi), and the mesh refinement is performed based on the discrete gradient of the

contact pressures. The main advantages of choosing the gradient of the contact pressure as

refinement criterion instead of any other derived magnitude are:

i. On one hand, in this approach, the solution of the contact problem is found in terms of

the contact pressure distribution. From the calculated contact pressure distribution,

derived results are obtained. Since the accuracy of the derived results is dependent from

the accuracy in which contact pressure distribution is calculated, it is important to obtain

an accurate description of the contact pressure distribution.

ii. On the other hand, using the contact pressure distribution, instead of the derived results,

as refinement criteria helps reducing the computational cost of the proposed approach,

because obtaining derived results implies additional calculations.

However, it must be taken into account that the contact pressure distribution function is not

differentiable in the border of the contact area. In consequence, according to Eq. (17), the

discrete rate of change of the contact pressure between an element Δi that is within the contact

area (pi > 0) and of an adjacent element Δj that is outside of the contact area (pj ¼ 0) is always

wj, i ¼ 1. Therefore, if a value lower than 1 is specified for wmax, the refinement strategy will

refine the mesh at the boundary of the contact area until the maximum degree of mesh

refinement will be reached at the border of the true contact area.

The topology of the resulting pressure element mesh, inside and outside the true contact area,

depends on the configuration of the proposed approach, which is defined by a unique combi-

nation of the three input parameters:

i. The initial level of uniform mesh density, Luni.

ii. The maximum degree of mesh refinement, Lmax.

iii. The maximum allowed rate of change of the physical magnitude, wmax.

The possible configurations of the approach, and their effect on the resulting pressure element

mesh, are categorized intro three different settings:
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i. Setting 1 (Luni ≥Lmax, wmax not relevant): using this setting, the contact problem is solved

using a uniform mesh, whose mesh density is defined by Luni.

ii. Setting 2 (Luni < Lmax,wmax ¼ 0): using this setting, the contact problem is solved using

adaptive mesh refinement outside the true contact area. Inside the true contact area, a

uniform mesh is used, whose mesh density is defined by Lmax.

iii. Setting 3 (Luni < Lmax,wmax > 0): using this setting, the contact problem is solved using

adaptive mesh refinement both inside and outside the true contact area.

From the nine steps of the main algorithm, step A5 is the most time consuming. For this

reason, the computational cost of the approach can be defined by the number of influence

coefficients that are calculated to solve the contact problem, which can be determined using

Eq. (16).

4. Numerical examples

The performance of the proposed approach is illustrated in this section, considering its accu-

racy and computational cost. For such a purpose, two cases of study are considered:

• Case of study I (CoSI) corresponds to a punctual contact between a plane and a spherical

indenter, whose dimensions are shown in Figure 9a. Punctual contacts are common in

mechanical components such as ball bearings, gears and rail-wheel systems.

• Case of study II (CoSII) corresponds to a line contact between a plane and a cylindrical

indenter, whose dimensions are shown in Figure 9b. Line contacts are common in

mechanical , such as roller bearings or standard spur and helical gears.

The material of both indenters (CoSI and CoSII) and the plane is assumed to have a Young

modulus of 70 GPa and a Poisson coefficient of 0:35. A total contact load FT ¼ 60 kN is

considered.

In both cases, the root cell of the quadtree results in a 20� 20 mm square. The spherical

indenter has been considered as an elastic half-space. In contrast, two finite dimensions have

been considered for the longitudinal direction of the cylindrical indenter, using the correction

method described in Section 2.3.

Figure 9. Definition of the indenters for (a) case of study I and (b) case of study II.
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The cases of study I and II are solved under several configurations of the proposed approach,

selected from the three settings described in Section 3.2, and the performance of each configu-

ration is discussed in Sections 4.1 (for configurations within setting 1), 4.2 (for configurations

within setting 2), and 4.3 (for configurations within setting 3).

For each configuration, the computational cost of the approach to solve the contact problem is

evaluated using Eq. (16). The accuracy of the approach is evaluated by comparing the obtained

contact pressure distributions with reference solutions. For case of study I, the reference

solution is determined using the analytical solution provided by the Hertz contact theory

[10]. In contrast, since Hertz theory is no longer applicable for case of study II, reference results

are obtained for this case using a validated finite element model.

4.1. Performance of the approach when a uniform mesh is used for the whole

domain of the contact problem

The performance of the approach when a uniform pressure element mesh is used for the whole

potential contact area is illustrated in this section. To do so, the contact problems defined by

cases of study I and II are solved under several configurations of the approach, in which Luni

has been varied, keeping Luni ¼ Lmax and wmax ¼ 0 (setting 1 in Section 3.1). Figure 10a–c show

examples of the resulting contact area and pressure element mesh that have been obtained for

Figure 10. Axisymmetric representation of the resulting contact area and pressure element mesh obtained for CoSI under

several configurations of the approach.
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case of study I under this setting of the approach. The computational cost of the proposed

approach to solve the case of study I is also shown for each configuration.

The contact pressure distributions along the principal axes of the contact area of the solutions

shown in Figure 10a–c are shown in Figure 11a. As expected, it can be observed that as the

pressure element mesh is refined (by increasing the value selected for Luni), the results obtained

by the proposed approach converge toward the reference solution.

Using this configuration of the approach, a mesh containing 4Luni pressure elements is used,

regardless of the nature of the contact problem to be solved. Under these circumstances, the

computational cost is proportional to 42∙Luni , and the factor of proportionality is the number of

finite dimensions taken into account in the contact problem (as explained in Section 2.3). In

consequence, for any value of Luni, the computational cost of the algorithm to solve case of

study II will always be greater than the computational cost to solve case of study I.

4.2. Performance of the approach when adaptive mesh refinement is performed

outside the true contact area

In this section, the performance of the proposed approach when adaptive refinement is

performed outside the true contact area is illustrated. To do so, the contact problems defined

by cases of study I and II are solved under several configurations of the approach, in which Luni

and Lmax have been varied, keeping Luni < Lmax and wmax ¼ 0 (setting 2 in Section 3.1).

Figures 10d and 12a show examples of the resulting contact area and pressure element mesh

that have been obtained for cases of study I and II under this setting of the approach.

The results obtained in these cases show that the accuracy in which the contact problem is

solved is independent of the value selected for Luni. For any given value of Lmax, the same

contact pressure distributions as the ones obtained with a uniform pressure element mesh for

the whole domain have been obtained (shown in Figure 11a), regardless of the value selected

for Luni. This implies that the variation of the pressure element mesh outside the true contact

area does not have any impact on the solution of the contact problem.

On the other hand, comparing the computational cost of the solutions shown in Figure 10c

(uniform mesh) and 10d (adaptive refinement outside the true contact area), it can be observed

Figure 11. Contact pressure distribution for CoSI under several configurations of the approach.
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that an important reduction of the computational cost is achieved by increasing the difference

between Lmax and Luni. Similar tendencies are observed for case of study II, where the reduc-

tions of computational cost are even more remarkable due to the presence of finite dimensions.

4.3. Performance of the approach when adaptive mesh refinement is performed

both inside and outside the true contact area

In this section, the performance of the proposed approach when adaptive refinement is also

performed inside the true contact area is illustrated. To do so, the contact problems defined by

cases of study I and II are solved under several configurations of the approach, in which wmax

has been varied, keeping Luni < Lmax (setting 3 in Section 3.1). Figures 10e, f and 12b show

examples of the resulting contact area and pressure element mesh that have been obtained for

cases of study I and II under this setting of the approach.

The contact pressure distributions along the principal axes of the contact area of the solutions

shown in Figure 10d-f are shown in Figure 11b. The contact pressure distributions along the

principal axes of the contact area of the solutions shown in Figure 12a, b are shown in

Figure 13. It both cases, it can be observed that increasing the value selected for wmax implies

that a coarser mesh is used in those regions of the true contact area where the contact pressure

Figure 12. Axisymmetric representation of the resulting contact area and pressure element mesh obtained for CoSII

under two different configurations of the approach.

Figure 13. Contact pressure distribution for CoSII under several configurations of the approach.
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gradient is small, without a significant loss of accuracy when describing the contact pressure

distribution.

The obtained results show that the accuracy of the approach to predict the size of the true

contact area does not depend on the value selected for wmax, since the same values are obtained

regardless of the value selected for this parameter. This is because when wmax < 1, the accuracy

in which the border of the contact area is computed depends only on the value selected for

Lmax, as stated in Section 3.2.

Finally, comparing the computational cost of the solutions shown in Figure 10d and e (and

Figure 12a and b), it can be observed that a further reduction of the computational cost can be

achieved by specifying values of wmax > 0. Although this reduction is not as important as the

one achieved by maximizing Lmax � Luni (discussed in Section 4.2), it still can help to reduce the

computational cost of the approach.

5. Conclusions

A new semi-analytical approach has been developed to solve frictionless elastic contact prob-

lems using adaptive mesh refinement. Starting from a coarse initial uniform mesh (whose

density is defined by the parameter Luni), a mesh refinement is performed based on two

different criteria: (i) the maximum allowed rate of change of a physical magnitude (the contact

pressure), defined by the parameter wmax and (ii) the maximum degree of mesh refinement,

defined by the parameter Lmax.

The configuration of the approach is defined by a unique combination of values for Luni, Lmax,

and wmax. The performance of the proposed approach has been illustrated with several cases of

study solved under different configurations of the approach, and the obtained results enable

us to draw the following conclusions:

i. When Luni ¼ Lmax, a uniform mesh is used to solve the contact problem, regardless of the

value selected for wmax. Under this configuration, it can be observed that the obtained

results converge toward the reference solution as Luni is increased. However, an exponen-

tial growth of the computational cost is produced as the pressure element mesh is refined.

ii. When Luni < Lmax and wmax ¼ 0, adaptive mesh refinement is performed outside the true

contact area. Under these circumstances, it can be observed that the computational cost

of the approach is reduced by maximizing Lmax � Lini, while the accuracy of the solution

remains unaffected.

iii. In last place, when Luni < Lmax and wmax > 0, adaptive mesh refinement is performed both

inside and outside the true contact area. Under these circumstances, it can be observed

that a further reduction of the computational cost can be achieved. However, a loss of

accuracy can be expected in the prediction of the contact pressure distribution as wmax is

increased.

A further discussion on this topic can be found in Ref. [11].
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