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1. Forward osmosis fundamentals

Global climate patterns and urban growth are two of the many factors that have affected the

world’s water resources. During the twentieth century, the population of the world tripled,

and it is predicted to increase by another 15–20% in the next 50 years [1, 2]. The demand for

fresh potable water correlates with the increase in the world’s population, thus access to safe

and sufficient drinking water is now an international aim. Sadly, over 1 billion people across

the world currently have limited to no access to drinking water [3]. In particular, the demand

for water drastically outweighs the availability of water in some Middle Eastern countries and

even within the United States, in states such as California that has recently experienced

droughts [4]. Further, urbanization throughout the world has also impacted groundwater

resources [5], and this controversy has led to surging interest in the efficiency and practicality

of ocean water desalination [6].

Desalination is the process of obtaining drinking water by removing salt ions, minerals, and

other undesired contaminants from seawater [7], and currently, there is an increasing interest

in using FO in desalination. In arid regions of the world, such as the Mediterranean and the

Middle East, desalination research has made great strides over the past 30 years [8]. In fact,

there are approximately 14,000 desalination plants in 150 countries with a production of

millions of gallons per day [8]. In countries, such as Saudi Arabia and the United Arab

Emirates, 70% of water supplies are dependent on desalination. Hence, energy production is

concurrently linked to the production of freshwater, as desalination of seawater requires more

energy than transportation of water from a lake or river [9]. It is also important to note that

nuclear plants and other energy sources (coal or oil) require 20–50 K gallons of water per

megawatt-hour of electricity produced [10]. Furthermore, gasoline vehicles, plug-in vehicles,

ethanol-running vehicles and hydrogen-fuel cell vehicles all consume gallons of water to

operate. Thus, the demand for water is intrinsically tied to energy and sustainable practices
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and processes must be used. Discovering energetically efficient methods to produce and reuse

water is pertinent in providing strategies to combat the energy consumption demands. Addi-

tionally, industrial plants consume a drastic amount of water for their industrial processes, and

70% of fresh water is utilized in agricultural processes [11]. Therefore, water shortages will

hinder many areas of human daily activity and existence.

Most water-related technologies are based on advanced materials, advanced manufacturing

technologies, biotechnology, and integrated filtration systems. Therefore, research and devel-

opment of new materials with tailored properties and nanomaterials are necessary to meet the

water demands and provide connections between eco-efficiency, performance, processing,

recyclability, costs, and water reuse. Although the development of membrane technology for

producing clean water in wastewater treatment and desalination is vital, there are challenges

that must be further addressed in all water filtration processes [12, 13]. Water-selective mem-

branes have gained vast interest for their advantages like high energy efficiency, reasonable

cost, and environmental sustainability. The ideal water-selective membranes are fabricated to

have high water permeability, selectivity, as well as stability [14]. However, major constraints

include operational fouling, waste residue disposal, cost, and acceptance by utility organiza-

tions and the public.

The current and most widely used water purification is reverse osmosis (RO)—a membrane-

based separation process that removes salts, microbial constituents, both organic and inor-

ganic compounds from water and has been used extensively in a variety of fields including

desalination of seawater, ultrapure water production, and wastewater treatment [15, 16]. RO

goes against the laws of nature and uses pressure to force a solvent through the membrane,

which retains the solute on one side and allows the pure solvent to pass to the other side. Since

its discovery, RO has become a very useful process when it comes to removing salt ions from a

solution.

There has been an increased focus on membrane technology research because of the high

efficiency and low-cost solutions for water purification. Currently, forward osmosis (FO)

systems are seen as favorable alternatives to RO systems, as they have been also utilized in

electricity generation, food processing [11], industrial wastewater, and add produced water

treatment [17–19]. In nature, when two solutions are separated by a semipermeable membrane,

the solvent molecules will tend to move through the membrane into the region of higher solute

concentration until equilibrium is reached. FO separates two solutions with different concentra-

tions using the natural osmotic pressure difference. The osmotic gradient is the driving force

instead of externally applied pressure.

Even though RO systems have dominated the water purification arena for decades, FO sys-

tems offer an advantage of rejecting a wide range of contaminants. FO systems experience less

fouling than RO systems; therefore, a membrane with anti-fouling properties could be efficient

and beneficial. Within the RO process, the saline water, which has a high salt concentration, is

forced through a membrane to a region of low solute concentrate by applying pressure in

excess of osmotic pressure [20, 21], where the osmotic pressure is the minimum pressure

needed to prevent the water molecules from moving back to the feed side from the permeate

side. This occurs when the hydrostatic pressure differential resulting from the concentration
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changes on both sides of the semipermeable membrane is equal to the osmotic pressure of the

solute [21]. The semipermeable membrane allows the passage of water but not salt ions. The

feed water must pass through a very narrow passage as a result of the way the membrane is

packaged. This causes for an initial treatment phase, where fine particulates or suspended

solids must be removed to prevent fouling. In contrast, the FO system will have higher

productivity and be considered an energy saving device since no external pressure is required.

However, a major and unresolved challenge in FO remains an efficient draw solution that

could result in high flux and reconstituted using a low-energy separation process which will

be discussed later.

Two key factors in FO utilization are selecting the membrane and appropriate draw solute

(DS). The DS should be non-toxic, generate high osmotic pressure, and be easily regenerated

[22]. Continuous reconcentration is required to sustain the FO driving force to purify water.

NaCl, MgCl2, CaCl2, and MgSO4 are commonly used DSs; however, they are energy intensive

and consequently costly [22, 23]. Alternatively, the DS can be treated wastewater effluent brine

or seawater; the diluted DS will lower the energy demand [22]. Other limitations are the

diffusion of the DS into the feed solution, low water flux compared to RO, membrane fouling,

and concentration polarization. Therefore, many researchers are investigating alternative DSs.

1.1. Wastewater and water recycling

Wastewater sources include municipal and industrial plants and consume a drastic amount of

water for their industrial processes. Some plants also produce oily wastewater end products.

The industries that account for oil in water emulsions are petroleum, pharmaceutical, polymer,

leather, polish, cosmetic, food, polymer, textile, agriculture, prints, and paper [24]. Helen Wake

reports that oil refineries in European and Middle Eastern countries alone produce over 2

billion tons of wastewater [25]. This strikes as a major ecological problem, due to the discharge

of oily wastewater into the ecosystem [25]. Furthermore, a principal fraction of oil/water emul-

sions’ treatment technologies is often ineffective and expensive [24].

Produced water (PW) is generated during oil and gas production and is the biggest waste

stream in the energy industries [26, 27]. Therefore, PW is contaminated with oils and salts of

organic and inorganic compounds [27]. Releasing PW onto nature has an environmental

impact and is a noteworthy issue of ecological concern. Ordinarily, PW is treated through

various physical, chemical, and biological strategies. In offshore stages, as a result of space

imperatives, minimal physical and substance frameworks are utilized. Unfortunately, current

advances cannot dislodge these minute suspended oil particles. In addition, natural pretreat-

ment of wastewater can be financially expensive. As high salt fixation and varieties of influent

qualities have an impact on PW, it is suitable to fuse a physical treatment (e.g., film) to refine

the material. Hence, future research endeavors are concentrating on the streamlining of flow

innovations, utilization of consolidated methodology, organic treatment of delivered water,

and review of reuse and release limits.

Agricultural wastewater, which comes from all animal farms and food processing, requires

unique treatment before disposal or reuse [28]. Untreated agricultural wastewater results in

pollution of groundwater, rivers, and lakes, thereby disrupting ecosystems and resulting in a
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chain of negative effects. However, with proper treatment and filtration, this wastewater can

become a valuable resource. Primary treatment involves separating solids from the liquids and

producing “sludge.” The secondary treatment removes contaminants and dissolved solids

from the effluent. Ultraviolet light, specialized enzymes, and microbes are often used for

further treatment [29, 30]. After which, the “safe” water is returned to a waterway (ocean or

river) or reused in agriculture [31]. Thus, treated wastewater can be reused in a sustainable

fashion.

Where efficient irrigation methods and collection of run-off are in place, there is little waste-

water [tailwater] to be treated for reuse. However, when bountiful tailwater is available, it

often contains large amounts of salt and nutrients which makes it non-permissible for irriga-

tion [31]. Innovative effluent treatment permits water reuse for irrigation and animal needs,

making the “sludge” and subsequent effluent suddenly valuable. Additionally, collecting and

reusing tailwater can benefit a farm through fertilization, and it can protect the environment

by avoiding salt and nutrient discharge. Thus, utilizing tailwater and food processing waste-

water could be profitable for farmers and positive for our environment.

1.2. Membrane fouling

Most membrane technologies experience reduction in performance as a result of various types

of fouling. Therefore, designing and investigating membranes to combat fouling is imperative

in creating proficient systems. Membrane fouling is the accumulation of unwanted matter such

as colloids, salts, and microorganisms during the water purification process. Foulants accumu-

lating on the surface reduces the water flow either temporarily or possibly permanently.

Unfortunately, this is a common problem, and these foulants deteriorate and increase the

ineffectiveness of the system.

During mass transport, various aspects lead to adsorption of particles within and onto the

membrane surface, causing membrane fouling [22]. Contaminated feed water results in com-

pounds and unwanted material adhering to the membrane, resulting in fouling, which is a

major problem for most membrane-based systems and often results in a decline in flux [23].

Therefore, minimizing fouling is the key to optimal membrane operation and keeping costs

down. Depending upon the polymer utilized for membrane fabrication, additional character-

istics can be optimized to prevent fouling. Regardless of the membrane system, biofouling is a

long-term problem [32]. All types of fouling (biofouling, organic, colloidal, and scaling) can be

damaging [32]. It has been noted that FO is less likely to foul and less complicated than

pressure-driven membrane processes like RO [23, 32]. This is because applied hydraulic pres-

sure causes compact foulant layers, which diminish the effectiveness of cleaning the mem-

branes.

Biofouling is considered to be the most difficult and detrimental to water filtration processes

and decreases the durability of membranes. Therefore, membranes that are resistant to the

accumulation of microorganisms are a necessity for water purification. Ultimately, biofouling

causes higher than necessary energy consumption, deterioration of system performance, and

water production. Due to the aforementioned issues, it is technologically essential to find

efficient methods to minimize membrane biofouling. Studies have shown that FO membranes
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are more effective in preventing foulant permeation into the draw solute and reducing fouling

in the downstream RO membrane [23].

Organic foulants are dominant and precursors to biofouling when using membrane bioreactor

(MBR) for wastewater treatment [22, 33]. Therefore, biofouling can be prevented by controlling

the organic matter. Hydrophobic and hydrophilic polysaccharides and transphilic organic

macromolecules are all found in the feed water and may lead to organic fouling. Of these

examples, polysaccharides are three times more likely than other humic acid contaminants to

cause fouling [33].

1.3. Membrane selection

Material selection for membrane fabrication is significant in developing a system with optimal

flux, as flux decline is directly connected to membrane fouling. Regardless of the polymeric

material, asymmetric membranes are preferred during liquid separation due to their thin top

layer on top of a porous support layer. FO asymmetric membranes consist of a dense active

layer and a loosely bound support layer. The dense top layer is selective and the large pores in

the support layer reduce hydraulic resistance [34]. Thin-film composite (TFC) and polysulfone

are currently the most widely used materials for membrane fabrication due to their stability

and high-pressure tolerance. However, Poly [vinyl alcohol] (PVA) hydrogels have been shown

to be a suitable membrane used for water treatment, and PVA is an excellent surface modifier.

Their hydrophilicity, water permeability, and anti-fouling potential make them ideal candi-

dates in the further development of composite membranes [35, 36]. Research continues to

investigate ways to optimize PVA hydrogel membranes based on their degree of polymeriza-

tion and incorporation of nanoparticles [37]. Furthermore, studies have proven that ideal

membranes should have high water permeability, selectivity, and stability [14].

1.4. Concentration polarization

As many are investigating FO for wastewater treatment and desalination, one of the major

weaknesses of FO is internal concentration polarization (ICP). The configuration of the mem-

brane contributes to the aforementioned fouling possibility and other complications such as

ICP which minimized flux efficiency [33]. Traditionally, the support layer faces the feed in

normal mode and faces the active layer in the reverse mode. The inability of the salt to pass

easily through the active layer results in a concentration increase within the support layer.

Amid the process, fouling such as scaling contributes to concentrative ICP [22, 33]. In the

normal mode, the support layer diminishes water transport hydraulic resistance, and the

solute freely enters, leading to minimum ICP [38]. Just as fouling leads to lower water flux,

ICP within asymmetric thin-film composite (TFC) FO membranes does the same. Contrarily, in

reverse mode, the active layer faces the feed solution contributing to ICP. The concentration is

increased in the support as the active layer prevents the passage of salt. Thus, ICP greatly

reduces the driving force for transport. However, a thin low porosity support minimizes ICP

[33] and surface modifications, such as coating with another polymer, has been one of the most

effective methods [21]. Studies have been conducted to improve membrane design for new-

generation FO membranes and mitigate the ICP effect. Researchers have explored membrane
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structures to prevent salt leakage and minimize ICP in FO [39]. Altering phase inversion

fabrication protocol by examining different casting substrate, consequently, results in an open

structure with increased porosity in the middle support layer. During desalination, the FO

system showed decreased salt leakage with mitigated ICP [21]. The ICP and ECP (external

concentration polarization) structural value of the double dense-layer membrane is much

smaller than those reported in the literature [21]. Moreover, lower CP values were seen after

an intermediate solvent/water immersion was performed before complete immersion in water

[39]. Additionally, Tang et al. [33] investigated ICP and fouling during humic acid filtration.

They reported that despite initial ICP, the active facing orientation resulted in stable flux in

contrast to flux diminution when facing foulant humic acid feed water.

2. Pressure retarded osmosis

Most water purification processes are known to consume energy. However, using the salinity

differences between two bodies of water, pressure retarded osmosis (PRO) generates power.

PRO is based on membrane technology similar to FO but results in sustainable osmotic power

energy. During PRO, additional back pressure is applied to the draw solute, creating chemical

potential between seawater and fresh water. As a result, electricity is produced from the

conversion of flux into mechanical energy [22], and the net flux is similar to FO in the direction

of the DS [40]. Unfortunately, membrane fouling consequently reduces the permeate flux and

osmotic power generation, thus increasing overall cost similar to other membrane technolo-

gies. Research has been conducted on different quality feed waters to identify the main

foulants on the surface in the PRO processes, and silica has been shown to cause severe scaling

[41]. Again, structural parameters, material choice, pH of FS and/or DS played a critical role in

mitigating IC of silica scaling [41]. Furthermore, organic and inorganic salt water was used to

investigate cleaning methods to resolve fouling issues [32]. Using salt water as the DS, iron,

aluminum, calcium, sodium, and silica were the inorganic foulants discovered [32]. Also,

humic substances, polysaccharides, and proteins were the organic foulants identified [32].

Sequential acidic and basic cleaners were proven to be successful with a flux recovery above

95% [32]. PRO processes and consequently osmotic power generation can be enhanced by

decreasing membrane fouling via chemical cleaning [32].

3. Summary

In summary, many researchers have compared FO, PRO, and RO as shown in Figure 1 [22].

The most noted comparisons are the necessary pressure difference, fouling tendencies, and

application. All three systems have advantages but require necessary improvements for expan-

sion of utilization in various applications. Although fouling is a challenge for membrane

technologies, research has demonstrated various ways to diminish its effects on flux [22, 32,

41]. With the increasing water demands, FO is certainly a viable option to meet the water and

energy challenges of a growing global population as PRO has the potential to be widely used

for sustainable energy. With polymer chemistry and membrane innovations, FO will advance

for continuous use in producing safe water for irrigation, pharmaceuticals, and human
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consumption. This book will further discuss the headway in osmotically driven membrane

processes (ODMP) research, findings, and contributions to membrane processes.
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