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Abstract

In this chapter, the two-dimensional elasticity problem with a singularity caused by the
presence of a re-entrant corner on the domain boundary is considered. For this problem, the
notion of the Rv-generalized solution is introduced. On the basis of the Rv-generalized
solution, a scheme of the weighted finite-element method (FEM) is constructed. The pro-
posed method provides a first-order convergence of the approximate solution to the exact

one with respect to the mesh step in the W1
2,ν Ωð Þ-norm. The convergence rate does not

depend on the size of the angle and kind of the boundary conditions imposed on its sides.
Comparative analysis of the proposed method with a classical finite-element method and
with an FEM with geometric mesh refinement to the singular point is carried out.

Keywords: elasticity problem with singularity, corner singularity, Rv-generalized
solution, weighted finite-element method, numerical experiments

1. Introduction

The singularity of the solution to a boundary value problem can be caused by the degeneration of

the input data (of the coefficients and right-hand sides of the equation and the boundary condi-

tions), by the geometry of the boundary, or by the internal properties of the solution. The classic

numerical methods, such as finite-difference method, finite- and boundary-element methods, have

insufficient convergence rate due to singularity which has an influence on the regularity of the

solution. It results in significant increase of the computational power and time required for calcu-

lation of the solutionwith the given accuracy. For example, the classic finite-elementmethod allows

the finding of the solution for the elasticity problem posed in a two-dimensional domain containing

a re-entrant corner of on the boundary with convergence rate O(h1/2). In this case to compute the

solution with the accuracy of 10�3 requires a computational power that is one million times greater

than in the case of the weighted finite-element method used for the solution of the same problem.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



By using meshes refined toward the singularity point, it is possible to construct schemes of the

finite-element method with the first order of the rate of convergence of the approximate

solution to the exact one [1–3].

In [4, 5], for boundary value problems with strongly singular solutions for which a generalized

solution could not be defined and it does not belong to the Sobolev space H
1, it was proposed to

define the solution as a Rv-generalized one. The existence and uniqueness of solutions as well as its

coercivity and differential properties in the weighted Sobolev spaces and sets were proved [5–10],

the weighted finite-element method was built, and its convergence rate was investigated [11–15].

In this chapter, for the Lamé system in domains containing re-entrant corners we will state

construction and investigation of the weighted FEM for determination of the Rv-generalized

solution [16, 17]. Convergence rate of this method did not depend on the corner size and was

equal O(h) (see [18], Theorem 2.1). For the elasticity problems with solutions of two types—

with both singular and regular components and with singular component only—a compara-

tive numerical analysis of the weighted finite-element method, the classic FEM, and the FEM

with meshes geometrically refined toward the singularity point is performed. For the first two

methods, the theoretical convergence rate estimations were confirmed. In addition, it was

established that FEM with graded meshes failed on high dimensional meshes but weighted

FEM stably found approximate solution with theoretical accuracy under the same computa-

tional conditions. The mentioned failure can be explained by a small size of steps of the graded

mesh in a neighbourhood of the singular point. As a result, for the majority of nodes, the

weighted finite-element method allows to find solution with absolute error which is by one or

two orders of magnitude less than that for the FEM with graded meshes.

2. Rv-generalized solution

Let Ω ¼ �1; 1ð Þ � �1; 1ð Þ∖ 0; 1½ � � �1; 0½ �⊂R2 be an L-shaped domain with boundary ∂Ω

containing re-entrant corner of 3π/2 with the vertex located in the point O(0,0), Ω ¼ Ω∪∂Ω:

Denote by Ω
0 ¼ x∈Ω : x21 þ x22

� �1=2
≤ δ < 1

n o

a part of δ-neighbourhood of the point (0,0)

laying in the Ω. A weight function r(x) can be introduced that coincides with the distance to

the origin in Ω
0
, and equals δ for x∈Ω Ω

0
.

Let W1
2,α Ω; δð Þbe the set of functions satisfying the following conditions:

a. Dku xð Þ
�

�

�

� ≤ c1 δ=r xð Þð Þαþk for x∈Ω
0
, where k = 0,1 and c1 is a positive constant independent on

k,

b. uk kL2,α Ω�Ω
0ð Þ ≥ c2 > 0,

with the norm

uk kW1
2,α Ωð Þ ¼

X

∣λ∣ ≤ 1

ð

Ω

r
2α Dλu
�

�

�

�

2
dx

0

@

1

A

1=2

, (1)
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where Dλ ¼ ∂
∣λ∣=∂xλ1

1 ∂xλ2

2 , λ = (λ1,λ2), and |λ|=λ1+λ2; λ1, λ2 are nonnegative integers, and α is

a nonnegative real number.

Let L2,α Ω; δð Þ be the set of functions satisfying conditions (a) and (b) with the norm

uk kL2,α Ωð Þ ¼

ð

Ω

r
2αu2 dx

0

@

1

A

1=2

:

The set W
�

1
2,α Ω; δð Þ⊂W1

2,α Ω; δð Þ is defined as the closure in norm (1) of the set C0 Ω; δð Þ of

infinitely differentiable and finite in Ω functions satisfying conditions (a) and (b).

One can say that φ∈W
1=2
2,α ∂Ω; δð Þ if there exists a function Φ from W1

2,α Ω; δð Þ such that

Φ xð Þj
∂Ω ¼ φ xð Þ and

φk k
W

1=2
2,α ∂Ω;δð Þ

¼ inf
Φj

∂Ω¼ϕ
Φk kW1

2,α Ω;δð Þ:

For the corresponding spaces and sets of vector-functions are used notationsW1
2,α Ω; δð Þ,

L2,α Ω; δð Þ, W
�

1
2,α Ω; δð Þ.

Let u = (u1,u2) be a vector-function of displacements. Assume that Ω is a homogeneous

isotropic body and the strains are small. Consider a boundary value problem for the displace-

ment field u for the Lamé system with constant coefficients λ and μ:

� 2div με uð Þ
� �

þ ∇ λdivuð Þ
� �

¼ f, x∈Ω, (2)

ui¼ qi, x∈ ∂Ω, (3)

Here, ε(u) is a strain tensor with components εij uð Þ ¼ 1
2

∂ui
∂xj

þ
∂uj
∂xi

� �

.

Assume that the right-hand sides of (2), (3) satisfy the conditions

f∈L2,β Ω; δð Þ, qi ∈W
1=2
2,β ∂Ω; δð Þ, i ¼ 1, 2, β > 0: (4)

Denoted by

a1 u; vð Þ ¼

ð

Ω

λþ 2μ
� � ∂u1

∂x1

∂ r
2νv1

� �

∂x1
þ μ

∂u1
∂x2

∂ r
2νv1

� �

∂x2
þ λ

∂u2
∂x2

∂ r
2νv1

� �

∂x1
þ μ

∂u2
∂x1

∂ r
2νv1

� �

∂x2

�

dx,

�

a2 u; vð Þ ¼

ð

Ω

λ
∂u1
∂x1

∂ r
2νv2

� �

∂x2
þ μ

∂u1
∂x2

∂ r
2νv2

� �

∂x1
þ λþ 2μ
� � ∂u2

∂x2

∂ r
2νv2

� �

∂x2
þ μ

∂u2
∂x1

∂ r
2νv2

� �

∂x1

�

dx,

�

l1 vð Þ ¼

ð

Ω

r
2νf 1v1dx, l2 vð Þ ¼

ð

Ω

r
2νf 2v2dx

the bilinear and linear forms and a u; vð Þ ¼ a1 u; vð Þ; a2 u; vð Þð Þ, l vð Þ ¼ l1 vð Þ; l2 vð Þð Þ.
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Definition 1

A function uv from the set W1
2,ν Ω; δð Þ is called an Rv-generalized solution to the problem (2), (3) if it

satisfies boundary condition (3) almost everywhere on ∂Ω and for every v fromW
1
2,ν Ω; δð Þ the integral

identity

a uν; vð Þ ¼ l vð Þ (5)

holds for any fixed value of ν satisfying the inequality

ν ≥ β: (6)

In [17], for the boundary value problem (2)–(3) with homogeneous boundary conditions,

existence and uniqueness of its Rv-generalized solution were established.

Theorem 1

Let condition (4) be satisfied. Then for any ν > β there always exists parameter δ such that the problem

(2)–(3) with homogeneous boundary conditions has a unique Rv-generalized solution uv in the set

W
�1
2,α Ω; δð Þ. In this case

uνk k
W

1
2,ν Ωð Þ ≤ c3 fk k

L2,β Ωð Þ, (7)

where c3 is a positive constant independent of f.

Then for any ν > β, there always exists parameter δ such that the problem (2)–(3) with homogeneous

boundary conditions has a unique Rv-generalized solution uv in the set W�1
2,α Ω; δð Þ.

Comment 1

At present, there exists a complete theory of classical solutions to boundary value problems

with smooth initial data (equation coefficients, right hands of solution and boundary condi-

tions) and with smooth enough domain boundary [19–22].

On the basis of the generalized solution-wide investigations of boundary value problems with

discontinuous initial data and not smooth domain boundary were performed in Sobolev and

different weighted spaces [23–26]. On the basis of the Galerkin method, theories of difference

schemes, finite volumes, and finite-element method were developed to find approximate

generalized solution [27].

Let us call boundary value problem a problem with strong singularity if its generalized

solution could not be defined. This solution does not belong to the Sobolev space W1
2 (H

1), or,

in other words, the Dirichlet integral of the solution diverges. In [4, 5], we suggested to define a

solution to the boundary value problems with strong singularity as an Rv-generalized one in

the weighted Sobolev space. The essence of this approach is in introducing weight function

into the integral equality. The weight function coincides with the distance to the singular

points in their neighbourhoods. The role (sense, mission) of this function is in suppressing of

the solution singularity caused by the problem features and is in assuring convergence of

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques298



integrals in both parts of the integral equality. Taking into account the local character of the

singularity, we define weight function as the distance to each singularity point inside the disk

of radius δ centered in that points, and outside these disks the weight function equals δ. An

exponent of the weight function in the definition of the Rν-generalized solution as well as

weighted space containing this solution depend on the spaces to which problem initial data

belongs, on geometrical features of the boundary (re-entrant corners), and on changing of the

boundary condition type.

In [13, 14], for the transformed system of Maxwell equations in the domain with re-entrant

corner in which the solution does not depend on the spaceW1
2, the weighted edge-based finite-

element method was developed on the basis of introducing the Rν-generalized solution. Con-

vergence rate of this method is O(h), and it does not depend on the size of singularity as

opposed to other methods [28, 29].

The proposed approach of introducing Rν-generalized solution allows to effectively find solu-

tions not only to the boundary value problems with divergent Dirichlet integral but also to

problems with weak singularity when the solution belongs to the W1
2 and does not belong to

the space W2
2.

3. The weighted finite-element method

A finite-element scheme for problems (2)–(3) is constructed relying on the definition of an Rν-

generalized solution. For this purpose, a quasi-uniform triangulation Th of Ω and introduction

of special basis functions are constructed.

The domain Ω is divided into a finite number of triangles K (called finite elements) with

vertices Pk (k = 1,…,N), which are triangulation nodes. Denoted by Ω
h ¼ ∪K∈Th K—the union

of all elements; here, h is the longest of their side lengths. It is required that the partition

satisfies the conventional constraints imposed on triangulations [10]. Denote by P ¼ Pkf gk¼n
k¼1,

the set of triangulation internal nodes; by P ¼ Pkf gk¼N
k¼nþ1, the set of nodes belonging to the ∂Ω.

Each node Pk ∈P is associated with a function Ψ k of the form

Ψ k xð Þ ¼ r
ν∗ xð Þϕk xð Þ, k ¼ 1,…, n,

where ϕk xð Þ is linear on each finite element, ϕk Pj

� �

¼ δkj, k, j ¼ 1,…, n δkj is the Kronecker

delta, and ν∗ is a real number.

The set Vh is defined as the linear span of the system of basis functions Ψ kf gk¼n
k¼1 . Denote the

corresponding vector set by Vh ¼ Vh
	 
2

. In set Vh, one singled out the subset V
�h ¼ v∈Vh

; vi
�

Pkð ÞjPk ∈ ∂Ω ¼ 0, i ¼ 1, 2g.

Associated with the constructed triangulation, the finite-element approximation of the dis-

placement vector components has the form
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uhν,1 ¼
X

n

k¼1

d2k�1Ψ k, uhν,2 ¼
X

n

k¼1

d2kΨ k, dj ¼ r
�ν∗ P jþ1

2½ �

� �

cj, j ¼ 1,…, 2n:

Definition 2

An approximate Rν-generalized solution to the problems (2)–(3) by the weighted finite-element method

is a function uh
ν ∈Vh such that it satisfies the boundary condition (3) in the nodes of the boundary ∂Ω

and for arbitrary vh xð Þ∈Vh and ν > β the integral identity

a uh
ν; v

h
� �

¼ l vh
� �

,

holds, where uh
ν ¼ uhν,1; u

h
ν,2

� �

.

In [18], it was shown that convergence rate of the approximate solution to the exact one does

not depend on size of the re-entrant corner and is always equal to O hð Þ when weighted finite-

element method is used for finding an Rν-generalized solution to elasticity problem. The next

section explains results of comparative numerical analysis for the model problems (2)–(3) of

the weighted FEM using the classical finite-element method and the FEM with geometrically

graded meshes of two kinds.

4. Results of numerical experiments

In the domain, Ω is considered a Dirichlet problem for the Lamé system (2), (3) with constant

coefficients λ ¼ 3 and μ ¼ 5. Two kinds of vector-function u ¼ u1; u2ð Þ were used as a solution

to the problem.

Problem A

Components of the solution u of the model problem (2), (3) contain only a singular component

u1 ¼ cos x1ð Þcos2 x2ð Þ x21 þ x22
� �0:3051

,

u2 ¼ cos2 x1ð Þ cos x2ð Þ x21 þ x22
� �0:3051

:

Singularity order of u1, u2 corresponds to the size of the re-entrant corner γ ¼ 3π=2 on the

domain boundary [30].

Problem B

Solution u of the model problems (2, 3) contains both singular and regular components—

regular part belongs to the W2
2 Ωð Þ

u1 ¼ cos x1ð Þcos2 x2ð Þ x21 þ x22
� �0:3051

þ x21 þ x22
� �

,

u2 ¼ cos2 x1ð Þ cos x2ð Þ x21 þ x22
� �0:3051

þ x21 þ x22
� �

:

Finite Element Method - Simulation, Numerical Analysis and Solution Techniques300



4.1. Comparative analysis of the generalized and Rν-generalized solutions

Results of numerical experiments presented in this subsection were obtained using the code

”Proba-IV” [31] with regular meshes which were built by the following scheme:

Domain Ω was divided into squares by lines parallel to coordinate axis, with distance equal to

1/N between them, whereN is a half of number of partitioning segments along the greater side;

Each square was subdivided into two triangles by the diagonal.

In this case, size of the mesh-step h could be computed by h ¼
ffiffiffi

2
p

=N. Example of the regular

mesh for N = 4 is presented in Figure 1.

Calculations were performed for different values of N. Optimal parameters δ, ν, and ν
∗ were

obtained by the program complex [32]. Generalized solution was determined by the integral

equality (5) for ν ¼ 0.

One calculated the errors e ¼ e1; e2ð Þ ¼ u1 � uh1; u2 � uh2

� �

and eν ¼ eν,1; eν,2ð Þ ¼ u1 � uh
ν,1;

�

u2 � uh
ν,2Þ of numerical approximation to the generalized uh ¼ uh1; u

h
2

� �

and Rν-generalized

uh
ν
¼ uh1,ν; u

h
2,ν

� �

solutions, respectively. Problems A and B in Tables 1 and 4, respectively,

present values of relative errors of the generalized solution in the norm of the Sobolev space

W1
2 η ¼

ek k
W1

2

uk k
W1

2


 �

and the Rν-generalized one in the norm of the weighted Sobolev space W1
2,ν

ην ¼
eνk k

W1
2,ν

uk k
W1

2,ν

 !

with different values of h. In addition, these tables contain ratios between error

norms, obtained on meshes with step reducing twice. Figures 2 and 3 show the convergence

rates of the generalized and Rν-generalized solutions to the corresponding problems with the

logarithmic scale. The dashed line in the figures corresponds to convergence with the rate

O hð Þ. Tables 2 and 3 (Problem A) and Tables 5 and 6 (Problem B) give limit values: number of

nodes where |e1|, |e2|, |ev,1|, and |ev,2| belong to the giving range, this number in percentage

to the total number of nodes, and pictures of the absolute error distribution in the domain Ω.

Figure 1. Example of regular mesh (a), and graded meshes I (b) and II (c) (N = 4, κ ¼ 0:4).
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4.1.1. Problem A

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.033 4102 0.033 4102

≥ 1e� 6 0.764 96075 0.764 96075

≥ 5e� 7 2.457 308985 2.457 308985

≥ 1e� 7 21.704 2729186 21.704 2729186

≥ 5e� 8 12.589 1582976 12.589 1582974

≥ 0 62.454 7853397 62.454 7853399

Table 3. Number, percentage equivalence, and distribution of nodes where absolute errors ∣eν, i∣ i ¼ 1; 2ð Þ of finding

components of the approximate Rν-generalized solution to problem A δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16Þ are not less than

given limit values, 2N ¼ 4096.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution Number % Number

≥ 5e� 6 48.077 6045579 48.077 6045579

≥ 1e� 6 29.387 3695290 29.387 3695290

≥ 5e� 7 6.724 845468 6.724 845468

≥ 1e� 7 9.624 1210192 9.624 1210192

≥ 5e� 8 2.564 322449 2.564 322449

≥ 0 3.624 455743 3.624 455743

Table 2. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei∣ i ¼ 1; 2ð Þ of finding

components of the approximate generalized solution to problem A are not less than given limit values, 2N ¼ 4096.

2N 128 256 512 1024 2048 4096

h 1.105e-2 5.524e-3 2.762e-3 1.381e-3 6.905e-4 3.453e-4

η 6.963e-2 1.52 4.579e-2 1.52 3.007e-2 1.52 1.972e-2 1.53 1.293e-2 1.53 8.476e-3

ην 7.011e-2 1.55 4.522e-2 1.64 2.756e-2 2.17 1.272e-2 2.21 5.745e-3 1.98 2.902e-3

Table 1. Dependence of relative errors of the generalized (η) and Rν-generalized (ην) (δ ¼ 0:0029, ν ¼ 1:2, ν∗ ¼ 0:16)

solution to problem A on mesh step.
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4.1.2. Problem B

2N 128 256 512 1024 2048 4096

h 1.105e-2 5.524e-3 2.762e-3 1.381e-3 6.905e-4 3.453e-4

η 2.849e-2 1.54 1.850e-2 1.53 1.205e-2 1.53 7.870e-3 1.53 5.146e-3 1.53 3.367e-3

ην 2.868e-2 1.57 1.827e-2 1.65 1.107e-2 2.16 5.117e-3 2.21 2.319e-3 1.98 1.171e-3

Table 4. Dependence of relative errors of the generalized ηð Þ and Rν-generalized ηνð Þ δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16

solution of the problem B on the mesh step.

Figure 2. Chart of η for the generalized (squared line) and of ην for Rν-generalized (circled line) (δ=0.0029, ν=1.2, ν*=0.16)

solutions to the problem A in dependence on the number of subdivisions 2N.

Figure 3. Chart of η for the generalized (squared line) and of ην for Rν-generalized (circled line) δ ¼ 0:0029ð , ν ¼ 1:2,

ν
∗ ¼ 0:16Þ solutions to the problem B in dependence on the number of subdivisions 2N.
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4.2. FEM with graded mesh: comparative analysis

This subsection presents results of error analysis for finding generalized solution to the prob-

lems A and B by the FEM with graded meshes of two kinds (for detailed information about

graded meshes, see [2, 33, 34]).

Mesh I. This partitioning was built by the following scheme

1. In the domain Ω, for a given N, regular mesh was constructed as described in section 4.1.

2. Level l ¼ maxi¼1, 2 jN � xi þ 1ð ÞN½ �jð Þ was determined for each node. Here, xi (i ¼ 1, 2) are

initial node coordinates on the regular mesh, �½ � means integer part.

3. New coordinates of nodes of the graded mesh are calculated by the formula xi þ 1ð ÞN½ �ð

�NÞl�1
l=Nð Þ1=κ (i ¼ 1, 2).

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution Number % Number

≥ 5e� 6 48.078 6045622 48.078 6045622

≥ 1e� 6 29.387 3695278 29.387 3695278

≥ 5e� 7 6.724 845466 6.724 845466

≥ 1e� 7 9.624 1210158 9.624 1210159

≥ 5e� 8 2.564 322439 2.564 322438

≥ 0 3.624 455758 3.624 455758

Table 5. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei∣ i ¼ 1; 2ð Þ of finding

components of the approximate generalized solution to problem B are not less than given limit values, 2N ¼ 4096.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.033 4108 0.033 4108

≥ 1e� 6 0.771 96899 0.771 96899

≥ 5e� 7 2.481 311996 2.481 311996

≥ 1e� 7 21.789 2739862 21.789 2739863

≥ 5e� 8 12.588 1582876 12.588 1582876

≥ 0 62.339 7838980 62.339 7838979

Table 6. Number, percentage equivalence, and distribution of nodes where absolute errors ∣eν, i∣ i ¼ 1; 2ð Þ) of finding

components of the approximate Rν-generalized solution to problem B ( δ ¼ 0:0029ð , ν ¼ 1:2, ν∗ ¼ 0:16Þ are not less than

given limit values, 2N ¼ 4096.
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Mesh II. Constructing process for this mesh differs from the one described earlier in the level-

calculating mode. Here, l ¼
P

2

i¼1

∣N � xi þ 1ð ÞN½ �∣. In this case, new coordinates are determined

only for nodes with l ≤N.

Examples of meshes I and II are shown in Figure 1(b) and (c), respectively.

The FEM solution obtained on described graded meshes converges with the first rate on the

mesh step when the value of the parameter κ is less than the order of singularity [2, 33].

Calculations were performed for different values of N and κ. For each node, one calculated the

errors eI ¼ u� uh
I
and eII ¼ u� uh

II
of the approximate generalized solutions uh

I
, uh

II
obtained

on meshes I and II, respectively. The values of relative errors of the generalized solution to the

problems A and B in the norm of the Sobolev spaceW1
2 for different values of h and κ for mesh

I ηI ¼
eIk k

W1
2

uk k
W1

2


 �

are presented in Tables 7 and 10, respectively, and for mesh II ηII ¼
eIIk k

W1
2

uk k
W1

2


 �

are

presented in Tables 8 and 11, respectively. In addition, these tables contain ratios between

error norms and between mesh steps obtained with nodes number increasing four times.

Figures 4 and 5 show the convergence rates of the generalized solutions to the corresponding

problems for meshes I and II with the logarithmic scale. Dashed line in the figures corresponds

to convergence with the rate O(h) as in paragraph 1. Besides, for the problems A and B,

Tables 9 and 12, respectively, contain limit values for the following data: number of nodes

where ∣e1, II ∣, ∣e2, II ∣ belong to the giving range, this number in percentage to the total number of

nodes, and pictures of the absolute error distribution in the domain Ω.

4.2.1. Problem A

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηI 2.659e-2 2.00 1.332e-2 2.00 6.675e-3 1.91 3.501e-3 0.75 4.650e-3 0.27 1.741e-2

h 0.062263 1.979 0.031459 1.99 0.015812 1.995 0.007926 1.997 0.003968 1.999 0.001985

κ ¼ 0:4

ηI 2.111e-2 2.00 1.057e-2 1.99 5.302e-3 1.78 2.971e-3 0.53 5.559e-3 0.26 2.154e-2

h 0.044928 1.986 0.02262 1.993 0.011349 1.997 0.005684 1.998 0.002845 1.999 0.001423

κ ¼ 0:5

ηI 1.990e-2 1.99 1.001e-2 1.99 5.038e-3 1.71 2.940e-3 0.46 6.401e-3 0.25 2.513e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.0021823 1.999 0.001092

κ ¼ 0:6

ηI 2.315e-2 1.92 1.204e-2 1.93 6.254e-3 1.70 3.678e-3 0.50 7.292e-3 0.26 2.818e-2

h 0.030169 1.993 0.015135 1.997 0.007580 1.998 0.003793 1.999 0.0018973 1.9996 0.0009489

Table 7. Dependence of relative errors of the generalized solution to problemAwithmesh I on themesh step for differentκ.
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4.2.2. Problem B

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηII 2.392e-2 2.00 1.196e-2 2.00 5.982e-3 1.99 3.012e-3 1.46 2.059e-3 0.36 5.687e-3

h 0.05114 1.982 0.025805 1.99 0.012962 1.995 0.006496 1.998 0.003252 1.999 0.001627

κ ¼ 0:4

ηII 1.974e-2 2.00 9.879e-3 2.00 4.942e-3 1.97 2.511e-3 1.16 2.167e-3 0.30 7.154e-3

h 0.038606 1.988 0.019417 1.994 0.009737 1.997 0.004876 1.999 0.00244 1.999 0.001220

κ ¼ 0:5

ηII 1.954e-2 1.98 9.857e-3 1.99 4.963e-3 1.93 2.565e-3 0.94 2.726e-3 0.28 9.725e-3

h 0.031006 1.99 0.015564 1.996 0.007797 1.998 0.003902 1.999 0.001952 1.9995 0.000976

κ ¼ 0:6

ηII 2.339e-2 1.91 1.225e-2 1.92 6.386e-3 1.90 3.368e-3 1.14 2.966e-3 0.31 9.712e-3

h 0.025906 1.995 0.012987 1.997 0.006502 1.999 0.003253 1.999 0.001627 1.9997 0.000814

Table 8. Dependence of relative errors of the generalized solution to problem A with mesh II on the mesh step for

different κ.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.001 6 0.001 6

≥ 1e� 6 35.524 278645 35.479 278292

≥ 5e� 7 13.631 106920 13.770 108011

≥ 1e� 7 33.363 261697 33.377 261808

≥ 5e� 8 7.020 55066 6.984 54782

≥ 0 10.461 82051 10.389 81486

Table 9. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei, II ∣ i ¼ 1; 2ð Þ of finding

components of the approximate generalized solution to problem A obtained with mesh II κ ¼ 0:5ð Þ are not less than

given limit values, 2N ¼ 1024.

2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηI 9.851e-3 1.99 4.955e-3 1.97 2.510e-3 1.36 1.845e-3 0.33 5.639e-3 0.25 2.247e-2

h 0.062263 1.979 0.031459 1.99 0.015812 1.995 0.007926 1.997 0.003968 1.999 0.001985

κ ¼ 0:4

ηI 7.712e-3 1.99 3.870e-3 1.95 1.988e-3 0.98 2.034e-3 0.28 7.218e-3 0.25 2.866e-2

h 0.044928 1.986 0.02262 1.993 0.011349 1.997 0.005684 1.998 0.002845 1.999 0.001423
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2N 128 256 512 1024 2048 4096

κ ¼ 0:3

ηII 5.963e-3 2.00 2.982e-3 2.00 1.492e-3 1.91 7.819e-4 0.77 1.013e-3 0.27 3.757e-3

h 0.05114 1.982 0.025805 1.99 0.012962 1.995 0.006496 1.998 0.003252 1.999 0.0016267

κ ¼ 0:4

ηII 6.349e-3 2.00 3.178e-3 2.00 1.591e-3 1.87 8.490e-4 0.67 1.263e-3 0.26 4.805e-3

h 0.038606 1.988 0.019417 1.994 0.009737 1.997 0.004876 1.999 0.00244 1.999 0.0012203

κ ¼ 0:5

ηII 7.441e-3 1.98 3.756e-3 1.98 1.894e-3 1.83 1.037e-3 0.60 1.717e-3 0.26 6.606e-3

h 0.031006 1.99 0.015564 1.996 0.007797 1.998 0.003902 1.999 0.001952 1.9995 0.0009763

κ ¼ 0:6

ηII 9.574e-3 1.91 5.000e-3 1.92 2.602e-3 1.85 1.409e-3 0.78 1.804e-3 0.27 6.660e-3

h 0.025906 1.995 0.012987 1.997 0.006502 1.999 0.003253 1.999 0.001627 1.9997 0.00081366

Table 11. Dependence of relative errors of the generalized solution to problem B with mesh II on the mesh step for

different κ.

Figure 4. Chart of ηI for mesh I (squared line) and of ηII for mesh II (circled line) for problem A depending on the number

of subdivisions 2N; κ ¼ 0:3.

κ ¼ 0:5

ηI 7.625e-3 1.99 3.839e-3 1.92 1.995e-3 0.87 2.301e-3 0.27 8.676e-3 0.25 3.454e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.002182 1.999 0.001091

κ ¼ 0:6

ηI 9.330e-3 1.92 4.849e-3 1.88 2.584e-3 0.91 2.847e-3 0.28 1.016e-2 0.25 4.001e-2

h 0.034611 1.99 0.017387 1.995 0.008714 1.998 0.004362 1.999 0.002182 1.999 0.001091

Table 10. Dependence of relative errors of the generalized solution to problem B with mesh I on the mesh step for

different κ.
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5. Conclusions

Presented numerical results have demonstrated that:

1. An approximate Rν-generalized solution to the problem (2)–(4) converges to the exact one

with the rate O hð Þ in the norm of the set W1
2,ν Ω; δð Þ in contrast with the generalized

solution, which converges with the rate O h
0:61

� �

for the classical FEM;

2. FEM with graded meshes fails on high-dimensional grids because of the small mesh size

near the singular point, but the weighted FEM stably allows to find approximate solution

with the accuracy O hð Þ under the same computational conditions;

Figure 5. Chart of ηI for mesh I (squared line) and of ηII for mesh II (circled line) for problem B depending on the number

of subdivisions 2N; κ ¼ 0:3.

∣e1∣ ∣e2∣ Limit values ∣e1∣ ∣e2∣

Distribution % Number % Number

≥ 5e� 6 0.001 6 0.001 6

≥ 1e� 6 23.718 186038 23.282 182623

≥ 5e� 7 18.518 145255 19.047 149398

≥ 1e� 7 34.864 273467 35.327 277097

≥ 5e� 8 8.084 63407 7.899 61956

≥ 0 14.816 116212 14.445 113305

Table 12. Number, percentage equivalence, and distribution of nodes where absolute errors ∣ei, II ∣ i ¼ 1; 2ð Þ of finding

components of the approximate generalized solution to problem B obtained with mesh II κ ¼ 0:5ð Þ are not less than given

limit values, 2N ¼ 1024.
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For the approximate Rν-generalized solution obtained by the weighted finite-element method,

an absolute error value is by one or two orders of magnitude less than the approximate

generalized one obtained by the FEM or by the FEM with graded meshes; this holds for the

overwhelming majority of nodes.
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