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Abstract

Astrocytes are the major cell population in the central nervous system (CNS) and play piv-
otal role in CNS homeostasis and functionality. Malfunction of astrocytes were implicated 
in multiple neurodegenerative diseases and disorders, including amyotrophic lateral scle-
rosis (ALS), spinal cord injury (SCI), brain stroke, Parkinson’s disease (PD), and Alzheimer 
disease (AD). These new insights led to the rationale that transplantation of healthy and 
functional human astrocytes could support survival of neurons and be of therapeutic value 
in treating neurodegenerative diseases. Here, we will mainly focus on the role of astrocytes 
in ALS disease, the major cell sources for generation of human astrocytes, or astrocyte like 
cells and show how multiple preclinical studies demonstrate the efficacy of these cells in 
animal models. In addition, we will cover immerging early stage clinical trials that are cur-
rently being conducted using human astrocytes or human astrocyte like cell population.

Keywords: astrocytes, amyotrophic lateral sclerosis (ALS), hSOD1G93A, neurodegenerative 
diseases, mesenchymal stem cells (MSCs), glial cells

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that 

affects upper and lower motor neurons (MN) in the brain and spinal cord, respectively, this 
leads to paralysis and eventually death, mainly due to respiratory failure [1, 2]. The disease is 

incurable and fatal within 3–5 years of first symptoms. About 90% of ALS cases are sporadic, 
and about 10% of ALS cases are familial (with genetic background). Around 45% of familial 
ALS cases are caused by hexanucleotide expansion in the C9orf72 gene [3], while approxi-

mately 20% of the cases are associated with mutations in the Cu/Zu superoxide dismutase 
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(SOD1) gene [4]. Other mutations consist of RNA/DNA binding proteins FUS, TAR DNA 
binding protein-43 [5, 6]. hSOD1G93A high copy number transgenic rats and mice recapitulate 

the disease phenotype and serve as an animal model for ALS [7, 8].

In ALS, the motor neuron degeneration process is accompanied by signs of oxidative stress and 

mitochondrial dysfunction, inclusion bodies, impairment of RNA processing, neurofilament 
aggregation, loss of axonal transport, disruption of the neuromuscular junction, and axon demy-

elination [9]. In the extracellular environment, there are signs of toxicity, resulting from gluta-

mate accumulation, neuroinflammation, and blood barrier disruption. Astrocytes are the most 
abundant cells in the central nervous system (CNS) and are necessary for the protection and 

regeneration of neurons, as they promote axonal growth, deliver essential neurotrophic factors, 

and control blood-brain barrier integrity. Through their surface receptors and transporters, they 

control neurotransmitter levels at the synaptic cleft and regulate synapse formation [10, 11]. Thus, 

astrocytes regulate glutamate homeostasis by two major CNS glutamate transporters, GLT-1/
EAAT2 and GLAST/EAAT1, which are expressed almost exclusively by astrocytes in adult mam-

mals. In addition, astrocyte dysfunction may be the reason for the observed decrease in neuro-

trophic factors [12, 13], as well as for the oxidative stress [14] and neuroinflammation [15].

These observations led many academic groups and biotech companies, including Kadimastem 

to the rationale that ALS could be treated by implantation of normal astrocytes or cells with 

similar astrocytic characteristics from an external source, to support or replace dysfunctional 

ALS astrocytes [16]. Following encouraging preclinical proof-of-concept studies with various 
cell-based therapies in ALS rodent models, some of the cell therapies were next evaluated in 

clinical trials in ALS patients.

2. Pathophysiology of astrocytes in amyotrophic lateral sclerosis 

disease

The pathological mechanisms for ALS are still not well understood and the proposed mecha-

nisms include inflammation, oxidative stress, cytotoxicity by glutamate, and protein aggre-

gation. Though MNs are the main affected cells in the disease, growing body of evidence 
suggests the involvement of astrocytes in the pathology of ALS in a noncell autonomous path-

way. The contribution of astrocytes to the pathology of ALS is probably a combination of loss 

of homeostatic functions and/or gain of toxic functions.

2.1. Toxicity of astrocytes from ALS patients

Astrocytes that were isolated from sporadic and familial postmortem ALS patients and astro-

cytes derived from iPSC of ALS patients have been shown to be toxic to healthy (WT) motor 

neurons [17, 18]. Similar results were obtained by primary astrocytes isolated from hSOD1G93A 

mouse model [19, 20]. The toxic effect of astrocytes on MNs was demonstrated also by addi-
tion of astrocyte condition medium [21, 22]. This lead to the notion that astrocytes of ALS 

patients secrete toxic/mutated proteins that cause specific death of MNs. This hypothesis is 
supported by data from in vivo studies in ALS models. Intraspinal transplantation in WT rats 

of mutated SOD1 astrocytes, but not WT astrocytes, led to deterioration of MNs. MN death 
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was suggested to be mediated by microglia activation since no activation of microglia was 

observed with WT astrocyte injection [23]. In addition, in ALS mouse models where SOD1 

transgene was deleted specifically in astrocytes, the animals exhibited a delay in disease 
onset and slower progression [24–26]. Another study demonstrated that selective expression 

of mutant Tar DNA-binding protein 43 (TDP-43, found in ALS) in astrocytes causes a pro-

gressive loss of motor neurons and the denervation atrophy of skeletal muscles, resulting in 

progressive paralysis [27]. In addition, spinal cord astrocytes were found to degenerate in the 

microenvironment of motor neurons in hSOD1G93A mouse model [28] and ubiquitin-positive 

inclusions were shown in MN microenvironment close to disease onset [29].

2.2. Failure in supporting MNs

Excessive stimulation of glutamate receptors causes excitotoxicity to neurons [30]. Reduction 

of functional astrocytic glutamate transporters is suggested to contribute to glutamate excito-

toxicity found in ALS patients [31]. GLT-1, a glutamate transporter (a.k.a EAAT2) was found 

impaired in ALS patients [32, 33]. In vivo studies have demonstrated that focal loss of GLT-1 in 

the ventral horn of the spinal cord precedes disease onset in transgenic rat model for ALS over-

expressing Cu(+2)/Zn(+2) superoxide dismutase 1 (SOD1) [34]. Transplantation of SOD1G93A 

(glial-restricted precursor cells-glial progenitors that are capable to differentiate into astrocytes) 
in the cervical spinal cord of WT rats induced host MN ubiquitination and death, forelimb 

motor and respiratory dysfunction, reactive astrocytosis, as well as reduced GLT-1 transporter 

expression [23]. Mutating the caspase-3 cleavage consensus site in the GLT-1 sequence (D504N), 
inhibits caspase-3 deactivation of GLT-1. GLT-1D504N mutation in SOD1-G93A mice slowed down 

disease progression time, delayed the development of hindlimb and forelimb muscle weak-

ness, and significantly increased the lifespan of the diseased mice [35]. Activation of mGlu3 

metabotropic glutamate receptors in hSOD1G93A mice enhances GLT-1 formation as well as 

secretion of glial-derived growth factor (GDNF) in the spinal cord and rescues motor neurons 
[36]. Several lines of evidence indicate that strategies designed to increase GLT-1 expression 

have a potential to prevent excitotoxicity; for example, the pyridazine derivative LDN/OSU-
0212320 promotes GLT-1 translation [37], ceftriaxone increases GLT-1 expression by triggering 

NF-kB activity [38], and immunophilin ligand GPI-1046 also increases expression of GLT-1 
[39]; all have been found to delay disease development and death of SOD1G93A mice. However, 

a clinical trial evaluating ceftriaxone in ALS has been prematurely stopped because of lack of 

efficacy [40]. Nevertheless, Riluzole the first FDA-approved drug for ALS was found to increase 
glutamate uptake by C6 astroglial cells [41] shedding light on its therapeutic mechanism.

2.3. Cytotoxic cytokines

Inflammation-mediated neuronal injury is also recognized as a major factor to promote ALS 
disease progression and amplifies MN death-inducing processes. The neuroimmune activation 
is not only a physiological reaction to cell-autonomous death, but also an active component of 

nonautonomous cell death. Astrocytes participate in the cellular response to damage and dan-

ger signals by releasing inflammation-related molecules like NO, IL-6, INF-γ, prostaglandin D2, 
TGF-β, and TNF-α that can induce the apoptosis of neurons observed in ALS disease [21, 42–46]. 

INF-γ, for instance, was found to be expressed in GFAP-positive cells in the CNS [47] that pos-

sess a neurotoxic activity [48]. INF-γ was shown to induce selective death of motor neurons 

Astrocytes in Pathogenesis of ALS Disease and Potential Translation into Clinic
http://dx.doi.org/10.5772/intechopen.72862

95



through activation of lymphotoxin-β receptor via LIGHT. The ablation of LIGHT was shown to 
slow down disease progression and prolonged animals’ life span [49, 50]. Cerebrospinal fluid-
targeted delivery of neutralizing anti-IFNγ antibody delays motor decline in an ALS mouse 
model [51]. Other example of a key proinflammatory mediator is prostaglandin E2 (PGE2). 
High levels of PGE2 were found in postmortem brain tissue, cerebrospinal fluid, and serum 
from patients with sporadic ALS [52, 53]. PGE2 levels were also elevated in both the cerebral cor-

tex and spinal cord of SOD1G93A mice [54]. Moreover, the expression of cyclooxygenase (COX)-2, 

a key enzyme in the synthesis of prostaglandins, is higher in the spinal cord of ALS patients 

and model mice [55]. In addition, the level of microsomal PGE synthase-1 (mPGES-1), the final 
regulatory enzyme for PGE2 production, is up-regulated in the motor neurons of G93A mice 

[56]. Recently, it was found that PGE2 induced an upregulation of the EP2 receptor in motor 

neuron-like NSC-34 cells and lumbar motor neurons of ALS model mice [57].

2.4. Necroptosis

Astrocytes from both ALS patients and animal models were also found to induce MN death 

by activation of necroptosis [58]. Necroptosis is a form of programmed necrosis that is inde-

pendent from the activation of caspases and involves loss of the plasma membrane integ-

rity. The receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and mixed lineage 
kinase domain-like (MLKL) have been identified as effector proteins of necroptosis. In vitro 
inhibition of the necroptosis pathway by the RIPK1 antagonist necrostatin-1 (Nec-1) or by 

direct silencing of RIPK1 via a short hairpin RNA (shRNA) has been reported to protect MNs 

from astrocyte-induced toxicity [59, 60]. Necrosulfonamide that inhibits MLKL was shown to 

almost completely rescue MNs from astroglial toxicity. The mechanism by which astrocytes 

induce necroptosis is still not understood. However, the factors TNF-α, TRAIL, and FasL 
were suggested to play a role in induction of necroptosis.

2.5. Mitochondrial alterations

Mitochondrial alterations have been observed in both neuronal and glial cells of ALS patients 

as well as in ALS animal models [61–63]. As mitochondria are both the main producers and 

target of reactive oxygen species (ROS), increased mitochondrial ROS production in ALS may 

lead to mitochondrial dysfunction and cell death. Mitochondrial dysfunction in SOD1G93A-

bearing astrocytes resulted in enhanced generation of reactive oxygen species (ROS) that 

promoted motor neuron degeneration [64, 65]. Mitochondria from rat SOD1G93A-bearing 

astrocytes are defective in respiratory function and show an elevation in superoxide radical 

formation [64]. Thus, restoring mitochondrial dysfunction or reducing oxidative stress is an 

attractive therapeutic approach to treat ALS. For example, blocking the interaction of mutant 
SOD1 with one of its mitochondrial targets, Bcl-2, restores mitochondrial function in ALS 
mice [66]. In addition, Edaravone (a.k.a Radicava) that was recently approved by the FDA for 
the treatment of ALS possess a broad free radical scavenging activity and protects neurons, 

glia, and vascular endothelial cells against oxidative stress [67].

2.6. Neurotrophic factors

In both physiological and pathological conditions, astrocytes secrete a wide range of factors with 

multiple influences on their cellular neighbors. A well-known factor that is secreted by astrocytes is 
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the glial cell line-derived neurotrophic factor (GDNF), one of the most potent protective agents for 
motor neurons. Disruption of the astrocytic TNFR1-GDNF axis accelerates motor neuron degen-

eration and disease progression [68]. Astrocytes in ALS rat model acquire an accelerated senescent 

phenotype and show a reduced support in motor neurons, which can be partially reversed by glial 

cell line-derived neurotrophic factor (GDNF) [69]. Another factor that plays a role in ALS pathol-

ogy is vascular endothelial growth factor (VEGF), originally described as a factor with a regulatory 
role in vascular growth and development, but which also directly affects neuronal cells [70, 71]. 

Transgenic mice expressing reduced levels of VEGF develop late-onset MN pathology, similar to 
that of ALS [72]. VEGF is secreted by astrocytes and has been shown to protect MNs from exci-
totoxic death, which occurs in ALS [72]. VEGF delays MN degeneration and increases survival 
in animal models of ALS [73, 74]. In line with these results, low levels of VEGF and GDNF were 
reported in the CSF of ALS patients [75]. VEGF exerts its antiexcitotoxic effects on MNs through 
mechanisms involving VEGF receptor-2 and activation of the PI3-K/Akt signaling pathway [72].

Thus, astrocytes play a pivotal role in the pathology of ALS and contribute to MN loss. A ther-

apeutic approach would therefore be a replacement, or support, malfunctioning astrocytes in 

ALS with wild-type healthy astrocytes or modified cells with astrocytic characteristics. Such 
cells can mitigate the toxic CNS environment, modulate neuroinflammation, secrete neuro-

protective factors, and foster MN repair process.

3. Cell sources for derivation of astrocytes

3.1. Glial restricted progenitors (GRP)-derived astrocytes

Glial restricted progenitors (GRP) are early cell population of the CNS that can self-renew and 

give rise to astrocytes and oligodendrocytes [76, 77]. Isolation of GRPs from human fetal tissues 

(i.e., 20-week-old fetal cadaveric brain tissue) [78] was described. In vitro studies demonstrated 

the capacity of these cells to differentiate toward astrocytes by using platelet-derived growth 
factor (PDGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), T3 thy-

roid hormone, and ciliary growth factors (CNTF) as well as bone morphogenic proteins (BMPs) 
[78–81]. Yet, in vitro, only a subset of GRPs give rise to mature astrocytes [82]. In vivo trans-

plantation of human GRPs into the spinal cord-injured animals demonstrated survival and 

differentiation toward astrocytes [83]. Moreover, intraspinal transplantation of GRPs overex-

pressing GLT-1 into ventral horn following cervical hemicontusion (injured spinal cord) signifi-

cantly increased GLT1 protein expression and functional glutamate uptake following astrocyte 

differentiation. Transplantation into C4 hemicontusion compared to sham-injected animals 
demonstrated the paradigm that transplantation of GRPs might be a promising approach in 

cell therapy [79]. Yet, investigating human astrocyte maturation using a primary brain tissue 

obtained from cadaveric donors is challenging. Sample availability is limited, particularly for 

critical developmental time periods such as late gestation or early postnatal stages. In addition, 

derivation of homogenous astrocyte populations from GRPs is still a great challenge.

3.2. Derivation of astrocytes from embryonic stem cells or induced pluripotent stem cells

Two main pluripotent stem cells (PSC) sources for derivation of human astrocytes are embryonic 

stem cells and induced pluripotent stem cells (iPSCs), which are generated from adult human 
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somatic cells that are reprogrammed into pluripotent stem cells using multiple technologies 

[84]. Both cell sources possess astonishing capacity to undergo unlimited self-renewal and to dif-
ferentiate into all cell types present in the adult body. These sources potentially provide unlim-

ited supply of cells for cell-based therapy and drug screening platforms. Methods for producing 

neural precursor cells from PSC and their further differentiation toward glial lineage were dem-

onstrated in pioneering studies in animal models of neurodevelopment [85–92]. In these studies, 

the key steps in neural commitment in vivo were identified and were recapitulated in a stepwise 
process of neural commitment in vitro that results in specific commitment of pluripotent stem 
cells toward neural and glial lineage. The differentiation process is usually done by exposing 
iPSC as well as hESC to different morphogens and mitogens [93] and specifying the different 
subtypes of neural and glial cells. Examples for such mitogens include sonic hedgehog (SHH) 

[94], which was found to be secreted in vivo from the notochord and neural tube, and WNT pro-

teins [95] and bone morphogenetic protein (BMP) [96] that are secreted from the dorsal regions. 

This allowed specifying different subtypes of neural and glial cells. Other key factors, which are 
often used for the differentiation into neural progenitor fate, include fibroblast growth factors 
(FGFs), epidermal growth factors (EGFs), and retinoic acid (RA) [97, 98].

Recently, formation of organoids, a simplified version of an organ produced in vitro in 
three dimensions (3D), is being used as an alternative method for deriving glial cells from 

hPSC. This 3D structure allows spontaneous recapitulation of morphogenic and mitogenic 

features that occurs during neurodevelopment [99, 100]. This platform allows to study neural 

development and model various neurodegenerative diseases.

3.3. Direct conversion of somatic cells into astrocytes (iAstrocytes) or astrocyte-like cells

Direct cell-reprogramming principle that was applied for derivation of iPSC (i.e., by transduc-

tion of specified transcription factors or by using a defined chemical cocktail [84] are now 

being applied for a direct conversion of somatic cells into neural cells and astrocytes. Although 

rapid progress has been made in converting somatic cells into neural stem cells, neurons, 

and oligodendrocytes, direct reprogramming of somatic cells into astrocytes remains largely 

behind. Recently, Caiazzo et al. described for the first time conversion of mouse fibroblast into 
astrocytes (iAstrocytes), comparable to endogenous brain astrocytes. This was carried out by 

transducing the transcription factors NFIA, NFIB, and SOX9, and these factors were found 
to be involved in astroglial commitment and enabled direct conversion into astrocytes [101]. 

Another approach for direct conversion or reprogramming of mammalian fibroblasts into 
astrocytes is culturing the cells in the presence of a small molecules cocktail that includes his-

tone deacetylase inhibitor VPA and GSK3β inhibitor CHIR99021, among other factors. TGFβ 
Inhibitor was found to be the critical factor in this cocktail [102].

3.4. Mesenchymal stem cells

Mesenchymal stem cells (MSC) are adult multipotent precursors derived from various adult tis-

sues and differentiate in vivo or in vitro into osteocytes, chondrocytes, fibroblasts, and adipo-

cytes [103]. Recently, it was reported by several groups that MSC can also adopt a neural fate in 

appropriate in vivo or in vitro experimental conditions [104]. Recently, several laboratories have 

managed to differentiate MSC into astrocytes-like cells; for example, addition of cAMP-elevating 
agents, forskolin and 3-isobutyl-1-methylxanthine (IBMX), resulted in the expression of neural 
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markers including β-tubulin III (Tuj-1), neuron-specific enolase (NSE), microtubule-associated 
protein-2 (MAP-2), nestin, and glial fibrillary acidic protein (GFAP) [105]. Another study showed 

that by using subsonic vibration (SSV) on MSC promoted their differentiation into neural-like cells 
in vitro [106]. Other studies developed protocols that induce adult human bone marrow-derived 

mesenchymal stem cells (MSCs) into becoming neurotrophic factor secreting astrocyte-like cells 

and attenuated clinical symptoms in animal model of multiple sclerosis and ALS [107–109].

4. Preclinical studies using cell-based therapies in ALS rodent 

models

4.1. Transgenic rodents overexpressing the mutant gene hSOD1G93A as a model for 

ALS

Several mutated genes have been identified as ALS causing mutations including C9ORF72, 
Cu/Zn superoxide dismutase 1 (SOD1), TAR DNA-binding protein 43 (TDP-43), UBQLN2, 
p62, VCP, Profilin1, and Matrin 3 [110]. Mutated SOD1 is the second most abundant ALS 

causing gene after gene encoding C9ORF72 and found in about 15% of the familial ALS cases 
[4, 111]. Several genetic mouse models expressing various ALS mutant genes were devel-

oped in order to mimic the human disease [7, 34, 112–115]; however, overexpression of the 

mutant SOD1 gene was shown to best recapitulate the pathology of the human disease [116]. 

Among SOD1 mutations, transgenic mice and rats overexpressing the human mutated gene 

SOD1G93A is the most used model of ALS in preclinical in vivo studies toward clinical trials 

[116]. Transgenic hSOD1G93A mice and rats exhibit histopathological hallmarks similar to those 

associated with ALS in humans with a massive degradation of motor neurons [7, 34]. The 

transgenic rodents show a clear disease pathology, including selective death of spinal cord 

motor neurons and muscle atrophy in both hind and forelimbs, early astrogliosis and micro-

gliosis, glutamate-mediated excitotoxicity, protein aggregation, mitochondrial dysfunction, 

and impaired axonal transport [116–118]. Upon disease onset, hSOD1G93A mice progressively 

develop symptoms that include hyperreflexia and shaking of the limbs, decrease in locomotor 
activity, impairment in walking patterns, decreased grip strength, and impaired coordination. 
In the late stage of the disease, the mice develop a severe paralysis [7, 34].

4.2. Preclinical studies using human neural stem cells

Neural stem cells (NSC) are derived from CNS tissue at various developmental stages of 

embryogenesis, fetal and in adults. NSCs can potentially form all neural types of cells of the 

CNS including astrocytes, neurons, and oligodendrocytes [119]. The differentiation capacity 
of NSCs depends on the developmental stage from which the cells are isolated and might be 

wider when cells are isolated at early stage [120]. The NSC features of multipotency, homing, 

neurotrophism, immunomodulation, and neuroprotection make them a promising therapeutic 

candidate for ALS [121–126]. Several studies reported a beneficial effect on disease progression 
and survival of ALS rodent models following a direct injection of NSCs into the spinal cord 

parenchyma. Fetal spinal cord NSCs that were injected into the lumbar spinal cord of SOD1 G93A 

rats completed their differentiation and secreted neurotrophic factors to the proximate areas. 
The transplanted cells also formed synaptic contacts with host motor neurons. Transplantation 
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of the cells delayed the disease onset, attenuated the progression, and moderately expanded 
life expectancy of the diseased rats by 10 days [127]. In order to support more muscle groups 

in SOD G93A rats, including muscles of hind- and forelimbs and respiratory, NSCs were injected 

into the ventral horn of both the lumbar and cervical spinal segments of presymptomatic ani-

mals. The dual treatment extended the survival of the rats by 17 days and delayed disease onset 

by 10 days compared to control animals, demonstrating the advantage of multiple injections 
[128]. A different study involving injection of NSCs to the lumbar ventral horn of presymptom-

atic SOD1 G93A rats did not demonstrate similar improvement in survival. However, the study 

still showed a limited and transient protection of motor function in the experimental animals 

[129]. The study has also demonstrated that the graft provided a neuroprotective effect, which 
was limited to the motor neurons of the lumbar segment. The grafted cells expressed markers 

of early mitotic neurons, including human neuron-specific enolase and doublecortin. In addi-
tion, the hNSCs reduced astrogliosis and numbers of activated microglia at the site of injection. 

Knippenberg et al. showed that intraspinal transplantation of human spinal cord-derived neural 

progenitor cells into the lumbar spinal cord of hSOD1G93A mice delayed accumulation of motor 

deficiencies in a narrow time window during disease progression and moderately increased the 
life span by 5 days. Interestingly, female mice responded slightly better to the cell treatment, 
as observed in other studies in transgenic mutant hSOD1 mice [130, 131]. Characterization of 

the graft 6 weeks post-transplantation revealed that the cells were positive for the early neural 

marker nestin and rarely expressed the glial marker GFAP. Elevation of endogenous neuro-

trophic factors, but not human-derived factors, was measured in the spinal cord parenchyma 

[132]. A meta-analysis of intraspinal NSC transplantations in SOD1G93A transgenic mice of 11 

independent studies, performed by a consortium of ALS investigators, suggests that transplan-

tation of NSCs from either human or mouse source delays disease onset, slows down symptom 

progression and prolongs survival of the mutated mice (e.g., the more than 1 year life extension 

in 25% of the mice that were injected at 4 sites). The authors proposed several mechanisms by 
which NSCs exert their therapeutic effects, including production of neurotrophic factors, pres-

ervation of motor function, and attenuation of inflammation and astrogliosis processes [133].

4.3. Preclinical studies using human mesenchymal stem cells

Mesenchymal stem cells (MSC) can be isolated from the placenta and from adult bone mar-

row and adipose tissues [134]. Although MSCs are of mesoderm origin, they maintain the 

potential to differentiate to cells types other than mesoderm derivatives including neurons-
like cells and glial-like cells [135, 136].

MSC availability, well-established methods for harvesting and expansion, immunomodulatory 

features, ability to release neurotrophic factors, and lack of ethical issues make them attractive can-

didates for cell therapy applications [137, 138]. Several studies explored the therapeutic potential 

of MSCs in ALS models. These studies delivered MSCs to diseased animal through various routes, 

local and systemic, including intraspinal, intrathecal, intramuscular, and intravenous [137–140].

Transplantation of hMSCs into the lumbar spinal cord of asymptomatic SOD1G93A mice 

reduced astrogliosis microglial reactivity and improved motor neuron counts. However, 

changes were gender dependent and observed only in female mice. On the other hand, 

behavioral tests demonstrated that the improvement in motor performance was restricted 

to transplanted males [141]. Boucherie et al. reported an alternative delivery approach of 
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rat MSCs by intrathecal injection to the cerebrospinal fluid of symptomatic hSOD1G93A rats 

[142]. The transplantation led to infiltration of the injected cells into the CNS parenchyma 
including to the ventral horn. Transplantation of MSCs partially rescued motor neurons in 

the ventral horn, prolonged animal survival and improved motor performance over sham-

injected rats [142].

A systemic administration of murine adipose-derived MSCs to hSOD1G93A mice by intrave-

nous injection upon onset of disease symptom showed that a restricted number of labeled cells 

were able to reach the parenchyma of the spinal cord, with no evidence of neural differentia-

tion. Upon transplantation, an increase in GDNF and bFGF levels was measured in the spinal 
cord. Researchers reported a better MN survival and a reduced reactive astrogliosis in the spi-
nal cord in addition to amelioration of the course of disease progression [143]. A different study 
using an intravenous delivery of murine MSCs to SOD1G93A mice also prolonged survival and 

increased motor functions, in addition to improvement in histological pathology traits [144].

Another promising approach to rescue motor neurons in ALS is secretion of neurotrophic fac-

tors at the site of the damage by grafted cells. Human MSCs overexpressing the neurotrophic 

factor GDNF were injected into three muscle groups of presymptomatic SOD1G93A rats. The 
cells survived in the muscle and helped to preserve neuromuscular junction innervations. 

While engineered-MSC injection did not affect disease onset, it delayed disease progression 
and profoundly increased overall lifespan by up to 2 weeks [145]. Additional study demon-

strated the advantage of combined delivery of hMSCs expressing both GDNF and VEGF. The 
NTF combination synergistically prolonged survival and attenuated disease progression in 
SOD1G93A rats [146].

4.4. Preclinical studies using human glial-restricted cells derived aborted human 

fetuses

Glial-restricted precursors (GRP) can be isolated from embryonic CNS tissue. These cells 

maintain a limited differentiation capacity to form only glial cells including astrocytes and oli-
godendrocytes [147, 148]. Endogenous glial cells in ALS experimental models and in patients 

were shown to be malfunctioning and even toxic to motor neurons, contributing to disease 

progression. Thus, introduction of healthy functional astrocytes to damaged areas in the CNS 

can potentially compensate for diseased astrocytes. Transplantation of rat GRPs into the cer-

vical spinal cord of SOD1G93A rats was found to maintain respiratory motor function. In this 

study, the cells robustly survived, migrated within the cervical spinal cord, and specifically 
localized in the ventral horn. At the time of transplantation, most of GRPs were nestin+, but 

they efficiently completed their differentiation into GFAP+ astrocytes by end-stage disease 
(87% GFAP+ astrocytes). At this stage, approximately only 10% of the cells remained as undif-
ferentiated nestin + cells. During the course of disease, the transplanted astrocytes developed 

mature astrocyte morphologies and spatially interacted with host MNs in the spinal cord. 

GRP transplants slowed cervical spinal cord motor neuron loss and reduced microgliosis in 

the cervical segment. Overall, the cell transplantation extended animals’ survival and attenu-

ated declines in motor performance [149]. The authors tried to reproduce these results by the 

injection of human GRP to SOD1G93A mouse model. However, although the cells could survive 

in the cervical spinal cord under intensive immune suppression regimen and differentiate 
into GFAP+ astrocytes, the graft did not protect motor neuron loss or motor function and did 
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not extent life expectancy. The difference between the outcomes of the two studies might be 
attributed to the different rodent models, cell dose, and number of injection sites [80].

4.5. Preclinical studies using human glial progenitors derived from ESCs and IPSCs

Embryonic stem cells are isolated from the inner-cell mass of a blastocyst and can be expanded 

in culture without losing their self-renewal capacity [150]. The cells can give rise to any cell 

type of the body. Induced pluripotent stem cells (iPSCs) are derived from somatic cells, 

mostly fibroblasts, which acquire an ESC-like pluripotent state after reprograming by induc-

tion of specific transcription factors. iPSCs can be generated from the patient’s own cells. 
Transplantation of cells derived from such autologous iPSCs reduces the risk of immune 

rejection without the need of immunosuppression [151]. Kondo et al. differentiated human 
iPSCs into glial-rich neural progenitors (hiPSC-GRNP), highly enriched with GFAP+ cells. 
hiPSC-GRNPs were injected bilaterally into the lumbar spinal cord of transgenic SOD1G93A 

mice after disease onset. Treated mice showed an improvement in motor function and a pro-

longed survival of 12 days over sham-injected group. Transplanted cells survived in the spi-

nal cord and differentiated mainly into GFAP+, ALDH1L1+, and GLT-1+ astrocytes. Analysis of 

NTFs expression at the lumbar spinal cord reveled upregulation in mouse-originated VEFF, 
NT3, and GDNF [152].

We developed a protocol to produce large quantities of highly enriched astrocyte progeni-

tors (APC; >90% GFAP+ cells) from human embryonic stem cells (hESC) according to GMP 
standards (unpublished data by the authors). In vitro, these cells express astrocyte markers 

including GFAP, S100β, GLAST, GLT-1, and Aquaporin- 4, and possess the activities of func-

tional healthy astrocytes upon differentiation into mature astrocytes. These astrocytes are 
shown in vitro to have multiple activities including (1) protection of spinal cord motor neu-

rons from oxidative stress produced by H
2
O

2
, (2) efficient glutamate uptake, which is in part 

due to GLT-1 (as shown by GLT-1 inhibitors), (3) stimulation of axonal growth in neurons 

seen in co-cultures with hES-AS, and (4) secretion of many factors with neuron protecting and 

stimulating activities. Intrathecal transplantation of hESC-derived APCs to the cerebrospinal 

fluid (CSF) of SOD1G93A transgenic rats and mice showed that the cells distribute along the 

neural axis and attach to the spinal cord and brain meninges, mainly to pia mater. In these 
studies, intrathecal transplantation of hESC-derived APCs significantly delayed disease onset 
and improved motor performance compared to sham-injected animals. The cells were shown 

to be safe and express markers of mature astrocytes including GFAP, GLAST, GLT-1, and 
Aquaporinn-4 in vivo. The cells did not express pluripotent markers and did not form terato-

mas or other tumors after a follow-up duration of 9 months. These cells are now the basis for 

a planned clinical trial.

5. Translation into the clinic

Following encouraging preclinical proof-of-concept studies with various cell-based therapies 
in ALS rodent models, demonstrating the safety and efficacy of the treatments, some of the 
cell therapies were already evaluated in clinical trials in ALS patients.
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5.1. Route of cell administration

Several aspects of route of administration of cell therapies to ALS patients should be considered 

to ensure long-term survival, homing, and functionality of the cells in the target organ after 

transplantation. Cells for ALS treatment can be delivered by several routes, local or systemic, 

including intraspinal, intrathecal, intraventricular, intramuscular, and intravenous injections. 

Among these routes, intraspinal and intrathecal cell delivery routes were mostly used in ALS 

clinical studies [153, 154]. Intraspinal injection allows delivery of cells to the region of ventral 

horn in close proximity of motor neurons. However, migration of cells distal to injection site 

along the spinal cord is limited [80, 155] and therefore, only neural projections at the vicinity of 

the injected site are expected to be affected. Although intraspinal injection of cell was demon-

strated to be a relatively safe procedure in animal models and in humans [156, 157], it is still a 

very challenging invasive procedure that requires an expertise and unique surgery instruments 

[158]. In addition, in order to support several groups of muscles in the patient’s body, mul-

tiple independent injections along the spinal cord are required, increasing the complexity of 

the surgical procedure [159]. An alternative delivery of cells to the CNS is intrathecal injection 

to the subarachnoid space. Intrathecal injection is a routine procedure performed in humans 

by lumbar puncture. The intrathecal delivery is considered as a safe and simple method and 

does not require high level of expertise or instruments. IT injection allows the cell to distribute 

along the neuroaxis, distal from the injection site (unpublished data by the authors). Studies 

in animal models demonstrated a limited infiltration of engrafted cells from the CSF into the 
neural parenchyma [107, 160, 161]. Nevertheless, secreted factors such as NTFs, and anti-
inflammatory/immunomodulatory cytokines circulate with the CSF and can diffuse into the 
parenchyma. In addition, the transplanted cells can remove from CSF circulating toxic factors 
such as excess glutamate and ROS. Therefore, the biodistribution of the cells in the CSF by IT 
injection is expected to exert systemic effect in the CNS, affecting both upper and lower MNs.

5.2. Clinical trials using cell-based therapies for the treatment of ALS

Cell therapy for ALS is considered as an innovative approach and many of the trials tested 

the cell therapy for the first time in humans. The primary endpoint of most studies was safety 
and the secondary endpoint included efficacy measurements. However, due to the small size 
studies and lack of placebo groups, the interpretation of the efficacy outcomes is difficult. Two, 
phase I and phase II, clinical trials (NCT01348451 and NCT 01730716) in ALS patients were con-

ducted by Neuralstem Inc. [157, 162, 163]. The source of the human NSCs was a stem cell line 

generated from cervico-thoracic segments of spinal cord of a single 8-week-old aborted fetus. 

The cells were transplanted by an intraparenchymal injection procedure, performed using a 

spinal-mounted stabilization surgical device following laminectomy. Various concentrations 

of 0.5–16 × 106 cells were delivered to the lumbar and/or cervical vertebral levels. The primary 
endpoint of the two studies was safety. Adverse events were associated mainly with transient 

pain from the surgery procedure and to side effects of the immunosuppressive drugs. The effi-

cacy of the treatment was evaluated by measuring ALSFRS-R, %, predicated forced vital capac-

ity (FVC) and grip strength. Since the study did not include a randomized placebo group, the 
efficacy outcomes were compared to historical data. Although the efficacy data did not show an 
advantage of the treatment over historical controls, the small size groups, lack of placebo arms  

Astrocytes in Pathogenesis of ALS Disease and Potential Translation into Clinic
http://dx.doi.org/10.5772/intechopen.72862

103



and variability in disease progression between participants, make it difficult to draw a conclu-

sion about the therapeutic benefits of the treatment. Graft survival was analyzed in six autopsy 
cases. Transplanted cells were identified in all cases by qPCR at the injection site in all cases, up 
to 2.5 years after cell injection. The presence of donor cells represented 0.67–5.4% of total tissue 
DNA. In one female patient, the injected cells, which were of male origin, were identified in histo-

logical sections 196 days post-transplantation by FISH targeting the Y chromosome. Some cells in 
the graft of this female patient completed their neural differentiation and expressed the neuronal 
marker NeuN, while other remained positive to the neural progenitor marker SOX2. However, 

many of the XY donor cells were negative to both markers with an unknown identity. These 

results demonstrate the survival of the graft in the patient under immune suppression. Yet, the 

interaction of the cells with the surrounding tissue and their effect of MNs in the spinal cord were 
not explored [164]. Another clinical trial using hNSCs for the treatment of ALS was conducted 

by Mazzini et al.. Under this trial, hNSCs were injected into the thoracic spinal cord segment of 
ALS patients (EudraCT:2009–014484-39). The NSCs were isolated from the forebrain of aborted 
fetuses and expanded in culture under GMP conditions. Upon laminectomy, 2.25–5.5 × 106 cells 

were injected unilaterally or bilaterally into the T8-T11 ventral horn of six ALS patients. No severe 

adverse events were related to the treatment, and the most common reported adverse event was 

transient postsurgical pain. Patients were monitored for 1 year on a monthly basis and then for 

every 3 months. Clinical assessments up to 18 months after transplantation showed no accelera-

tion in the disease progression that could be related to the treatment. A transitory improvement 

of the ambulation abilities was reported in two patients and one patient demonstrated a transient 

improvement in muscle power of lower limbs [156].

The safety and efficacy of MSC transplantation for treating ALS was conducted by Mazzini 
et al. In total, 10 ALS patients were injected intraspinally at T4-T6 with 11–120 × 106 autolo-

gous MSCs (Italian registration number: 16,454-pre21–823). The cells were isolated from bone 

marrow and expanded ex vivo under GMP conditions. The patients have been monitored 

for at least a 24-month follow-up period after transplantation. No serious treatment-related 

adverse events were reported. Overall, the procedure was demonstrated to be safe with only 

transient adverse events that were associated with the surgery procedure. Yet, no significant 
changes in the progression of the disease were reported in the follow-up period [165]. In 

separate long-term consecutive phase I studies, 19 patients were followed for up to 9 years 

after intraspinal transplantation of autologous MSCs. The procedure was demonstrated to 

be safe and did not accelerate the progression of the disease. MRI analysis showed no struc-

tural changes from baseline and lack of tumor formation. However, no clinical benefits were 
observed in the patients during the follow-up phase [153, 166].

In order to improve the potential of MSCs to support motor neurons, Brainstorm cell thera-

peutics Inc. developed an in vitro procedure to expand autologous MSCs and induced them 

to secrete neurotrophic factors including GDNF, BDNF, VEGF and HGF. These NTF secreting 
cells were delivered to the cerebrospinal fluid by intrathecal administration and/or to motor 
end-plates by intramuscular (IM) administration [167].

The company conducted Phase I/II clinical trials in 26 ALS patients (NCT01051882 and 
NCT01777646). One million cells/sites at 24–48 separate sites were injected to the biceps and 
triceps, and 1–2 × 106 cells/kg were injected intrathecally. Overall, the treatment was found 
to be safe and tolerable by patients with only transient and mild adverse events appearing 
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after the administration of cells. The authors also reported an improvement in the decline of 

ALSFRS-R within 6 month of follow-up period compared to the run-in period, from −1.2 to 
0.6 points/month, and also a decline from −5.1% to −1.2%/month in the predicted forced vital 
capacity [168]. The safety and efficacy of MSC-NTF cells were further tested in a randomized, 
double-blinded phase IIb clinical trial in 48 ALS patients, divided in a ratio of 3:1 between 

treatment and placebo arms, respectively (NCT02017912). According to the sponsor’s web-

site, the cells were injected both intramuscularly (48 × 106 cells at 24 sites) and intrathecally 

(125 × 106 cells), and patients were monitored for 24 weeks. Treatment was shown to be safe 

and well tolerated. A responder in the analysis of the trial was defined as a subject that who 
improved post-treatment compared with pretreatment run-in period. Data analysis demon-

strated higher percentage of responders in the treatment arm subjects over placebo in most 

time points of the analysis. The responder analysis also revealed a subgroup of more rap-

idly progressing patients that were more likely to benefit from the treatment. The sponsor 
reported that the concentration of neurotrophic factors in the CSF including VEGF, HGF, and 
LIF elevated in the cell-treated arm after transplantation, but not in the placebo arm. These 
results were observed in parallel with a reduction in inflammatory markers in the CSF of 
cell-treated patients. According to the company’s announcement, the efficacy of the therapy 
will be evaluated under a prospective placebo-controlled, multidose phase III trial in approxi-

mately 200 rapidly progressing ALS patients (NCT03280056).

Administration of autologous bone-marrow-derived MSCs by intrathecal injection to ALS 

patients was conducted by Corestem Inc., in a two-stage phase I/II clinical trial (NCT01363401). 
In the first stage of the study, cultured MSC expressing the markers CD29, CD44, CD73, and 
CD105 were administrated to the seven patients by two repeated LP injections (1 × 106 cells/kg),  
one monte apart. The patients were monitored for a period of 12 months. During the follow-

up period, the treatment was shown to be tolerable and generally safe. Although the first 
stage of the study did not include a control group and was not powered to detect meaning-

ful efficacy changes, the study showed encouraging results of stabilization of the ALSFRS-R 
score in all patients over a period of 6 months after first cell injection. In addition, levels of 
the immune response cytokines IL-10, TGF-β, and IL-6 were increased in the CSF after MSC 
injection, suggesting that of the effect of MSC injection on ALS patients is mediated, at least 
partially, by an immune response [169].

6. Conclusion

ALS is a multifactorial disease involving both genetic mutations and dysregulation of molec-

ular pathways. Several mechanisms were identified in the pathophysiology of the disease, 
among them, glutamate excitoxicity, accumulation of free radicals, protein aggregation, mito-

chondrial dysfunction and impaired axonal transport and inflammation. In addition, during 

the last few years, growing evidence shows that astrocytes of both ALS animal models and ALS 

patients are malfunctional and even toxic. These astrocytes cannot support MNs and therefore 

contribute to the progression of the disease. Transplantation of healthy functional cells that can 

replace diseased astrocytes is, therefore, a promising strategy to treat ALS. Although different 
types of cells were proposed as a therapy for ALS, they all share mechanisms of action includ-

ing, anti-inflammation/immunomodulation, clearing of toxic environment, and secretion of 
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neurotrophic factors. The combined mechanism of action provided by cell transplantation is 

postulated to better cope with the multifactorial nature of the disease compared to a single 
pathway-based drug. Preclinical studies in ALS animal models showed the high safety profile 
of cell-based treatments in addition to their benefits in delaying disease onset, slowing down 
clinical symptoms and in many cases also to extend survival. Besides behavioral measure-

ments, many of the studies also demonstrated graft survival, decline in inflammation, and 
improvement in histopathological attributes of the disease. Translation of the preclinical stud-

ies into clinical trials confirmed the safety of the procedures. Efficacy in most of these trials was 
a secondary endpoint, and some studies showed moderate and/or transient beneficial effects. 
Yet, since most of the clinical trials were at early stage, with small-size groups without a con-

trol arm, it is difficult to evaluate the efficacy of the treatments. Late-stage, placebo-controlled 
clinical studies with greater number of patients will prove whether any of the cell-based thera-

pies indeed change the course of the disease.
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