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Abstract

Disruption of the regulatory mechanisms that control cell proliferation and cell migration 
results in multiple disease states including cancer and leukaemia. The proline-rich home-
odomain protein (PRH)/haematopoietically expressed homeobox protein (HHEX) is a tran-
scription factor that controls cell proliferation and cell migration in a variety of tissues in the 
adult and in the embryo. Phosphorylation of PRH by Protein Kinase CK2 (Casein Kinase II) 
stops PRH from binding to DNA and regulating the transcription of its direct target genes. In 
leukaemic cells, phosphorylation also results in the production of a transdominant-negative 
truncated PRH phosphoprotein by the proteasome. Phosphorylation of PRH is increased in 
breast and prostate cancer cells and the consequent loss of PRH activity increases cell prolif-
eration and migration. PRH also regulates the proliferation of vascular smooth muscle cells 
and CK2-dependent phosphorylation of PRH in these cells accompanies increased cell prolif-
eration during intimal thickening. Thus the ability of PRH to regulate cell behaviour and the 
control of PRH by CK2 is not limited to a specific cell type or tissue. This raises the possibility 
that the PRH-CK2 axis could be targeted in a variety of disease states ranging from multiple 
cancers to the intimal thickening that occurs in vein bypass graft failure and restenosis.

Keywords: cell proliferation, cell migration, cell invasion, tumourigenesis, tumour 
growth, restenosis, intimal thickening

1. Introduction

The proline-rich homeodomain (PRH) or haematopoietically expressed homeobox (HHEX) 

protein, is a highly conserved transcription factor belonging to the homeodomain family 

(reviewed by Soufi et al. [1]). Originally characterised in the haematopoietic compartment 
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[2–4], PRH has since been found in a wide variety of tissues [1]. PRH is critically important in 

embryonic development where it regulates anteroposterior axis formation and the develop-

ment of multiple organ systems including the liver, thyroid, lung, thymus, gallbladder and 

pancreas [5–8]. In the adult, PRH is expressed in a variety of tissues including the thyroid, 

lungs, liver and haematopoietic compartment [4, 9]. In these tissues PRH acts as a master 

regulator of genes important in cell proliferation, cell migration and invasion, and cell differ-

entiation [1]. Changes in PRH activity therefore have profound effects on cell behaviour. This 
review focuses on the regulation of PRH activity by Protein Kinase CK2 and the role that this 

plays in tumourigenesis and in the control of vascular smooth muscle cell (VSMC) prolifera-

tion during intimal thickening.

2. The regulation of gene expression by PRH

2.1. The PRH protein

The PRH protein has three functional domains; a central homeodomain that mediates DNA 

binding, with N-terminal and C-terminal domains that regulate transcription (Figure 1). 

The PRH homeodomain is a 60 amino acid sequence that forms three α helices. The sec-

ond and third helices make up a helix-turn-helix motif and together with amino acids in an 

N-terminal arm of this domain, this mediates sequence-specific DNA binding. The muta-

tion of asparagine to alanine at position 187 within the PRH homeodomain dramatically 

reduces DNA binding and prevents PRH from repressing the transcription of its direct target 

genes [10, 11]. The PRH homeodomain also mediates binding to transcription factor AP1 

[12]. The PRH N-terminal domain can repress transcription when attached to a heterologous 
DNA binding domain [10, 13]. Additionally, the N-terminal domain interacts with a variety 

of proteins including the promyelocytic leukaemic (PML) protein, eukaryotic initiation fac-

tor 4E (eIF-4E), proteasome subunit C8, and the regulatory subunit of Protein Kinase CK2 

Figure 1. PRH and PRH-interacting proteins. A schematic representation of the PRH protein. The homeodomain and the 

N- and C-terminal domains are indicated along with the serine residues known to be phosphorylated by CK2 (S163 and 

S177). PRH-interacting proteins are listed and their binding sites on PRH are indicated by brackets. Some of the protein-

protein interactions have not been mapped to defined regions of PRH.
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[14–17]. The C-terminal domain is rich in acidic residues and it also functions in transcrip-

tional regulation since its loss prevents PRH from activating transcription of the sodium-

dependent bile acid co-transporter (NTCP) gene [18, 19].

The PRH protein forms oligomeric complexes in vitro and in cells [20]. The PRH N-terminal 

domain is resistant to SDS (sodium dodecyl sulphate)-induced denaturation and does not 

have extensive α-helical or β-sheet secondary structures. However, this domain forms dimers 
that interact with the PRH homeodomain [20]. In vitro studies suggest that octameric PRH 

oligomers form via the association four PRH dimers [20]. This has implications for DNA bind-

ing since although the isolated PRH homeodomain binds to a single DNA site, the full length 

PRH protein binds to linear arrays of homeodomain binding sites with high affinity [21]. 

Several genes that are directly regulated by PRH including Goosecoid (GSC), TLE4, VEGFA, 

VEGFR-1 (FLT1), and endothelial cell-specific molecule-1 (ESM-1) contain multiple, putative 
PRH-binding sequences [8, 21–23]. This suggests that PRH oligomers bind to these linear 

arrays to regulate gene expression. However, it is possible that a single PRH binding site may 

be sufficient to confer gene regulation by PRH.

2.2. The regulation of gene expression

Like many transcription factors PRH can either repress or activate transcription depending 

on its target gene (see Soufi et al. [1] and Gaston et al. [40] for lists of PRH target genes) and 

its partner proteins (shown in Figure 1). For example, PRH represses the Goosecoid, ESM-

1, VEGFA, VEGFR-1, VEGFR-2, and thyroglobulin promoters [8, 21, 23, 24]. An Eh1 motif 

in PRH N-terminal domain allows PRH to recruit members the Groucho/transducin-like 

enhancer of split (TLE) family of co-repressor proteins which in turn recruit histone deacety-

lases [25]. Similarly, PRH can repress transcription by recruiting the polycomb-repressive 

complex 2 (PRC2) to target genes to bring about histone methylation [26]. These co-repressor 

interactions can bring about short- and long-range transcriptional repression through histone 

modification and consequent chromatin condensation. PRH can also repress transcription by 
interfering with other transcription factors. Binding of PRH to GATA-2 suppresses GATA-2-

mediated activation of vascular endothelial growth factor receptor 2 (VEGFR-2) transcription 

[27]. Similarly, PRH binds to Jun and cMyc inhibiting Jun- and cMyc-dependent transcription 

activation, respectively [12, 28]. PRH also activates transcription through multiple mecha-

nisms including direct binding to target promoters as in the case of the NTCP promoter [19]. 

Moreover, PRH binding to hepatocyte nuclear factor 1α (HNF-1α) and serum-response factor 
(SRF) increases HNF-1α- and SRF-activated transcription [29, 30]. In addition, PRH can regu-

late gene expression post-transcriptionally through binding to eIF-4E. PRH binding to eIF-4E 

in PML nuclear bodies disrupts these structures and blocks eIF-4E-dependent transport of 

cyclin D1 mRNA down-regulating cyclin D1 protein expression [15].

2.3. PRH activity in tumourigenesis

Inappropriate expression and/or aberrant subcellular localization of PRH has been observed 

in a variety of disease states including acute myelogenous leukaemia (AML) [31, 32], chronic 

myelogenous leukaemia (CML) [32], breast, thyroid, and prostate cancer [33–36], liver disease, 
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and cardiovascular disease [37, 38]. In normal haematopoietic cells PRH protein is clearly dis-

cernable in distinct foci within the nucleus, co-localising with PML and translation factor eIF-

4E [14, 25], whereas in AML and CML PRH appears to be mislocalised to the cytoplasm [32]. 

Comparably, in thyroid cancer and breast cancer cells, PRH appears to be mislocalised from 

the nuclear compartment to the cytoplasm and often shows down-regulation in expression 

[33–35]. In breast and prostate cells loss of PRH activity results in increase cell proliferation 

and increased cell migration and invasion [35, 36]. Moreover, PRH over-expression in mouse 

mammary tumour cells inhibits tumour growth in vivo [36]. Similarly, PRH over-expression 

in liver cancer cells inhibits tumour growth in a xenograft mouse model [39] and PRH directly 

interacts with c-Myc to inhibit hepatocyte proliferation [28]. These studies are consistent with 

PRH playing a tumour suppressive role in these cell types.

In contrast, PRH has been shown to function as an oncoprotein in T-cell lineages and in AML 

subtypes (reviewed by Gaston et al. [40]). In retroviral insertion experiments in mice (Lvis1)-

elevated PRH expression is associated with B-cell- and T-cell-derived leukaemias and lym-

phomas [41, 42]. Transgenic mice with ectopic PRH expression in T cell progenitors showed 

increased numbers of progenitors but this did not result in leukaemia [43]. However mice 

transplanted with bone marrow cells transduced with a retrovirus expressing PRH exhibit 

aggressive neoplastic transformation within T-cell populations [44] and in mouse models of 

early T-cell precursor-like acute lymphoblastic leukaemia (ETP-ALL), PRH is important in 

Lmo2-driven T-cell self-renewal [45, 46]. Furthermore, in a mouse model of AML elevated 

PRH is essential for the initiation and maintenance of the leukaemia [26]. Interestingly a 

human AML has been identified where alteration of the Nup98 and PRH genes to form a 
fusion gene is the only identified cytogenetic abnormality [31].

2.4. PRH in vascular compartments

PRH is expressed in the developing vascular system in haematopoietic and endothelial pro-

genitor cells [9]. PRH over-expression inhibits haematopoietic and vascular development in 

embryoid bodies [47] while PRH loss leads to abnormal vasculogenesis and cardiac morpho-

genesis [5]. PRH can inhibit the proliferation of leukaemic cells by repressing the transcription of 

VEGFA and other genes involved in VEGF signalling and haematopoietic and vascular biology 

[48]. PRH is also important in neo-angiogenesis; in endothelial cells PRH represses transcription 

of multiple genes that control blood vessel formation including VEGFR-1, VEGFR-2, tyrosine 

kinase with Ig and EGF homology domains (TIE)-1, TIE-2, and neuropilin-1 [27, 49]. PRH is also 

targeted by urokinase-type plasminogen activator (uPA). uPA regulates angiogenesis and vascu-

lar permeability by proteolytic degradation of the extracellular matrix and through intracellular 

signalling. Single chain uPA is transported from the cell surface receptors to the nucleus where 

it modulates gene transcription by binding to transcription factors including PRH. The binding 

of uPA to PRH derepresses VEGFR-1 and VEGFR-2 thereby promoting their expression [50].

Importantly, PRH is up-regulated in VSMCs after balloon injury of the rat aorta [37]. During 

the period of cell dedifferentiation and cell proliferation following injury, PRH activates 
transcription of SMemb/NMHC-B, a marker for dedifferentiated cells [37]. Moreover, over-

expression of PRH in embryonic fibroblasts results in the expression of early, but not late, 
markers of VSMC differentiation [29]. It has also been reported that in VSMCs infected 

with Human Cytomegalovirus (HCMV) PRH up-regulation promotes cell proliferation and 
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inhibits apoptosis [51]. Our recent work has shown that PRH inhibits the proliferation of 

human and rat VSMCs (see Section 6.2 [38]). This suggests that HCMV infection may switch 

PRH from being an inhibitor of VSMC proliferation to an activator.

3. Protein kinase CK2

3.1. CK2 structure

Protein Kinase CK2 (formerly known as Casein Kinase II) is a ubiquitously expressed 

enzyme important in a range of cellular functions and processes including cell cycle pro-

gression and cell migration and invasion [52]. CK2 is a Ser/Thr kinase with the minimal 

consensus target sequence Ser/Thr– X – X – Asp/Glu/pSer (where X indicates any non-

basic amino acid). However, CK2 can phosphorylate wide variety of target sequences. CK2 

exists as a hetero-tetrameric enzyme consisting of two catalytic α subunits and two regu-

latory β subunits. In humans, two isoenzymic forms of the catalytic subunit, designated 
α and α′, are well-characterised while a more recently discovered α″ subunit is less well 
understood [53–55].

3.2. CK2 function

CK2 is important in the control of cell migration and cell proliferation and in many other 

cell functions. To this end CK2 is pleiotropic, in that it has multiple effects via the phos-

phorylation of numerous cytoplasmic and nuclear proteins. For example, phosphorylation 

of inhibitor of kappa B (IκB) by CK2 causes disassembly of the nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB)-IκB complex [56]. This allows NF-κB to regu-

late the transcription of genes involved in cell cycle progression and cell survival. CK2 is 

also important in the control of extracellular proteins. For example, phosphorylation of the 

extracellular matrix protein vitronectin by CK2 is important for the adhesion of VSMCs 

[57]. CK2 itself is regulated by multiple signalling cascades and can cross talk to co-ordi-

nate cell survival and cell proliferation. The ABL, Src and ERK kinase families all act as 

upstream regulators of CK2 and inhibitors that target these kinases can be used to inhibit 

CK2 indirectly [58–60].

3.3. CK2 in tumourigenesis

Aberrant CK2 activity has been demonstrated to be oncogenic and elevated CK2 expression is 

seen in multiple cancers including breast [61], prostate [62], lung [63], head and neck [64], and 

kidney cancers [65]. CK2-mediated abrogation of tumour suppressor activity or stimulation 

of oncogenic proteins has been demonstrated to play a significant role in tumourigenesis. The 
tumour suppressors promyelocytic leukaemia protein (PML), connexin, and phosphatase and 

tensin homology protein (PTEN) are all CK2 substrates that are inactivated by phosphoryla-

tion [66]. CK2 has additionally been shown to potentiate aberrant activation of oncoproteins 

including NF-κB [56], and AKT [67]. Drugs that inhibit CK2 have proven to be well-tolerated 

in a number of clinical trials and systemic or local delivery of these inhibitors is therefore a 

potential treatment for multiple disease states [68, 69].
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4. The regulation of PRH by CK2

4.1. CK2 binds to PRH and phosphorylates the homeodomain

To identify PRH binding proteins we performed a yeast two hybrid screen using PRH as 

bait. This showed that the regulatory β subunit of CK2 can bind to the PRH N terminal 
domain [17]. The interaction was confirmed in human chronic myeloid leukaemia K562 cells 
using pull-down experiments and co-immunoprecipitation [17]. Importantly, PRH is a phos-

phoprotein in these cells and pharmacological inhibition of CK2 with DMAT (2-dimethyl-

amino-4,5,6,7-tetrabromo-1H-benzimidazole) or TBB (4,5,6,7-tetrabromo-1H-benzotriazole) 

significantly reduces the amount of phosphorylated PRH (pPRH) indicating that PRH is also 
a CK2 substrate [17]. CK2β controls substrate specificity and therefore the interaction with 
PRH is potentially of importance for the control of CK2 activity on other specific substrates as 
well as in the phosphorylation of PRH.

To map CK2 phosphorylation sites within PRH, purified, human PRH protein was incubated 
with CK2 and ATP and subjected to surface-enhancer laser desorption/ionisation time-of-

flight mass spectrophotometry (SELDI-TOF-MS) analysis. This showed that S163 and S177 
located within the PRH homeodomain can be phosphorylated by CK2 [17]. S163 is located 

within a CK2 target consensus site while S177 is within a non-consensus site. Subsequently 

further phosphorylation sites have been identified within PRH but these sites have not been 
associated with a specific kinase.

4.2. Phosphorylation of PRH blocks DNA binding

Phosphorylation of the PRH homeodomain by CK2 abrogates PRH DNA-binding activity in 

vitro [17]. Interestingly DNA binding activity is restored by a subsequent incubation of pPRH 

with calf intestinal alkaline phosphatase. Thus, CK2-mediated phosphorylation of PRH func-

tions as a reversible switch for DNA binding [17]. CK2 has also been shown to inhibit the 

binding of PRH to DNA in cells. Ectopic over-expression of PRH in K562 cells represses tran-

scription of the PRH target gene VEGFR-1 but this repression is lost on co-transfection with 

CK2α and β transgenes [48]. However, the repression of VEGFR-1 transcription by a PRH 

mutant in which phosphorylation of serine 163 and serine 177 is prevented by the replace-

ment of these residues by cysteine residues is not inhibited by CK2 over-expression [48]. 

Quantitative chromatin immunoprecipitation (ChIP) showed that CK2 over-expression does 

not prevent the binding of PRH S163C,S177C to the VEGFR-1 promoter as it does with wild-

type PRH [48].

4.3. Phosphorylation of PRH induces protein processing

Hypo-phosphorylated PRH is stable in K562 cells treated with the translation inhibitor 

anisomycin [48]. However, pPRH is rapidly degraded in these cells. The half-life of pPRH 

is extended by treatment with proteasome inhibitors showing that phosphorylation targets 

PRH for proteasome-mediated protein cleavage. Interestingly, pPRH is cleaved to produce 

is a stable truncated protein that lacks the C-terminal domain (PRHδC). Over-expression of 
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CK2 increases the production of this cleavage product and the truncated protein can act as 

transdominant negative regulator of full-length PRH by sequestering TLE co-repressor pro-

teins and possibly other PRH interacting proteins [48]. This suggests that phosphorylation 

of PRH not only blocks DNA binding but also acts to prevent unphosphorylated PRH from 

regulating transcription (Figure 2). As might be expected, PRH S163C,S177C cannot be phos-

phorylated at these residues and this protein is not processed by the proteasome. In contrast, 

the phosphomimetic PRH S163E,S177E is more readily processed to produce PRHδC than 
wild type PRH [48].

4.4. pPRH in tumourigenesis

Pre-clinical studies have shown that pPRH is elevated in benign prostatic hyperplasias and 

in breast ductal carcinoma in situ compared to normal tissues [35, 36]. PRH localization is 

also altered in prostate and breast tumours compared to normal tissue. Both increased pPRH 

and increased PRH cytoplasmic localization are indicative of PRH inactivation and it is likely 

that this contributes to increased cell proliferation in these diseases. Interestingly, pPRH is 

less highly elevated in aggressive prostate adenocarcinomas and invasive breast carcinomas 

[35]. This could be due to decreased total PRH expression in these cancers. Thus high levels 

of pPRH appear to correlate more with hyperproliferative disease in these tissues rather than 

with advanced cancer.

5. PRH and CK2 in tumourigenesis

5.1. pPRH and PRH as potential biomarkers

The identification of protein modifications that contribute to increased cancer cell prolifera-

tion and increased cell migration and invasion is likely to result in new therapeutic approaches 

that could be of great benefit to patients. Moreover such cancer biomarkers could be useful as 
prognostic indicators and as indicators of pharmacologic responses to a therapeutic interven-

tion. Prognostic biomarkers that can flag a tumour as potentially benign or requiring further 
treatment are urgently required. Many breast and prostate tumours for example do not need 

Figure 2. Phosphorylation of PRH by CK2 induces protein cleavage. PRH recruits co-repressor proteins including TLE 

to target genes such as VEGFR-1 in order to repress transcription. Phosphorylation of PRH by CK2 (shown as a filled 
lollipop) prevents PRH from binding to DNA and targets the protein for processing by the proteasome. The PRHδC 
protein cannot bind to DNA but it can sequester TLE proteins (and possibly other PRH interacting proteins) and thereby 

block transcriptional repression by PRH.
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intervention and are currently over-treated by surgery because of a lack of biomarkers for 

prognosis. In pre-clinical studies the levels and localization of pPRH and PRH appear to be 

altered in breast and prostate tumours compared to controls [35, 36]. However, additional 

studies with large numbers of patients will be required to determine whether pPRH and PRH 

or the pPRH/PRH ratio is a good prognostic indicator.

5.2. The restoration of PRH function

Since PRH appears to be inactivated in breast and prostate cancer cells by CK2-dependent 

phosphorylation resulting in increased cell proliferation and cell migration, the inhibition of 

CK2 in these tissues would be expected to restore PRH function. This would be expected to 

inhibit cell proliferation and it could inhibit tumour growth. CK2 inhibitors have been pro-

posed as novel treatments for multiple cancers including prostate cancer. In normal immor-

talised prostate epithelial cells the inhibition of proliferation brought about by the inhibition 

of CK2 requires the presence of PRH [35]. It is likely that CK2 inhibitors will have similar 

effects in other cancer cell types through the prevention of PRH phosphorylation and the 
restoration of PRH function. Indirect inhibition of CK2 activity can also restore PRH function 

and re-establish the control of cell proliferation. Our previous work showed that in chronic 

myeloid leukaemia cells Dasatinib decreases CK2 activity and decreases the phosphorylation 

of PRH [58]. Dasatinib inhibits membrane bound tyrosine kinases and Src family kinases and 

is an efficacious therapeutic for leukaemias expressing BCR-ABL fusion proteins and those 
with activated Src [70]. Importantly, Src-kinases are known to stimulate CK2 activity [59]. It 

is possible that other Abl/Src kinase inhibitors will also restore PRH activity via the indirect 

inhibition of CK2. However, since PRH can act as oncoprotein in some cell types it is possible 

that the reduction of PRH phosphorylation in these cell types might be counterproductive.

6. Saphenous vein graft failure

6.1. Intimal thickening in saphenous vein grafts

Atherosclerotic plaque development within coronary arteries is a major precursor for myo-

cardial infarction (commonly known as heart attack). Coronary artery bypass graft (CABG) 
surgery is an effective treatment for occlusive or ruptured coronary artery atherosclerotic 
plaques; surgery most often involves harvesting and grafting of healthy, autologous saphe-

nous vein to bypass the occluded artery and facilitate revascularisation of the cardiac tis-

sue [71, 72]. Arteriovenous grafts are however predisposed to reblocking (restenosis), and 

despite extensive research, 10–15% of CABG patients suffer early vein graft failure within 
the first year after surgery, and as many as 50% suffer graft failure within 10 years [71–73]. 

Thrombosis, intimal thickening, and accelerated atherosclerosis are the underlying causes of 

saphenous vein graft failure. Intimal thickening, which serves as a foundation for superim-

posed atherosclerosis, is often the cause of late vein graft failure (Figure 3), while thrombosis 

is the cause of early graft failure. Intimal thickening is a product of aberrant VSMC migration 

into the intima where they proliferate and deposit extracellular matrix.
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6.2. PRH is up-regulated in neointimal cells

PRH expression is up-regulated in the intimal compartment of rat thoracic aortas injured with 

a balloon embolectomy catheter – a robust model for neointimal hyperplasia [37]. However, 

PRH mRNA and protein expression is absent in healthy aorta. Moreover PRH activates tran-

scription of SMemb/NMHC-B, a marker of dedifferentiated VSMCs with a synthetic, prolif-
erative phenotype, and not of differentiated VSMCs with a quiescent, contractile phenotype 
[37]. Together these findings could indicate that PRH promotes VSMC de-differentiation 
and accumulation in the intima, thereby accelerating disease progression. However, ectopic 

overexpression of wild-type PRH in primary cultures of rat aortic VSMCs inhibits cell cycle 

progression, whereas siRNA-mediated knockdown of PRH promotes cell proliferation [38]. 

These data clearly indicate an anti-proliferative role for PRH in VSMCs. Transfection of iso-

lated rat aortic VSMCs with a vector expressing PRH F32E, a mutant that does not bind TLE, 

did not block cell proliferation suggesting that in these cells, PRH inhibits cell cycle pro-

gression in a TLE-independent manner (KSW unpublished observations). Interestingly, PRH 

S163C,S177C exhibited a prolonged anti-mitotic effect with respect to wild-type PRH [38]. 

This indicates that phosphorylation of PRH at Ser163 and Ser177 prevents PRH from inhibit-

ing VSMC proliferation. Moreover, adenovirus-mediated gene transfer of PRH S163C,S177C 

retarded intimal thickening in an ex vivo human saphenous vein organ culture model [38]. 

It is hence likely that PRH is up-regulated during neointima formation in dedifferentiated, 
proliferating VSMCs as a negative feedback mechanism to prevent further rounds of mitosis.

6.3. CK2 activity during intimal thickening

Multiple studies have implicated the involvement of CK2 in the regulation of VSMC prolifer-

ation and pathophysiological intimal thickening. For example, treatment of cultured human 

aortic smooth muscle cells with emodin (1,3,8-trihydroxy-6-methylanthraquinone) – a natu-

rally occurring CK2 inhibitor used in traditional Chinese medicine – blocked platelet-derived 

growth factor (PDGF)- and tumour necrosis factor α (TNF-α)-induced cell proliferation in a 
dose-dependent manner [74]. Also, in the rat aortic VSMC line A10, inhibition of CK2 with the 

synthetic compounds DDZ (daidzein) and DRB (5,6-dichlorobenzimidazole riboside) antag-

onised lysophosphatidic acid-induced cell division [75]. However, emodin, DDZ and DRB 

Figure 3. Intimal hyperplasia in saphenous vein grafts. Intimal hyperplasia in saphenous vein grafts is a consequence of 

the migration of medial VSMCs to the intima and their subsequent proliferation and deposition of extracellular matrix. 

Neointima formation results in narrowing of the lumen and a consequent restriction of blood flow.
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Figure 4. The inhibition of CK2 prevents intimal thickening. Top – phosphorylation of PRH by CK2 prevents PRH from 

inhibiting VSMC proliferation and this contributes to vein graft failure. Bottom – pharmacological inhibition of CK2 
allows PRH to suppress VSMC proliferation and thereby prevent neointima formation. Other CK2 target proteins are 

also likely to play a role in the prevention of intimal thickening following CK2 inhibition.

show high promiscuity as inhibitors [76]. PDGF, basic fibroblast growth factor (bFGF), and 
Wnt proteins are well-recognised atherogenic mitogens that are up-regulated in atheroscle-

rotic and restenotic lesions ([38] and references therein). Interestingly, pharmacological inhibi-

tion of CK2 with the highly selective compounds TBB and K66 suppresses PDGF-, bFGF- and 

Wnt-4-induced cell replication in primary cultures of rat aortic VSMCs [38]. Silencing of CK2 

using exogenous siRNAs also inhibited VSMC proliferation further suggesting that CK2 pro-

motes the proliferation of these cells. Furthermore, treatment of human saphenous vein organ 

cultures with the CK2 inhibitor K66 disrupted neointima formation [38].

6.4. CK2 acts via PRH to modulate VSMC proliferation

One mechanism through which CK2 may facilitate VSMC proliferation could be via blocking 

PRH activity. Treatment with the K66 failed to arrest PDGF- and bFGF-stimulated cell cycle 

progression in VSMCs with depleted levels of PRH [38]. Thus CK2-dependent mitogenic sig-

nal transduction at least in part requires the presence of PRH (Figure 4). Similarly, treatment 

of human immortalised myelogenous K562 cells with the CK2 inhibitor DMAT inhibits cell 

proliferation but has no significant effect on the proliferation of K562 cells in which PRH has 
been knocked down using shRNA [58]. In K562 cells PRH controls cell proliferation via the 

inhibition of VEGF signalling [24, 58]. Further work is required to determine whether PRH 

controls VSMC proliferation via the inhibition of VEGF signalling or whether other signal-

ling pathways targeted by PRH are important in this context. For instance, another poten-

tial mechanism by which PRH might control VSMC proliferation involves urokinase-type 

plasminogen activator (uPA)-mediated signalling [77]. uPA is a serine protease that is up-

regulated in atheromas and restenotic lesions of human arteries [77–79]. In uPA deficient 
mice, subsequent to either electrical or mechanical arterial injury, intimal thickening and cell 

accumulation is significantly reduced compared to wild-type mice [80]. In human umbilical 

vein VSMCs, endogenous uPA has been shown to be involved in the induction of a mito-

genic response by either PDGF or bFGF [77]. Furthermore, in PDGF- or bFGF-stimulated 

cells, pharmacological inhibition of uPA and CK2 with p-aminobenzamidine and 4 μM TBB, 

respectively, markedly enhances the anti-proliferative effects of 4 μM TBB alone in an addi-
tive manner [77]. Intracellular uPA has recently been shown to bind to PRH in endothelial 
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cells and to prevent PRH from repressing VEGF signalling genes [50]. Therefore it is possible 

that the effects of uPA inhibition on endothelial proliferation and CK2 inhibition on VSMC 
proliferation during intimal thickening are both mediated by PRH.

6.5. Implications for saphenous vein grafts

As protein kinase CK2 is ubiquitously expressed, systemic delivery of a CK2 inhibitor for the 

treatment of saphenous vein graft degeneration may cause unwanted side effects. However, 
perivascular drug delivery systems could be employed for localised, sustained release of a CK2 

inhibitor to a grafted vein. Such a system has been used to deliver sunitinib in a biocompatible 

hyaluronic acid-based hydrogel within a polyactide-co-glycolide perivascular wrap [81]. Other 

approaches for delivery include drug-eluting nanoparticles and drug-linked  antibodies [82].

Gene therapy also has therapeutic potential in alleviating saphenous vein graft stenosis, and 

could be used for the introduction of PRH, particularly PRH S163C,S177C, to grafted vein. 

Genetic manipulation of a venous graft must however occur peri-operatively, meaning there is 

only a single opportunity to complete gene transfer. Therefore, helper-dependent adenovirus 

technology may be necessary to provide prolonged expression of PRH or PRH S163C,S177C 

within the grafted conduit [83, 84]. In a similar instance, delivery of tissue inhibitor of metal-

loproteinase 3 (TIMP-3) has been shown to block neointima formation in autologous porcine 

arteriovenous interposition grafts for up to 3 months [85].

7. Conclusion

The regulation of cell proliferation and cell migration/invasion by PRH is not limited to a 

particular cell type. Similarly, the control of PRH by CK2-dependent phosphorylation is also 

seen in multiple cell types. The PRH-CK2 axis is likely to be important for the regulation of 

cell proliferation and cell behaviour across a broad spectrum of cell types and in a variety of 

disease states. Further work in this area is therefore likely to be of great clinical relevance.
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PDGF platelet-derived growth factor

SDS sodium dodecyl sulphate

SELDI-TOF-MS  surface-enhancer laser desorption/ionisation time-of-flight mass 
spectrophotometry

TBB 4,5,6,7-tetrabromo-1H-benzotriazole

VSMC vascular smooth muscle cell
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