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Abstract

The gastrointestinal surface is in constant interaction with various exogenous molecules.
Exogenous components are discriminated in the GI context, as good, in case of nutrients
and fibers, and bad, when they negatively affect host integrity. During this tolerogenic
process, they also train the host’s immune system. The immune system is a morpho-
physiologic unit driven by immune cells with the assistance of commensal organisms.
Several species of commensal microorganisms have been used for centuries as probiotics
due to their beneficial effects on human health. Lowering local levels of pro-inflammatory
cytokines has a systemic effect, which is one of the fundamental characteristics associated
with probiotics. Still, the primary mechanisms wiring those regulatory circuits as a unit
remain unclear. Modulation of the innate immune system, via regulation of inflamma-
some assembly is emerging as a critical driver of this interaction. Stimulation of toll like
receptors (TLR) and inner cell sensors like NLRP3 connect probiotics with essential host
systems. In this context, the mTOR-regulated circuits, an intricate network modulating
a cascade of protein phosphorylations, could be an important channel connecting host
metabolism and probiotics crosstalk.

Keywords: Lactobacillus, inflammasome, caspase-1, mechanistic target of rapamycin
(mTOR), insulin resistance, adipogenesis, type 2 diabetes, cancer

1. Overview of probiotics

1.1. History and use

Probiotics are live microorganisms which when administered in adequate amounts confer a
health benefit on the host, as defined by the World Health Organization [1]. This is an extremely
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broad definition that encompasses fungal and other eukaryotic species, as well as bacteria. In
practice, however, bacterial probiotics receive the most attention. Bacterial probiotics can be
found as various supplements and food additives in products such as pills and yogurts [2].
The benefits of probiotic supplements have been recognized for centuries, long before it was
understood that the living microorganisms in the supplement provided the benefit. Fermented
milk products were used as a treatment for intestinal discomfort in the Roman empire, and
ancient Chinese scholars recommended fecal transplant to combat diarrhea [3]. Today, pro-
biotics are often prescribed by gastroenterologists and GI surgeons to help alleviate irritable
bowel syndrome, pouchitis, and functional diarrhea, however the potential applications of
probiotics in other systems is gaining notice [4]. Yogurt and other fermented milk products as
well as probiotic drink mixes are commonly used forms of probiotic supplements today [4].

Strains of the genera Bifidobacterium and Lactobacillus are the most common bacteria studied
and used as probiotics, however Enterococcus, Streptococcus, Leuconostoc, Bacillus, and even the
yeast Saccharomyces boulardii have been used [5, 6]. Knowledge of both the species and strain
of bacteria is important in the study and use of probiotics as different strains can produce
varying effects on the host. For instance, Escherichia coli Nessile 1917 is a beneficial probiotic
while E. coli 0157:H7 is a deadly pathogen [2, 5]. Sources of probiotics vary. Probiotic bacteria
are commonly found in fermented milk products, which lactic acid producing bacteria are
essential to the production of, and they have also been isolated from stool samples of healthy
individuals [5].

1.2. Mechanisms of action

Probiotics can have a wide array of beneficial effects on their host organism (Figure 1). One
way in which probiotics can benefit the host is to simply prevent or reduce the probability
of infection by pathogenic organisms. By forming aggregates with intestinal pathogens, pro-
biotics can reduce the ability of these pathogens to adhere to the intestinal mucosa and initi-
ate infection [7]. Saccharomyces boulardii, Lactobacillus gasseri 4B2, and Lactobacillus coryniformis
DSM 20001" have shown the ability to aggregate with pathogenic strains of E. coli (serogroup
0157:H7, and serogroup K88, respectively) [7, 8]. Probiotic bacteria can also increase mucin
production in the gut, further reducing ability of pathogens to adhere to and infect host epi-
thelial cells [9]. E. coli Nessile 1917 can upregulate the production of MUC2 and MUCS, the
primary mucins present in the human colon [10]. Probiotic bacteria often have the ability
to produce molecules damaging to pathogens, protecting the host organism by killing or
inhibiting the activity of pathogenic bacteria. Several Lactobacillus strains produce antimicro-
bial bacteriocins, some examples include acidocin produced by Lactobacillus acidophilus, and
sakacin produced by Lactobacillus sakei [11, 12]. These molecules may help the host main-
tain gut homeostasis by regulating the gut bacterial community. Several Lactobacillus spe-
cies can inhibit the growth of Clostridium difficile or C. perfringens through the production of
organic acids, and Lactobacillus plantarum LPAL and Bifidobacterium animalis ssp. lactis BLC1
produce some unknown bactericidal compounds or bacteriocins that inhibit both species [13].
Beneficial gut bacteria can also induce host immune cells to produce defenses against patho-
gens. Gut bacteria stimulate the production of an antibacterial, peptidoglycan-binding lectin
in mice and in humans [14].
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Figure 1. Schematic of possible mechanisms of probiotic interactions with molecules in the intestinal lumen as well as
host epithelial cells.

Probiotics can also inhibit the growth of pathogens in other ways. Lactobacillus delbrueckii can
bind iron to its surface, making it unavailable to pathogens, many of which need iron to
survive [6]. Probiotics may also benefit the host by reducing the ability of pathogens to dif-
fuse across epithelial cell barriers: strains of Lactobacillus show an ability to increase intestinal
barrier function. Recent research has documented an increase in the levels of claudin-1 and
goblet cells seen in healthy rats as well as in Lactobacillus johnsonii fed animals, suggesting that
one aspect of the bacteria’s role in the gut is to strengthen the barrier function to prevent a
leaky gut and maintain a high level of mucin production to protect the gut epithelial cells [15].
Lactobacillus johnsonii also appeared to increase the expression of inflammatory chemokines,
including CCL20 (MIP3A), CXCL8 (IL-8), and CXCL10 (IP10) [16]. This result may indicate
that exposure to beneficial Lactobacillus primes the gut immune system so that it is resistant
to overwhelming inflammation in the face of later insults [16]. An increase in Paneth cells,
immune cells in intestinal crypts, was also demonstrated in Lactobacillus fed animals [16].
Overall, probiotic bacteria, many in the genus Lactobacillus, can play an important role in
defending the gastrointestinal tract from pathogenic organisms.

Probiotics can exert their positive effects on the host by producing vitamins or other materi-
als useful to the host: Bifidobacterium adolescentis and B. pseudocatenulatum produce B vitamins
including B1, B2, B3, B6, B8, B9, and B12 [6]. Probiotics may also increase the availability of
nutrients already present in foods. Lactic acid bacteria increase the amount of available folic
acid in fermented milk products [9]. The positive effects of Lactobacilli may also result from
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the bacterial production of esterases. These enzymes are produced by Lactobacilli and have
the ability to release beneficial phenolic compounds, such as ferulic acid and caffeic acid, from
food molecules [17]. Lactobacillus johnsonii N6.2, a strain associated with diabetes resistance
in BioBreeding diabetes prone and diabetes resistant rats, produces two ferulic acid esterases
that cleave ethyl ferulate and chlorogenic acid [17]. Other small molecules increased by probi-
otic bacteria can include free amino acids, and short chain fatty acids such as lactic acid, pro-
pionic acid, and butyric acid, which can be used by host cells for energy [9]. Some strains of
Lactobacillus can produce hydrogen peroxide, which is beneficial to the gastrointestinal tract
when present in small amounts [18]. In the case of host lactose intolerance, some strains of
lactic acid bacteria, Streptococcus thermophilus, and Lactobacillus bulgaricus can aid in the host’s
digestion of lactose by supplementing host lactase with their own [9]. Lactobacillus species
can also increase the nutritional value of various food products. Fermentation with several
Lactobacillus strains increased the dietary phenol available in cereal grains by a considerable
amount [19]. Through both the synthesis and the breakdown of various substances, probiotics
can improve host nutrition.

Probiotics have also shown promise in the area of cancer research. Lactobacillus casei and
L. rhamnosus GG can reduce invasion in colon cancer cells, a key property in prevent-
ing metastasis [20]. Levels of matrix metalloproteinases, implicated in cell invasion, can be
responsive to probiotic treatment: Lactobacillus acidophilus and L. rhamnosus GG can decrease
the expression of matrix metalloproteinase-9 by increasing the expression of the tissue inhibi-
tor of metalloproteinases [20]. Treatment with kefir reduces the viability of colon cancer cell
lines by inducing apoptosis and the proliferation of colon cancer cell lines by arresting the cell
cycle in the G1 phase [21]. These results suggest that probiotics may be useful in the treatment
or prevention of some cancers.

1.3. Health benefits

Probiotics are commonly used for gastrointestinal complaints and issues, and there has
been extensive research on the benefits of probiotics in this body system. Modern research
often supports the old assertions that consumption of probiotics is beneficial to gastrointes-
tinal health. Probiotic supplements have shown efficacy in treating certain intestinal disor-
ders in animal models and in humans. Patients in remission from pouchitis who received
probiotic treatment in the form of a bacterial supplement called VSL#3 showed increased
Bifidobacterium and Lactobacillus diversity compared to patients receiving a placebo treatment
[22]. Bifidobacterium and Lactobacillus are commonly regarded as beneficial members of the gut
microbiota [23]. VSL#3 was also found to reduce the frequency of pouchitis recurrence [24].
This provides support for the use of probiotics in the treatment of GI diseases. A fermented
soy probiotic mixture was shown to provide multiple gastrointestinal health benefits to rats
with induced colitis. Rats fed the probiotic mixture of Bifidobacterium longum and Lactobacillus
helveticus 416 had no colon damage, ulcers, or swelling, compared to rats who did not receive
the probiotic supplement [25]. The rats receiving the probiotic also showed increased intes-
tinal Lactobacillus and Bifidobacterium populations [25]. Supplementation with probiotics can
help adjust the gut microbiota, and this likely plays a role in the effects of diseases of the
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gut. Apple juice fermented with Lactobacillus species showed the ability to inhibit Helicobacter
pylori in vitro, but did not negatively affect other positive GI bacteria [26]. This further shows
the ability some probiotics have to ameliorate disease-induced tissue damage and regulate
the gut microbiota.

Probiotic supplements are no cure-all for gastrointestinal maladies, however. Assorted stud-
ies have reported little to no benefit of probiotics in the treatment of other gastrointestinal dis-
eases. Lactobacillus probiotics were not shown to be an effective treatment in helping patients
with Crohn'’s disease stay in remission [27]. In a clinical trial involving women with irritable
bowel syndrome, treatment with probiotics was not more effective than the administration of
a placebo in reducing IBS symptom severity [28].

On the other hand, there is also a wealth of research showing probiotics to have benefits in
areas of the body besides the adult gut. The importance of an individual’s microbiome is evi-
dent even before birth, therefore the prenatal and neonatal use of probiotics is an important
consideration in infant health. The systemic benefits of probiotics can be transferred from
mother to infant. In a study on allergies, a probiotic combination taken by an allergic mother,
consisting of Lactobacillus rhamnosus GG and Bifidobacterium lactis Bb12, decreased the prob-
ability of sensitization in breastfed infants, possibly by increasing the concentration of the
anti-inflammatory cytokine transforming growth factor-beta 2 (TGF-(32) in breast milk [29].
Here we see the ability of a probiotic to induce immune changes in one organism that can be
transmitted and positively affect the health of another.

Certain strains of bacteria have also been shown to reduce the negative effects of oral infec-
tions. In a study involving mice that were intubated with Lactobacillus gasseri SBT2055 and
then infected orally with Porphyromonas gingivalis, the intubated mice showed less alveolar
bone loss and better maintenance of the periodontal ligament than non-intubated mice [30]. In
this case, pretreatment with probiotics helped prevent oral damage from infection. Probiotics
may also help maintain or improve liver health. A probiotic mixture containing Bifidobacterium
and Lactobacillus species reduced weight gain, maintained intestinal barrier function, and
reduced liver inflammation in rats fed an inflammation-inducing high fat diet [31]. Another
study using various Bifidobacterium strains corroborated these findings. B. pseudocatenulatum
LI09 and B. catenulatum LI10 showed the ability to reduce D-GalN-induced liver damage and
serum levels of inflammatory cytokines in rats [32]. Fang et al. found that supplementation
with probiotics reduced levels of alanine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST), improved liver necrosis and inflammatory cell infiltration, reduced bacterial
translocation to mesenteric lymph nodes, and reduced levels of interleukin 18, macrophage
inflammatory protein 1a, monocyte chemoattractant protein 1, and macrophage colony-stim-
ulating factor in rats [32].

Probiotics have been used for centuries around the globe to improve health and treat disease.
Although they are most commonly used to treat gastrointestinal diseases, they can exert posi-
tive effects on the health of the entire host organism. Although there has been much research
elucidating how probiotics benefit their host and what benefits they actually provide, there is
still much to be discovered about the many potential benefits of probiotics.
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2. The effects of probiotics on the inflammasome

2.1. Inflammasome: the interface between detection and response in inflammation

Inflammation is a complex immune response to many different insults, such as pathogens, cell
death, and chemicals, which promotes survival during infectious diseases or injuries, as well
as maintains tissue homeostasis. When an insult is identified, a cascade of signals is triggered,
concluding in the recruitment of neutrophils and macrophages, which have the ability to pro-
duce several cytokines and chemokines. Despite the beneficial effects of inflammation, it must
be tightly regulated, otherwise it may lead to serious tissue damage due the overproduction
of inflammatory cytokines [33]. The secretion of cytokines is regulated at the transcriptional
level, and many of them are also regulated at the posttranslational level [34]. Considering that
the exposure to pathogens and chemicals is the first step in inflammation, the gastrointestinal
environment has a crucial role in this process. Gut epithelial cells are the first cells to be exposed
to both microbiota and food components, leading these cells to be key players influenced by
food antigens, pathogens, toxins, and also by bodily metabolism and functions. Furthermore,
the gut epithelial cells are the first line of defense against pathogens, complementing the action
of the associated mucosal immune system, the development and maintenance of which are
induced by the microbiota [35]. Some intestinal diseases are largely affected by the gut micro-
biota, such as inflammatory bowel disease (IBD), and Crohn’s disease (CD) [36].

2.2. Components of inflammasomes

The mechanisms to identify an insult and trigger an immune response may vary according the
kind of the antigenic molecule. In order to identify different antigen molecules, the innate immune
cells of mammals can detect these molecules through a fixed number of germline-encoded pat-
tern recognition receptors (PRRs), which have the ability to recognize microbial structures called
pathogen-associated molecular patterns (PAMPs), such as microbial nucleic acid and bacterial cell
wall [37]. Furthermore, damaged host cells can release some molecules termed danger-associated
molecular patterns (DAMPs), such as ATP, reactive oxygen species (ROS) and uric acid, which
also have the ability to trigger PRRs [38]. Some PRRs are located in the cell membrane and endo-
somes and are called toll like receptors (TLRs) and C-type lectin receptors (CLRs), which are able
to recognize PAMPs and DAMPs located in the extracellular milieu. The other class of receptors
is the NOD-like receptors (NLRs), which are located inside the cell in the cytoplasm [39].

TLRs were first characterized by Christiane Nusslein-Volhard in 1985, when she observed that
the protein encoded by Toll gene was responsible for preventing the dorsoventral patterning in
Drosophila embryos [40]. Later, it was observed that TLRs trigger a specific response for different
microbes, ending up in the activation of specific regulatory pathways [41]. To date, several TLRs
have been classified in mammals and theirs targets identified. Highly conserved, TLRs belong
to type 1 transmembrane glycoproteins and are composed of three main structural components:
a leucine-rich motif for ligand recognition at N-terminus; a single transmembrane helix; and a
cytoplasmic Toll/interleukin-1 (IL-1) receptor domain at C-terminus, as reviewed by Gao and co-
workers [42]. TLRs can be expressed on cell membrane, as well as on endosomal membrane. The
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TLRs expressed on cell membrane are TLR1, TLR2, TLR4, TLR5, TLR6, TLR10, TLR11 and TLR12,
whereas TLR3, TLR7, TLR8, TLR9 and TLR13 are expressed on endosomal membrane [43]. Each
TLR specifically binds to microbial molecules, triggering a cascade of signals that result in the
transcription and production of pro-inflammatory cytokines and chemokines. TLR4 is one of the
most studied TLRs due its ability to detect lipopolysaccharide (LPS), leading to the activation of
both myeloid differentiation antigen 88 (MyD88)-dependent and MyD88-independent pathways
[44]. Downstream, MyD88 is responsible for the activation of the master transcriptional regulators
MAPK and NF-kB, which increase transcriptional expression of IL-1p3, IL-6, IL-8 and IL-18 [45].

Like TLRs, NLRs can sense different molecules and trigger an inflammatory response. NLRs
also have a structure composed of three main domains: caspase recruitment domain (CARD) or
pyrin domain (PYR) at N-terminal; the highly conserved NATCH domain, a nucleotide-binding
domain (also called as NBD); and leucine-rich repeats (LRR) at the C-terminal [46]. Based on the
N-terminal domain, NLRs are subdivided into 8 sub-families (Figure 2). The LRRs are respon-
sible for microbial molecule detection, whereas the CARD and PYD domains are responsible
for homotypic and heterotypic interactions of NLRs with downstream molecules, such as pro-
caspase, directly or via the adaptor molecule, apoptotic-associated speck like protein (ASC) [47].

2.3. Inflammasome assembly

Once epithelial cells recognize PAMPs or DAMPs, many different responses can be trig-
gered in order to eliminate the source of those molecules. One well-known response against
pathogens is called the inflammasome. Inflammasomes are a multiprotein complex formed in
response to PAMPs and DAMPs, resulting in the activation of caspase-1 (canonical pathways)
or caspase-11 (non-canonical pathway) [48]. NLRs located in the cytosol act as sensors of these
microbial molecules, leading to the activation of the inflammasome complex. The inflamma-
some is basically composed by the NLR family members, which may contain the PYR domain
or just the CARD, and by the adapter ASC. ASC has both CARD and PYD domains, and
the association between ASC and CARD-containing NLRs recruits caspase-1 via homotypic
interactions [49]. Despite around 23 NLR genes having been identified to date, only some of
them can form oligomeric complexes which end up in the post-translational activation of cas-
pases [50]. The hallmark of the inflammasome is the recruitment of caspase-1 in the canoni-
cal pathway, which is further released and subsequently activated via auto cleavage. Active
caspase-1 can cleave and activate more than 70 substrates. This sequential process will finally
release active caspase-1 to activate the IL-13 cytokine and gasdermin-D to promote adaptive
and humoral immunity (Figure 2) [51]. In the non-canonical pathway, cleavage and activation
of interleukins can also occur via caspase-4/caspase-5 (humans) or caspase-11 (rodents) [52].

Despite the fact that caspase-1is a protein that plays an important role in many different path-
ways, one of the most studied ones is pyroptosis, which is a cell death caused by inflamma-
tion in response to microbial infections or nonmicrobial stimuli [53]. In pyroptosis, caspase-1
is activated through inflammasome assembly and its active form can then cleave gasdermin-D
(GSDMD) at Asp276, which generates the N-terminal cleavage product (GSDMD-NT) trigger-
ing pyroptosis and cell death. GSDMD-NT has the ability to form pores on the cell membrane,
leading to cell leakage and the release of pro-inflammatory cytokines [54]. Moreover, active

27



28 Probiotics - Current Knowledge and Future Prospects

A NOD-like RECEPTORS FAMILY B INFLAMMASOME ASSEMBLY
LRR ASC-dependent ASC-independent
T —
NLRA [CIITA ~HH NAGHTE a0 caro NLRP3 NLRC4

NLRB [NAIPS “HH} vacur BiR BiR BIR

[ NOD1, NLRC4 A NAGHT caro

NLRC | NOD2 M NAGHT caro  caro
| NLRC3, NLRCS, NLRX1 HIH wacur x . .

[ NLRPL caro H{}}: NAGHT BvB s g - | Twcnpes i g

NLRP | NLRP2-9, NLRP11-14  wf-{NAGHT ¥ PoGmsey & B

| NLRP10 —NACHT PYD 4

c Pro-IL-18
=%
Inflammasome assembly D > -
-3 >
i -2 >y
-,)
(=3
o / Caspase-1 Pro-IL-18 ,’
Insult - 4 . ||__)13
A ce activation e | — "
at m,’-. LR - ™ ¢ INFLAMMATION
- Gasdermin-D
4 |
Y
. ¥ Ty
S L
* GSDM-NT
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(C) schematic activation of the inflammasome.

caspase-1 can also cleave pro-interleukin-1(3 (pro-IL-1B) and pro-interleukin-18 (pro-IL-18)
into their active form. IL-1f3 is a pyrogenic cytokine that can promote adaptive and humoral
immunity. Neither IL-1f3 nor IL-18 are secreted by the endoplasmic reticulum-Golgi route.
Nevertheless, IL-18 is constitutively expressed in macrophages, whereas IL-13 expression is
regulated by NF-kB-mediated transcription [48]. There are other signals that can also trigger
the auto-cleavage of pro-caspase-1 independent of NLRP3 activation. Some examples of these
secondary signals are ROS and unfolded proteins [55].

2.4. Dysbiosis and inflammasomes

The gastrointestinal system harbors a diverse and complex microbial community that has a piv-
otal role in host health. However, changes in the microbiota population can have major con-
sequences, beneficial or harmful, for host health. The disruption of the gut microbiota, called
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dysbiosis, has been observed in several pathological conditions such as obesity, diabetes, and
IBD, encompassing ulcerative colitis (UC) and CD [56, 57]. In humans, susceptibility to type 1 dia-
betes has been associated with changes in the gut microbiota composition, with a significant aug-
mentation of bacteria of the Bacteroidetes phylum, and lower concentrations of Bifidobacterium,
Lactobacillus, and Clostridium strains [58]. The search for probiotic strains that can reestablish
host health has strongly increased in the past decades. Most of the microflora of healthy hosts is
composed of bacteria from four bacterial phyla: Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria [59]. The genus Lactobacillus belongs to the Firmicutes phylum, which explains the
large amount of studies with Lactobacillus species being administered as probiotics.

The inflammasome has been considered as an important regulator of intestinal homeosta-
sis, due the central role of IL-1f3 and IL-18 in Th1l responses by the induction of IFNy [60].
Moreover, IL-1f3 is responsible for induction of neutrophil influx, activation of myeloid cells
and lymphocytes, and stimulation of Th17 differentiation [61]. Despite the fact that activa-
tion of inflammasomes increases the maturation of the pro-inflammatory cytokines IL-13 and
IL-18, there is some evidence that the inflammasomes are important for keeping intestinal
homeostasis and reducing morbidity and mortality in dextran sulfate sodium (DSS)-induced
colitis in mice. It has been shown that mice deficient in some NLRs, such as NLRP1, NLRP3,
NLRP6, NLRP12, AIM2, or deficient in ASC exhibited higher levels of pro-inflammatory
mediators, as well as an increase in the epithelial damage within the colon, as reviewed by
Chen [60]. Surprisingly, the severity of DSS-induced colitis seems to be reduced when anti-
biotic therapy is provided to mice, which strongly suggests the role of the gut microbiota in
the phenotype of inflammasome-deficient mice [62]. This result was also observed in another
experiment where inflammasome-deficient mice were cohoused with wild-type mice or with
mothers of the opposite phenotype. After some days living together, an increase in colitis
transmissibility through microbial transfer was observed.

The mechanism by which inflammasomes can affect the gut microbiota composition is still
unclear. However, the effects of IL-18 on the production of antimicrobial peptides (AMPs)
have revealed a possible explanation. IL-18 is able to upregulate the production of AMPs,
which is crucial for microbial clearance [63]. Asc”, caspase-17, AIM2™", or Nllrp6™ mice have
shown lower levels of AMPs when compared with WT, but normal levels of specific AMPs
are restored after the administration of recombinant IL-18 [60]. Considering that AMPs can be
produced to target a specific microbe, the modulation of AMP production can contribute to
the abundance of certain bacterial populations. Administration of Ang4, a well characterized
AMP, into Asc”” mice changed the overall diversity and community of gut microbiome, but
it was still significantly distinct from the WT mice [63]. All these data suggest that despite the
activation of the inflammasome increasing the release of pro-inflammatory cytokines, shut-
ting down this pathway also contributes to undesired inflammation. Thus, the modulation of
the inflammasome seems to be a key factor in the prevention of exaggerated inflammation.

2.5. Probiotics and inflammasome

Many studies have focused on the use of probiotic strains that could avoid or ameliorate inflam-
mation. One promising treatment for IBD is the commercially available probiotic mixture VLS#3,
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which is a mixture of eight strains of lactic acid-producing bacteria (Lactobacillus plantarum,
Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus casei, Lactobacillus acidophilus, Bifidobacterium
breve, Bifidobacterium longum, Bifidobacterium infantis and Streptococcus salivarius subsp. Thermophilus).
VLS#3 has been shown the ability to ameliorate and prevent colitis in the 11107~ murine model [64].
The mechanisms by which VLS#3 can reduce intestinal inflammation are still unclear, but several
independent results have shown the effects of VLS#3 on the gastrointestinal tract. It was observed
that the administration of VLS#3 decreases the biodiversity of the luminal microbiota on TNBS-
induced chronic colitis rats [65]. Moreover, TNBS-induced colitis rats treated with VLS#3 have
demonstrated pro-inflammatory cytokine and chemokine levels similar to the levels observed in
normal rats [66]. These results are in agreement with the effects of VLS#3 observed on the inflam-
masome of NOD mice: decreasing the mRNA levels of I/1b and increasing the mRNA levels of Ido,
an immunomodulatory enzyme, comparable to control group levels [67]. Surprisingly, VLS#3-
treated NOD mice also reduced effective T cells/regulatory T cells (Teff/Treg) ratios at both sys-
temic and pancreatic lymph nodes levels, helping in the maintenance of the immune homeostasis
and avoiding excess inflammation.

Due to the proximity of the vaginal mucosa to the gastrointestinal system, the vaginal micro-
biota is largely affected by the gut microbiota, being dominated by Lactobacilli [68]. Recently,
Lactobacillus rhamnosus GR-1 has been reported to be able to limit Escherichia coli-induced
inflammatory response in Bovine Endometrial Epithelial Cells [69]. It was observed that
L. rhamnosus reduces inflammation by downregulating Tlr2, Tlr4, Nod1 gene expression, as
well as the downregulation of Myd88 and Nfkb mRNA levels. Moreover, this strain showed
the ability to reduce mRNA levels of the main components of the inflammasome: NLRP3,
ASC, and Caspase-1. Consequently, the mRNA levels of the pro-inflammatory cytokines
IL-13, IL-6, IL-8, IL-18, and TNFa where suppressed by L. rhamnosus.

The activation of the inflammasome seems to not be dependent on bacterial viability or
require phagocytosis, but the potassium efflux seems to be crucial. A study with bone mar-
row-derived macrophages (BMDMs) incubated with heat-killed B. infantis did not show an
increase in the IL-1p levels when compared to cytokine levels when BMDMs were incubated
with live bacteria. However, when the cells were incubated with heat-killed bacteria over-
night, the IL-1f3 levels were similar to the levels observed when incubated with live bacteria
[70]. In the same work, it was observed that using cytochalasin D, a phagocytosis inhibitor,
did not significantly change the IL-1p levels. Interestingly, when WT macrophages were incu-
bated with high concentrations of potassium or with the potassium channel blocker ruthe-
nium red, the levels of IL-1f3 were significantly lower in response to B. infantis or B. fragilis,
suggesting that the activation of NLRP3 inflammasome is dependent on potassium efflux.

The modulation of the inflammasome by probiotics or gut microbiota does not only affect the
gastrointestinal system. In fact, the gut microbiota can modulate the inflammasomes and its
effects systemically. The concentrations of pro- and anti-inflammatory cytokines have been cor-
related with some neurological pathologies, such as depression, which is characterized by high
levels of pro-inflammatory cytokines (i.e. IL-1f3 and IL-6) and low levels of anti-inflammatory
cytokines (i.e. IL-4 and IL-10) [71]. Moreover, more IL-1 receptor type-I and its ligands have
been found to be highly expressed in brain areas related to stress response, and chronic stress
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and the administration of IL-1 have been characterized as triggers of depression-like behav-
ior [72]. Nevertheless, higher levels of caspase-1 and NLRP3 mRNA have been observed in
blood cells of depressed patients, which suggests that the inflammasome pathway may play
a key role in the development of depression [73]. Caspl™” mice showed decreased depressive
and anxiety-like behaviors after a forced swim test compared with WT mice [74]. The effects of
chronic restraint stress assay, which increases the caspase-1 and IL-1( levels, also resulted in
altered gut microbiota compared to non-stressed mice. The relative abundances of the genera
Allobaculum, Bifidobacterium, Turicibacter, Clostridium, and the family 524-7 were significantly
reduced in restrained animals, whereas the abundance of the family Lachnospiraceae showed
an increase. Bifidobacterium spp. is a genus associated with the suppression of inflammation by
the inhibition of the nuclear factor-k-B (NF-kB) pathway [75]. All these findings strongly sup-
port the notion that the inhibition of caspase-1 can reduce the stress response by modulating
the interface between stress and the gut microbiota, and that the gut microbiota can exert some
important effects on brain function via the inflammasome signaling.

In the past decade, many studies have demonstrated the effects of the gut microbiota on meta-
bolic diseases. In comparing the gut microbiota of two distinct kinds of rats, the Biobreeding
Diabetes Prone (BB-DP) and the Biobreeding Diabetes Resistant (BB-DR) rats, a higher abun-
dance of Lactobacillus and Bifidobacterium species was identified in BB-DR stool samples [56].
One of the most prevalent species found in this work was Lactobacillus johnsonii, which was
isolated from the stool of BB-DR rats. L. johnsonii has two cinnamoyl esterases that utilizes
many phenolic compound as substrates [17]. One well known substrate is rosmarinic acid
(RA), a phenolic compound extracted from diverse kinds of plants from the Nepetoideae sub-
family of the Lamiaceae family [76]. These cinnamoyl esterases can cleave RA into its two
components, caffeic acid (CA) and 3,4-dihydroxyphenylactic acid (DOPAC). Both RA and its
components are well known for their antioxidant and anti-inflammatory properties [77, 78].
Based on the activity of the cinnamoyl esterases on RA, a recent study compared the effects of
L. johnsonii N6.2 when administrated alone or in combination with RA on the inflammasome
pathway in the ileum tissue of BB-DP rats fed daily with these treatments. It was observed
that, despite higher levels of caspase-1 mRNA and higher levels of pro-caspase-1 in the rats
fed with L. johnsonii N6.2, this strain decreased the concentration of the active caspase-1, com-
pared to the animals fed with RA alone or in combination with the bacterium [79]. In the
same study, it was observed that only RA significantly induced the expression of the II1b
gene, 12.5-fold compared to the PBS control. Consequently, RA-fed rats accumulate higher
amounts of total IL-1p in the tissue. Lower levels of the pro-inflammatory cytokines TNF«a
and IFNYy were also observed in BB-DP rats fed with L. johnsonii N6.2 [80]. A similar result
was observed in dogs with chronic enteropathy (CE) that were treated ex-vivo and in-vivo
with Enterococcus faecium [81]. It was observed that ex-vivo stimulation of duodenal biopsies
with E. faecium increased the mRNA levels of caspase-1 in CE dogs. However, the protein
levels of IL-13 was significantly reduced after treatment. Moreover, L. johnsonii N6.2 demon-
strated to be able to produce H,O,, which has an inhibitory effect on the enzyme indoleamine
2,3-dioxygenase (IDO). IDO is the rate-limiting enzyme of tryptophan catabolism, converting
tryptophan into L-kynurenine. The accumulation of cytotoxic kynurenines due to higher IDO
activity can result in localized immunosuppression [82]. All these anti-inflammatory activities
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of L. johnsonii N6.2 along with its ability to modulate the host immune responses may explain
the mitigation of type 1 diabetes in BB-DP rats when fed daily with this bacterium [15, 83].

3. Probiotic effects on a master regulatory pathway

3.1. mTOR: a master regulator of major cellular functions

Like any living thing, a cell’s main goal is to grow, proliferate, and ultimately, survive. This
requires the coordination of multiple environmental signals, working synergistically through
several pathways in order to culminate into a common outcome. Intricate organization and
intracellular crosstalk is necessary for this to be accomplished. Often, these coordinated sig-
nals require a regulator to ensure that these functions are carried out efficiently. For most
of these processes, the mechanistic target of rapamycin (mTOR) could be considered that
important moderator. mTOR is a serine/threonine kinase that presents itself into two distinct
complexes: mMTORC1 and mTORC2. Ultimately, this pathway integrates external and internal
cues to encourage a cell to grow, proliferate, and survive. It senses a diverse set of nutritional
and environmental stimuli, including growth factors, amino acids, energy levels, oxygen and
stress in order to stimulate anabolic cellular processes like protein and lipid synthesis, and to
discourage catabolic processes like autophagy. Deregulation of this pathway has been heavily
linked to metabolic disorders and cancer [84].

3.2. The mTOR complexes: mTORC1 and mTORC2

As of today, mTORC1 is better characterized out of the two mTOR complexes. This complex
is composed of three core proteins and two inhibitory proteins as follows: mTOR, Raptor
(regulatory protein associated with mTOR), mLST8 (mammalian lethal with Sec13 protein 8),
DEPTOR (DEP domain containing mTOR interacting protein), and PRAS40 (proline-rich
AKT substrate of 40kDA) [85]. A popular path to mTORC1 activation is through PI3K/AKT
[86]. Here, growth factors and hormones bind to their receptor and activate the intracellular
phosphatidylinositide 3-kinase (PI3K) which, through multiple interactions, leads to phos-
phorylation and partial activation of protein kinase B (AKT). AKT activation phosphorylates
and consequently inhibits the tuberous sclerosis complex (TSC). This inactivation stimulates
mTOR by inactivating Rheb’s (Ras homolog enriched in brain) GTPase domain so that active
GTP-bound Rheb binds to mTOR.

Activation of mTORCI leads to an increase in protein synthesis, lipid biosynthesis, and a
decrease in autophagy [85]. Downstream, mTORC1 promotes protein synthesis essentially
through two main effectors: p70S6 kinase 1 (S6K1) and elF4E binding protein (4EBP). S6K1
can also influence lipid biosynthesis by activating the sterol responsive element binding pro-
tein (SREBP), which promotes the transcription of genes involved in fatty acid and cholesterol
biosynthesis [87]. However, this transcription factor can also be activated by mTORCI, by
inhibiting Lipinl, a protein the keeps SREBP localized to the cytoplasm [88]. Peroxisome pro-
liferator-activated receptor y (PPARy), a main regulator of adipogenesis, is also activated by
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mTORCI1 [89]. Autophagy is inhibited by mTORC1 through the inhibition two main effectors:
ULK1 and DAP1 [90]. ULK1 is a kinase that forms a complex with other proteins required for
autophagosome formation while DAP1 directly negatively regulates autophagy.

Even though mTORC2 still holds many secrets, we do know a bit about the complex and
the functions it regulates. Along with mTOR itself, this second mTOR complex also contains
mLST8 and DEPTOR. However, instead of Raptor, mTORC2 contains Rictor (rapamycin-
insensitive companion of mTOR), mSIN (mammalian stress-activated map kinase interact-
ing protein 1) and protor 1/2 (protein observed with Rictor 1 and 2) [85]. While mTORC1
is known to be affected by many external stimuli, mTORC?2 is resistant to nutrients but is
affected by growth factors through a mechanism requiring PI3K. Though this mechanism is
poorly understood, it may require the use of ribosomes as ribosomes are needed for mTORC2
activation via a PI3K-dependent process [91].

Not much is known about mTORC2 activation and downstream studies do not hold many
answers either. It does seem to primarily control cell survival and proliferation. It is known
that when mTORC?2 is activated it phosphorylates and fully activates AKT by phosphory-
lating at serine473 [92]. This mTORC2-dependent phosphorylation unlocks the AKT func-
tions of inhibiting transcription factors FoxO1/3a, which regulates energy metabolism and
apoptosis [93]. However, this phosphorylation is not required for AKT inhibition of the TSC
complex, therefore mMTORC1-dependent functions are not affected. mMTORC2 can also directly
phosphorylate SGK1, a kinase that controls ion transport and also inhibits FoxO1/3a [94].
Lastly, mTORC2 also regulates cytoskeletal dynamics through the activation of paxillin, PKC-
a, and Rho GTPases, ultimately affecting cell shape and migration [95].

3.3. mTOR deregulation in disease

Since the mTOR pathway is heavily involved in functions affecting survival and growth and
responds to growth factors, energy status, amino acids and oxygen, it is not at all surpris-
ing that deregulation of this pathway can cause serious systemic problems. Indeed, mTOR
is a very complex pathway that seems to play a central role in many fundamental cellular
processes. Since new mechanisms of action and regulation are constantly being discovered,
it seems that this pathway still has many secrets to be told. Due to the importance of the func-
tions mTOR controls, it is extremely important to keep this pathway in-check. Certainly, this
pathway does contain intricate negative feedback loops and inactivating enzymes to prevent
the pathway from going into a chronic state of activation. However, like all well-organized
systems, a simple flaw could wreak havoc on the system, and there have been plenty of cases
reported in disease and research of the consequences that occur in these circumstances.

Since the mTOR pathway integrates glucose homeostasis and lipid synthesis, it is not difficult
to believe that disruptions in this pathway can lead to serious metabolic diseases. Indeed,
mTOR has been heavily involved in obesity-related comorbidities, such as type 2 diabe-
tes. A high fat diet, a contributing factor to these diseases, has been known to raise insulin,
amino acids, and pro-inflammatory cytokines levels, which can affect mTOR activity. Type
2 diabetes occurs when cells become immune to insulin, even when sufficient insulin levels
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accumulate to signal cells to take up glucose. mTORC1 has been implicated in regulating
the insulin-producing pancreatic {3 cell function, as {3 cell-specific TSC component knockout
mice revealed that young mice experienced increased {3 cell mass coordinated with higher
insulin levels and increased glucose tolerance [96]. However, as the mice aged, these observa-
tions reversed, resulting in a decline of 3-cell function over time [97]. This biphasic display
could be explained through the feedback inhibition of insulin/PI3K/AKT by constitutive S6K1
expression [98]. At first, constant mMTORC1 expression improves [(3-cell function, however this
constant activation eventually accumulates in the S6K1-mediated inhibition of IRS1 upstream
of mTORCT1. Decrease in {3 cell function is also observed when mTORC2 signaling is knocked
out. In this case, activation of AKT does not occur, which encourages FoxO1 activation. This
causes a defect in glucose metabolism, leading to glucose intolerance due to a reduction in
[-cell mass and proliferation, affecting insulin production and secretion [99]. It is clear that
mTOR is a major regulator in (3-cell viability and insulin signaling. Deregulation of this path-
way has a great potential to cause insulin resistance leading to diabetes onset.

mTOR signaling also plays a significant role in obesity and non-alcoholic fatty liver disease,
both of which can be characterized by an increase in adipogenesis. Fat, the most important
energy storage site, accumulates in an mTORC1-activated state, while loss of mMTORC1 results
in leanness and resistance to high fat diet-induced obesity through enhanced mitochondrial
respiration [100, 101]. This is because downstream effectors of mTORC1, 4E-BP and S6K1,
regulate adipogenic transcription factors and their translation [102, 103]. Loss of mTORC2, on
the other hand, results in impaired glucose transport in response to insulin stimulation and
increased lipolysis translating to an escalation in circulating free fatty acids and glycerol [104].
Proliferation of adipose tissue is recognized to be the highest risk factor in developing obe-
sity-related diseases. Over-activation of mTOR has been heavily connected in the tissues of
obese and high fat diet-fed animals and its regulation is critical in maintaining a healthy state.

The liver is a multifaceted organ. Not only does it filter and detoxify the blood, it also pro-
duces and stores compounds utilized by the whole body. Of importance to this discussion,
the liver is responsible for producing triglycerides, cholesterol, and ketone bodies that periph-
eral organs use as an energy source in low nutrient states. Like adipose tissue and pancreas,
mTORC1/S6K1 activity in the liver is high in obese or nutrient dense states, leading to feed-
back inhibition of IRS and insulin resistance. This inhibition leads to the hyperglycemia and
hyperinsulinemia characteristic of type 2 diabetes and insulin resistance. Interestingly, in the
liver as well as other tissues, insulin loses its sensitivity yet still retains its ability to stimulate
fatty acid synthesis. This could be explained by the fact that FoxO1 in primarily responsible
for glucose metabolism in an mTORC2-dependent process, while mTORC1 promotes lipo-
genesis and this is primarily controlled via SREBP expression [105, 106]. Therefore, this may
promote the double-edged sword of glucose intolerance and the stimulation of lipogenic pro-
cesses, leading to obesity and insulin resistance in an mTOR-dependent manner.

Lastly, imperfect mTOR signaling plays an important role in many cancers. This pathway is
made up of many proto-oncogenes and tumor suppressors that, if affected, could turn a cell into
a constitutively growing and proliferating state characteristic of cancers. PTEN (phosphatase and
tensin homolog) antagonizes the actions of PI3K, which phosphorylates phosphatidylinositol
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4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3). PTEN recycles PIP3
back to PIP2, blocking downstream PI3K/AKT/mTOR signaling. Mutations in this gene blocks
the ability of PTEN to recycle PIP3 and deactivate downstream effects, and it has been found to
be frequently mutated in human cancers [107]. Another tumor suppressor, TSC1/2, suppresses
chronic mTOR activation but, when mutated, can lead to abnormal and unregulated growth
[108]. Hyperactivation of mTOR can also happen at the genomic level, as mutations in MTOR
have also been found in various cancers [109]. Other oncogenic genes, such as Akt, Pi3k, and Rheb,
have been described to encourage proliferation and tumor progression. Many of the pathways
genes and proteins have been credited with encouraging a proliferative state when manipulated,
and since the mTOR pathway is so vast and largely unknown, pinpointing the problem becomes
an impossible feat. Even more challenging is finding treatments that are effective and do not have
downstream adverse effects.

In response to stimulatory signals, such as insulin and nutrients, the combination of increased
adiposity and insulin resistance resulting from chronic mTOR activation is the main driving
factors contributing to metabolic disease. To further complicate the scene, genetic mutations or
aberrantly functioning proteins can force a cell into a constitutively growing and dividing unit,
reminiscent of cancer. Cancer and metabolic disorders are some of the most common diseases
in modern times. To contain or prevent the occurrences of these diseases are the topics of many
current research and clinical trials. The mTOR pathway coordinates cell growth and environ-
mental conditions through an intercalated network that must adapt to unstable conditions. The
complexity of this pathway, the diverse signals it recognizes, and the importance of the func-
tions it regulates makes this a promising, albeit cumbersome, target for therapeutic intervention.

3.4. Therapeutic probiotic strategies to modulating mTOR

Although no studies have directly explored the interaction of probiotics with the mTOR path-
way, it is likely to surface soon. With the microbiome a popular topic in research in relation to
disease onset and now the emergence of mTOR as a main regulator of essential cellular func-
tions whose deregulation is indicated in disease, it would be not all too surprising if a connec-
tion could be made between the two. To be able to implement a non-invasive strategy to treat
diseases such as cancer or type 2 diabetes would be a huge leap forward in medical technology.
Indeed, a main goal in microbiome research is to be able to understand the effects of these
microorganisms in the gastrointestinal context, and to dissect their interactions with the host
and their environment, including other microbial species and luminal contents. Though many
groups have reported on some of the effects of specific microbial species, there is still much left
to be discovered. Here, we will consider some of the connections these effects may have with the
mTOR pathway (Figure 3), and discuss the potential consequences this may have on the host.

In many cases, disease onset is preceded by a systemic inflammatory response. This is also
the case in cancer and metabolic disorders. As mentioned, inflammatory cytokines, such as
TNFa, are known to be potent inducers of mTOR activity. TNFa is known to inhibit TSC1
through its activation of IKKf3, a link that has also been exposed in tumor angiogenesis [110].
A significant elevation of pro-inflammatory cytokines has also been described to be associ-
ated with metabolic disorders, such as obesity and type 2 diabetes. As is the case with cancer,
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Figure 3. A simple representation of the mTOR pathway and some potential probiotic targets. External signals such as
inflammation, growth factors, insulin, and amino acids can stimulate mTOR activity through a cascade of upstream
effectors. These can activate processes that are required for a cell to grow, proliferate and survive. Using probiotics to
target some of these stimulatory signals or enzymes within the pathway can help modulate its effects regarding disease
onset.

IKKp seems to also link inflammation to obesity-induced insulin resistance, and its inhibition
could potentially be used to treat insulin resistance [111]. Coincidentally, numerous studies
on probiotic strains have focused on alleviating inflammation and have even reported this to
be correlated with reduced disease onset [15, 112]. Reducing the circulation of inflammatory
cytokines will be less effective in activating IKKP and therefore stimulating mTOR activity.
Therefore, the successful alleviation of inflammatory cytokines with probiotics has the poten-
tial to reduce the activation of mTOR and its downstream effects, potentially reducing the
incidence of modern diseases associated with chronic mTOR activation.

Insulin resistance occurs when the hormone insulin is insufficient in triggering cells to take
in glucose to be converted into energy. Although insulin is produced at reasonable levels,
glucose cannot enter the cells and therefore builds up in the blood, leading to hyperglycemia.
Both insulin resistance and hyperglycemia are characteristic of type 2 diabetes, and it has
been explained that chronic mTOR activation can contribute to this through the negative feed-
back loop connecting S6K1 to IRS. Obesity and a poor diet have also been described to be risk
factors for type 2 diabetes, and associated with mTOR activity. Since the occurrence of type 2
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diabetes is dramatically increasing and it continues to be one of the most prevalent diseases
threatening human health, there have been many studies commenting on probiotic interven-
tion to reduce symptoms of type 2 diabetes. Several Bifidobacterium and Lactobacillus strains
are described to reducing weight gain, improving insulin-glucose homeostasis and overall
improving metabolic syndrome in obese or high fat diet-fed mice [113, 114]. Even a study on
a probiotic yeast was found to reduce metabolic syndrome symptoms and hepatic steatosis
in obese and diabetic animals [115]. Clinical studies are now investigating this relationship
and have reported improved insulin resistance in high fat, over-fed circumstances [116, 117].
However, these studies have rarely looked directly at the mechanism in which these probiot-
ics contribute to human health, and even less often have any investigated into the effects on
mTOR. Needless to sayj, it is possible that these mechanisms could be mTOR-mediated, how-
ever more work into this area is needed.

One of the many benefits that our microbial symbionts provide for us is the ability to produce
or release substances that our bodies are not capable of doing itself. These substances include
vitamins, antimicrobials, butyrate, and other short chain fatty acids (SCFA). In fact, even the
famous inhibitor in which the pathway is named after, rapamycin, is produced by the bac-
terium Streptomyces hygroscopicus, providing more evidence that microbes can make specific
ligands that interfere with the activity of mTOR enzymes. Studies have elucidated the benefi-
cial effects of butyrate have on colon diseases, such as ulcerative colitis, Crohn’s disease, and
cancer [118]. To date, two main SCFA signaling mechanisms have been described: the inactiva-
tion of histone deacetylases (HDAC) and the stimulation of G-protein-coupled receptors. One
study has even uncovered the role of HDAC-activated S6K1 in promoting immune tolerance
through T-cell differentiation into effector and regular T cells due to SCFAs [119]. This response
is important when cells are faced with a potent stimulus. Instead of over reacting to the stimuli,
the T cells emit tolerant signals to be able to neutralize the threat instead of creating a systemic
inflammatory response. Additionally, some probiotic strains encode for unique enzymes that
can cleave off phenols, or natural antioxidants, from dietary fiber [17, 120, 121]. Coincidentally,
many of the inhibitors of the mTOR pathway, such as the popular rapamycin and its deriva-
tives, are cyclic and phenolic in nature. This opens up a new avenue of research, exploring
natural food components released by probiotics in controlling pathways whose deregulation is
associated with diseases. Few studies have explored this area, but one group discusses the abil-
ity of cranberry proanthocyanins to encourage autophagy in esophageal adenocarcinoma cells
via inhibition of the PI3BK/AKT/mTOR pathway [122]. Another phenolic compound isolated
from a shrub is described to disrupt mMTORC1 complex and activate the AMPK/TSC signaling
cascade, preventing breast tumor growth [123]. Since mTOR activity is aggressive in tumor
development, preventing its bodily dissemination through natural food components seems
like a far less intrusive procedure than current cancer therapies. Lastly, bacteria can alter the
bioavailability of amino acids through their natural metabolism. They can utilize host-derived
amino acids, provide amino acids to the host, or disrupt host pathways involved in amino acid
digestion or synthesis [80, 124]. Amino acids, particularly arginine and leucine, are essential for
mTORC1 activation [125]. Commensals in the intestine have been reported in utilizing these
amino acids for protein synthesis, thereby limiting their availability for host-sensitive pathways
[126, 127]. However, amino acid producing bacteria within the human intestine can contribute
to this available pool of amino acids [128]. The homeostatic maintenance of the bioavailable
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pool of amino acids by the gut microbiota may be an important modulator of mTOR activity
in vivo, thereby controlling disease development. Still, with the emergence of new mTOR data,
we are finding that the list of potential inducers of mTOR to be very extensive. Although argi-
nine and leucine are deemed the most important inducers of mTOR, other amino acids have
been found to be able to trigger this pathway, and bacteria that have the ability to disrupt host
biochemical pathways can regulate this expression [80, 129]. The complexity of the microbial-
host relationship in the context of communal metabolites provides an intricate insight into the
regulation of important regulatory pathways.

The reduction of mTOR through pharmaceutical intervention has also been a popular area
for research. One drawback to this method is that these techniques aim to directly inhibit this
pathway through contact with its key mediators. Although, this seems like the simplest and
most effective way to prevent mTOR-mediated disease onset, it could create drastic effects.
Since this pathway focuses on essential cellular functions, total inhibition of this pathway
could do more harm than good. As these drugs are sometimes not natural chemicals, they can
also induce unrelated but potentially critical side effects in the body. The best method of action
may be to focus on indirect approaches to modulate mTOR activity, rather than trying to com-
pletely prevent its activation. These indirect methods could come in the form of moderating its
stimulatory signals, such as inflammation and insulin. As we discover more of the health ben-
efits probiotics have to offer, it is clear that this is a multifaceted interaction with the host. After
all, these are living organisms, consuming, excreting, and doing what is necessary to survive
rather than a chemical that has no consideration of its existence. It is possible that this complex
relationship could be what we need to keep our body in balance. Therefore, the answers to
relieving some of today’s most aggressive diseases could come from our own microflora.
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