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Abstract

We use an autonomous neural controller (ANC) that handles the mechanical behavior 
of virtual, multi-joint robots, with many moving parts and sensors distributed through 
the robot’s body, satisfying basic Newtonian laws. As in living creatures, activities inside 
the robot include behavior initiators: self-activating networks that burn energy and func-
tion without external stimulus. Autonomy is achieved by mimicking the dynamics of 
biological brains, in resting situations, a default state network (DSN), specialized set of 
energy burning neurons, assumes control and keeps the robot in a safe condition, where 
other behaviors can be brought to use. Our ANC contains several kinds of neural nets 
trained with gradient descent to perform specialized jobs. The first group generates mov-
ing wave activities in the robot muscles, the second yields basic position/presence predic-
tion information about sensors, the third acts as timing masters, empowering sequential 
tasks. We add a fourth category of self-activating networks that push behavior from the 
inside. Through evolutive methods, the composed network share clue information along 
a few connecting weights, producing self-motivated robots, capable of achieving notice-
able self-level of competence. We show that this spirited robot interacts with humans 
and, through appropriate interfaces, learn complex behaviors that satisfy unknown, sub-
jacent human expectative.

Keywords: autonomous robot, behavior initiators, deep learning

1. Introduction

To reach the degree of complexity required in human-robot interaction, artificial neural net-
works (ANNs) seem to be good nominees. The new powerful training algorithms known 

globally as deep learning have made possible massively trained ANN capable of recognizing 

a specific human face in a blink. However, these powerful neural processors lack a key com-

ponent of life: self-motivation. What internal force moves a fruit fly? Important research [1, 2] 
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has found that in ultimate navigating lifesaving situations, the decisions in the fly’s brain, 
with about 250,000 neurons, are taken by a reduced set of neurons that consume energy and 

originate an inner noisy output that in turn fires a massive body response (change in flying 
direction, for instance). So, at this scale, by using its own onboard neural processor, a self-

motivated behavior initiator situation occurs inside the fly, causing noticeable changes in the 
activity of the individual.

As a significant consequence, this internal capacity converts the fly into a free-running auton-

omous living creature. One of our objectives in the chapter is thus to develop design methods 

that bring this genuine spontaneity and autonomy to our robots.

At the bigger scale of human brains with about eighty billion of neurons, the function of 

autonomous behaviors initiator is a much more elaborated matter, well documented by 
Raichel and its research team by using modern functional magnetic resonance imaging (fMRI) 
[3, 4]. From these studies, one noticeable finding is that the human brain never really rests but 
stays always in constant activity, burning a substantial amount of energy that seems to go 

nowhere. Raichel called this phenomenon “the brain dark energy,” and his discovery changes 

every previous concept about brain functioning. This energy-burning attitude seems to be the 
common way of living brains, and signs of constant burning energy have been reported in 

bees [5] and submillimeter worms [6].

1.1. Previous works

The use of artificial neural nets to control robots represents a promising activity, and recent 
research has been published. In [7], the authors develop an autonomous robot with the appli-

cation of neural network and apply it for monitoring and rescue activities in case of natural 

or man-made disaster. In [8], the use of an artificial neural network to improve the estimation 
of the position of a mobile node in indoor environment using wireless networks is studied. 

In [9], the author focuses on deep convolutional neural networks, capable of differentiating 
between thousands of objects by self-learning from millions of images. In [10], the authors 

study the design of a controlling neural network using adaptive resonance theory. In [11], the 

authors developed a new method based on neural networks that allows learning multichain 

redundant structure configuration during grasping.

In our previous a work, we proposed a method where the capacities of two specific kinds of 
neural processors [12], vehicle driving and path planning, were stacked as to control mobile 

robots. Each processor behaves as an independent trained agent that, through simulated evo-

lution, is encouraged to socialize through low-bandwidth, asynchronous channels. Under 

evolutive pressure, agents develop communication skill and cooperative behaviors that raise 

the level of competence of vision-guided mobile robots, allowing a convenient autonomous 

exploration of the environment. In [13], a neural behavior-initiating agent (BIA) was proposed 
to integrate relevant compressed image information coming from other cooperating and 

specialized neural agents. Using this arrangement, the problem of tracking and  recognizing 

a moving icon was solved by three simpler and separated tasks. Neural agents associated 

proved to be easier to train and show a good general performance. The obtained neural 
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 controller handled spurious images, solved acute image-related tasks, and, as a distinctive 

feature, in prolonged deadlock conditions showed traces of genuine spontaneity.

In this chapter, we have taken these ideas further and propose an all-neural controller spe-

cialized in governing the functioning of a multi-joint robot, with many joints, muscles, sen-

sors, and specialized sub-processors. The general problem is to find an ideal balance that 
guarantees self-motivation and maximizes the learning capacity of the robot in human-robot 

interaction situations.

Our methodology contemplates the partially supervised training with backpropagation 

of shallow networks inside explicit scenarios, with specialized tasks, where information 

about the environment is available and is used as targets for local neural training. The 

objective at this basal level is to produce reliable abstract representations of the environ-

ment, including both short-term and long-term influences and wave-time-related infor-

mation. This neural set is then stacked together with other internal and external neural 

signals, creating a fertile ground for the robot to learn new behaviors related with human’s 

interaction. Our macro-objective is to build robots supported by self-motivated, multipart, 

robust neural controllers.

1.2. Research methods

We have constructed neural models written in C++ that behave or can be trained to behave 
as different kinds of neural sub-processors including self-activated behavior initiators, wave 
generator, timing generator, and general purpose predictive units. We also develop C++ model 
for an expandable mechanical universe where neuro-mechanical nodes composed by muscles, 

sensors, joints, mechanical structures, and mechanical links can be connected together, creating 

wormlike robots extrapolable to many components. The robot universe includes other items 

such as ball, floor, fixed walls, and one flexile moving wall that can be manipulated by humans.

Through evolutive methods, the neural subcontroller learns to share clue information along 

a few low-bandwidth channels producing a self-motivated robot with a high level of compe-

tence. We show that this proactive robot is capable of interacting with humans through appro-

priate interfaces and learning complex behaviors that satisfy unknown, subjacent human 

purposes.

1.3. Autonomous neural controller

The proposed self-activated neural controller is developed around the ambient in Figure 1. 

The mechanical assembly is defined by a set of repetitive, neural-mechanical blocks called 
joints, snapped together to form long chains. The wave generator block is a shallow network 

directly connected to the actuators, one neuron per muscle. Its function is to massively move 
the muscle in a coordinate way. The timing generator, position detector, and ball detector 

blocks are all shallow, three-layer neural networks, trained with backpropagation to do robotic 

tasks related to sensor activities. The behavior initiator block is an energy-consuming network 

that satisfied a local, weight-encoded syntactic rule. By evolutive algorithm and through a 
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 convenient  interface, human-robot interaction triggers a learning process where some weights 

are modified, and the robot learns behaviors that satisfy human’s expectations. After training, 
the behavior initiator network behaves as a default mode network (DMN) that assumes the 

control, burns energy, and uses other subjacent resources to initiate new behaviors, if required.

2. Biological brains

2.1. Brain’s wiring diagram

The basic building block of brains is the neuron, which by itself has a very especial nature 

in terms of energy consumption, higher than any other kind of cell in living creatures [14]. 

From human to rotifers and very simple worms, neurons group themselves into elaborated 

networks called brains, where the common factor seems to be carefully knitted structuring 
complexity, with high job specializations [15, 16].

2.2. A default mode of brain function

“Whilst part of what we perceive comes through our senses from the object before us, another 

part (and it may be the larger part) always comes out of our own head.” William James (1890)

In classical studies of brain function, the main accepted model is based in task-evoked 
responses. In general, the used experiments encourage a reflexive view of how the brain 

Figure 1. Autonomous neural controller. Modular neural-mechanical blocks called joints are snapped together to form 

long chains. The resulting structure is controlled by an arrangement of stacked neural controllers. A wave generator 

massively moves robot muscle in a coordinate way. Other shallow neural networks are trained with backpropagation 

do specific robotic tasks: handle sensor activities, timing generation, position detection, and ball sensing. The behavior 
initiator is an energy-consuming, self-activating network that satisfied syntactic rules and pushes behaviors by itself. 
The genetic combination of all these elements produces a self-motivated robot capable of learning, through human-robot 

interaction, behaviors that satisfy human’s expectations.
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works, ignoring that brain functions may be mainly intrinsic, connecting by themselves infor-

mation and processing it to respond to environmental demands. By carefully analyzing the 

allocation of the brain’s energy resources, Raichel [4] argues that the essence of brain function 

is indeed mainly intrinsic and components of signal transduction and metabolic pathways are 

all in a continuous state of flux.

Consider this functional aspect of human brain, described in Raichel’s research [3, 4]:

“In the mid-1990s we noticed quite by accident that, surprisingly, certain brain regions experienced 

a decreased level of activity from the baseline resting state when subjects carried out some task. These 

areas—in particular, a section of the medial parietal cortex (a region near the middle of the brain 

involved with remembering personal events in one’s life, among other things)—registered this drop 

when other areas were engaged in carrying out a defied task such as reading aloud. Befuddled, we 
labeled the area showing the most depression MMPA, for “medial mystery parietal area. This cuing —

among the visual and auditory parts of the cortex, for instance—probably ensures that all regions of the 

brain are ready to react in concert to stimuli. Further analyses indicated that performing a particular 

task increases the brain’s energy consumption by less than 5 percent of the underlying baseline activity. 

A large fraction of the overall activity—from 60 to 80 percent of all energy used by the brain—occurs 

in circuits unrelated to any external event.”

According to [3, 4], the human brain has a default mode of function controlled by a default 

mode network (DMN) which serves as a master organizer of its dark energy. The DMN is 

thought to behave like an orchestra conductor, issuing timing signals, much as a conductor 

waves a baton, to coordinate activity among different brain regions. This orchestrated way of 
doing things is described in a neat story in [4] where during a quite beach afternoon a placid 

tourist does daydreaming watching nowhere. In his lap rests a magazine that he’s been read-

ing for a while, suddenly a weird looking insect lands in its naked leg, firing a cascade of 
stimulus. The point is that during the following chains of events, where the human tries to get 

rid of a potential danger, the brain in fact consumes less energy during daydreaming. Raichel 

found that the default mode network burns energy and maintains the control of the whole 

body, while many other powerful neural processors (vision, sense of touch, etc.) return to the 

borderline of activity and keep on burning energy, ready to actuate.

The lesson about this biological brain story is that to survive in a complex physical world, our 

robots and robot controllers should have a safe default mode that keeps itself in charge, burns 

energy, preserves the mechanical structure in a safe condition, and is ready to evocate other 

behaviors under stimuli.

3. The robot and its environment

The robot is assembled with elements that contain sensors, muscles, rigid joints, and a male-

female coupling (Figure 2). Each joint has a dedicated neuron that activates the corresponding 

muscle which, for the sake of simplicity, has both contraction and expansion capacities.

Joints are snapped together to form arbitrarily long wormlike robots (Figure 3).
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4. Autonomy

Our approach to autonomous robots is based in autonomous controllers, constructed with 

artificial neural nets, and incorporating basic rules of living brains in terms of energy usage, 
default mode network (DMN), and the orchestrated, autonomous transitions forms default 

mode to other operative behaviors in reaction to stimuli.

4.1. Artificial neural networks

The neural networks used in this chapter are sigmoidal neurons trained with backpropaga-

tion [17]. Other functioning details are given in [12, 13].

Figure 3. Modular robot with 16 joints and dedicated driven neurons in its working environment.

Figure 2. The basic robotic joint with sensors, muscles, and neural driver. The joint can be snapped into long chains. 

Muscles are driven by the output neurons of an associate network.
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In both biology and circuit complexity theory, it is maintained that deep architectures can 
be much more efficient (even exponentially efficient) than shallow ones in terms of compu-

tational power and abstract representation of some functions [18, 19]. Unfortunately, well-

established gradient descent methods such as backpropagation that have proven effective 
when applied to shallow architectures do not work well when applied to deep architectures. 

Our method uses shallow nets trained with backpropagation, but these networks are thereaf-

ter stacked with other networks, thus becoming deep architectures.

5. Neural controllers

5.1. Autonomous behavior initiators

As mentioned in the introduction, the Drosophila brain involves nonlinearity and the compe-

tence of only a few neurons in the final fly’s behavior-initiating mechanism, deep buried in its 
brain. So, we are interested in neural structures with few neurons and genuine spontaneity. In 
the previous work [12], we presented a solution where the term behavior is defined as a finite 
sequence of events distributes in the space time. The initiation of these sequences is fired by 
using an n-flop, a robust network constructed with sigmoidal-type neurons sharing a common 
self-activating excitatory input K [20]. Being robust, it serves as foundation for other large-scale 

optimization structures that solve difficult jobs, such as the travel salesman problem (TSP). The 
n-flop is the basic building block beyond the concept of programming with neurons [20], and 

the term is derived from the flip-flop, a computer circuit that has only two stable states. n-flops 
have n-stable states and the rooted capacity to solve high-dimensional problems [21].

In an n-flop, neurons are programmed by their weight interconnections to solve the con-

straint that only one of them will be active when the system is in equilibrium. To this end, 

the output of each neuron is connected with an inhibitory input weight (-1) to each of the 

other n-1 neuron inputs (lateral inhibition). In addition, each neuron receives a common 
excitatory input K which, on controlled situations, tends to force all neuron outputs toward 

1. A solution or desired output is self-activated by rising K and forcing all neurons to some 

near-equilibrium but unstable “high-energy” state. At this point, K is set to almost zero, 

forcing the network to seek a low-energy or equilibrium-stable state. The solution given by 

a non-biased n-flop is a unique but unpredictable winner, which may be used as a behav-

ior initiator, where “behavior” corresponds to a finite sequence of events, distributes in the 
space time. A unique winner guarantees a conflict-free operation in terms of robotic conduct. 
A good stabilized n-flop will always satisfy the syntactic rule “only one winner,” even when 
neurons in the n-flop community share input weights with outside-world neurons, includ-

ing other n-flops. This conduces toward a proactive scenery where it is possible to control, 
with events that happen inside or outside the robot, the initiation of behaviors that are being 

pushed from the inside (Figure 4).

Like in biological brains, the proposed behavior initiator constantly consumes energy, and 

since it controls behaviors, it can affect the whole information processing of the robot.
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5.2. The wave generator

Waves are important in living creatures, and some forms of contraction waves are always 

used for locomotion and other activities [22].

We use a wave generator network to control the robot’s muscles through a one-to-one assign-

ment so that one output neuron controls one muscle. The net is pre-trained with a set of inputs 

that produce output values in the range 0–1. This moves the joint associated to the muscle in 

the range (α, −α) where α is a target angle measured in degrees. With the appropriated tar-

gets, the net learns to reproduce moving wave forms in its outputs (Figure 5).

The training objective is to create a neural moving wave that in turn produces a mechanical 

moving wave through the robot’s body.

5.3. The timing generator

Timing is important in living creatures making it possible to control complex thing, from 

walking to sleeping [23]. We use a neural timing generator trained with backpropagation so 

that its output vector behaves as a programmable shift register with left, stop, right commands 

and a winner-takes-all output; the winner stays near 1, while all other m−1 outputs stay off 
(near to 0). The training objective is to create neural timing signals that produce mechanical 

timing through the robot’s body (Figure 6).

5.4. The position predictor

The position predictor is trained to indicate the position of the ball when it touches the sen-

sors. The predictor receives sensor signals in the range 0–1 as input and predicts the mean 

position of the detected ball in terms of one joint number. For example, in Figure 7, due to 

Figure 4. The n-flop as a behavior pusher. A set of sigmoidal-type neurons inhibit each other with −1 value weights and 
share a common self-activating excitatory input K. Under controlled situations, K raises and forces all neuron outputs 

toward a 1 output. Once in this high-energy position, K comes down to almost zero, forcing the network to seek a low-

energy or equilibrium state. For each K cycle, a new, unique, random winner is generated. Neurons in the n-flop can 
share input weights with other insider or outsider neurons. This results in a proactive scenery where behavior initiation 

is being pushed from the inside and all behaviors can be eventually awakened, but it is still possible for events inside or 

outside of the robot to modify the statistical occurrence of behaviors.
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spatial interaction between the space sensors and the ball, a complex input pattern is pro-

duced. Applying a mass center algorithm, the position of the ball can be estimated in terms of 

a unique joint number and given as target to the net.

5.5. The ball presence detector

The ball presence is trained to indicate that the ball is touching the sensors somewhere along 

the robot’s body. It is a first front detector, and its training includes white noise as counter 
example so that the net learns to distinguish the specific sensor excitation pattern produced 
by the ball (Figure 8).

Figure 5. The wave generator. A shallow network receives as input 16 decoded timing signals produced by a timing 

generator. By using a moving wave form as target, the net is trained to generate the chosen waveform and to move it, 

when the input timing signal moves. Since output neurons directly drive robot’s muscles, moving mechanical waves can 

be created in the robot’s joint structure. The chosen hidden layer has nine neurons so data compression occurs.

Figure 6. The timing generator. After training, the output vector behaves as a programmable shift register, with left, stop, 

right, commands and a winner-takes-all output, where only one of n-defined output stays on (near to 1), while all other 
m-1 outputs stay off (near to 0).
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5.6. The autonomous neural controller

Our next step is to assemble the above-defined neural devices into an integrated autonomous 
neural controller (ANC) that combines the different capacities of the participant networks. As 
shown in Figure 9, a five-flop is established as a basal behavior initiator, where neuron 1 is 
connected with a positive weight to a constant output, becoming the neuron with the highest 

probability to win, assuming the role of a default network. When the ball presence network 

becomes active, the state 3 may become a winner activating the three-flop, which feeds ran-

dom values to the wave generator producing a random moving wave. Notice that a single 

event (ball presence) activates a complex assembly of neural devices that work by themselves, 

creating a mechanical wave running through the robot’s body.

To promote complex behaviors, a set of selected outputs are allowed to have connecting 

weights with a selected set of neurons (Figure 9).

Figure 8. The ball presence detector is trained to indicate that the ball is touching the sensors somewhere along the 

robot’s body.

Figure 7. The position predictor is trained to indicate the position of the sensed ball in terms of a joint number. From 48 

sensors, 16 outputs are derived.

Human-Robot Interaction - Theory and Application134



Specifically, the outputs of the ball position predictor (16) are weight connected with the neu-

rons of the 3-flop, making possible for the ball position to control the direction of the moving 
wave. This comprises 16 × 3= 48 weights.

The hidden weight in the wave generator (144 weights) is also allowed to mutate, opening 

opportunities for different wave forms and wave movements to appear. The overall behavior 
of the free-running autonomous neural controller is thus governed by these 192 variables.

6. The human-robot interaction

Once the autonomous neural controller (ANC) begins to behave like an orchestra conductor, 

issuing timing signals to coordinate activities among different control regions, humans begin 
to interact with the robot through a keyboard and a visual interface (Figure 10). Humans are 
asked to play the coconut dance game, in which a couple tries, without using their hands, 

to move upward a coconut placed between them at their waist level; in our case, the human 

player uses the robot as dancing partner. We choose this activity because it requires a close, 

coordinate interaction between the two participants, and it doesn’t have a trivial solution. The 

coconut (ball) is subjected to gravity force and is released somewhere between the dancers. 

The human, represented by a flexible wall, must use the keyboard to move toward the robot 
and trap the ball between the two bodies; he/she then uses the keyboard to manipulate a mov-

ing body bending that pushes the ball up. The game is won when the ball is pushed up, out 

of the body’s reach.

Animated by internal n-flops, the robot behaves proactively, burning energy and initiating 
behaviors independently of the outside world.

Figure 9. The autonomous neural controller. A 5-flop acts as basal behavior initiator; its number 1 neuron is connected with 
a positive weight value to the constant 1 line, making the neuron the highest probability to win (default state). When the ball 

presence network (bp) becomes active, the state 3 becomes a likely winner that in turn activates the 3-flop. Next, random 
values are fed to the wave generator, producing a random moving mechanical wave in the robot. To promote complex 

behaviors, selected outputs are allowed to develop connecting weights with other neurons, for instance, the 3-flop neurons 
have connective input weights with the position predictor network. Through weight mutations, complex behaviors emerge.
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7. Genetic algorithms

Genetic algorithms are search algorithms used to find near-optimal solutions in arbitrarily 
created search spaces [24]. Applications in robot control have been reported in [25]. In this 
work, the search space is defined by a chromosome formed with the 192 weights defined in 
Section 5.1.

The 144 weight values obtained in the trained process in Section 5.2, corresponding to the 

wave generator’s hidden layer, are left untouched but subjected to possible future changes. 

The 48 weight values corresponding to the ball position predictor and the 3-flop are given 
initial random value between +0.5 and −0.5.

Genetic algorithms have three main operators: selection, crossover, and mutation.

For the purposes of this chapter, we will use an evolutive approach where only mutation and 

selection are put to work. This kind of process plays a dominant role in bacterial evolution 

[26] and in pseudo-code can be written as:

get fitness

{

       timer=p;

       store initial coconut vertical position hi

      do{

           use stored move

           play

Figure 10. Human-robot interaction. Humans play the coconut dance game by using the robot as dancing partner. This 
activity requires a close, coordinate interaction between the two participants, and it doesn’t have a trivial solution. The 

coconut, pulled down by gravity, is released somewhere between the dancers. The human (flexible wall) must use the 
keyboard to trap the ball between the two bodies and then manipulate a moving body bending, to push the ball up and 

out of the body’s height.
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           timer--

           } until timer>0

get coconut final vertical position h
f

}

if ( h
f
 ₋ h

i>0
 ) fitness= h

f
 ₋ h

i

else > fitness=0

Mutation is implemented by iterating all bits in the chromosome and randomly adding a 

small value (positive/negative) to them. The probability of changing one weight is called the 

mutation rate and is here maintained in 10%.

8. Results: the quick evolution

8.1. Experiment 1. High human activity

Several human players interact with the robot. His/her moves (keyboard inputs) are stored in 
a vector with fixed time sampling. The fitness is measured in how much the coconut raises in 
a given time period, in pseudo-code:

get fitness

{

      timer=p;

      store initial coconut vertical position h
i

      do{

           use stored move

           play

           timer--

           } until timer>0

get coconut final vertical position h
f

}

if ( h
f
 ₋ h

i>0
 ) fitness= h

f
 ₋ h

i

else > fitness=0

After using this fitness formula with the genetic algorithm of Section 7 and after about 5000 
accepted mutations, the kind of individual shown in Figure 11a evolved. Since humans do 

most of the active part, the evolved robots learn to stay upright, facilitating the human actions, 

but show little or null body wave activity.
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8.2. Experiment 2. Low human activity

For this setting, the human players stay mostly inactive, as a passive wall whose only function 
is to get the coconut pressed against the robot.

By using the same fitness formula of experiment 1, a quite different outcome is obtained. 
Although the human provides little action to the game, the fitness formula put all the coconut-
lifting responsibility in the robot. In other words, evolution teaches the robot the connotation 
of the game. The final evolutive result, after about 19,000 mutations, is a robot with an autono-

mous dynamic response that learned to produce its own moving body bending and uses it to 

push the coconut all the way up, out of the body’s gap (Figure 11b).

9. Conclusions

By coupling two self-activated n-flops, we end up with an autonomous behavior initiator 
system that mimics the functioning of a living brain, in the sense that a default network con-

sumes energy and is ready to initiate other behaviors under specific stimulus. Due to n-flops 
activity, all behaviors are constantly self-pushed from the inside.

With behaviors pushing from the inside, the robot is quite ready to face the real word and 

quickly learn new tricks. This is corroborated by the relative small number of mutation 

required to evolve reliable robots.

Our model incorporates some basic aspect of biological brains: (a) a fraction of the overall 

activity of all energy used by the autonomous neural controller (ANC) occurs in circuits unre-

lated to any external event. (b) In terms of structure, the components of the ANC are sepa-

rated, carefully knitted constructions with pronounced job specializations.

Figure 11. Evolved autonomous robots. (A) When human do most of the active part of the game, the evolved robots learn 

to stay upright, facilitating the human actions, but show little or null body wave activity. (B) When the human provides 
little game action and puts the coconut-lifting responsibility in the robot, evolution teaches the robot the connotation of 
the game. The evolved robot develops an autonomous dynamic response that learned to produce its own mechanical 

moving body bending and uses it to push the coconut all the way up.
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Complex behaviors are codified in one single chromosome with 198 genes.

This satisfies one of the basic rules of evolution: Few genetic information unravels into com-

plex things.

It seems reasonable to conclude that in a compact gene, small mutations produce enormous 
changes in the mutated individual, which enriches the search for solutions.

At least for our model of ANC, a successfully interaction with humans depends on the human 

attitude, if the humans put too much emphasis on the robot to learn to stay quiet. On the other 
hand, if human stays quiet but the basic rules of the game (lift the ball) is passed on to the 

robot learning, then the robot will pick up to the hard part of the job.

As in biology our robots, concerning behavior initiation, do throw the dice, but they keep 

and attractively control over when, where, and how this random event will be put into 
effect.
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