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Abstract

The photonic crystals (PCs) exhibit photonic band gap (PBG), inhibiting specific wave-
length of light decided by structural periodicity. PCs are a new class of periodic dielectric 
media that can provide novel ways to manipulate and control light. Researchers have 
recently devoted extensive efforts to fabricating PCs with controlled symmetry, size, and 
defects on a large scale and tuning of PBG. Liquid crystalline (LC) materials exhibit-
ing self-organization, phase transition, and molecular orientation behaviors in response 
to external stimuli are attracting significant attention for the bottom-up nanofabrication 
and tuning of advanced photonic materials and devices. Here, we will introduce self- 
organization of PCs from LCs and photoswitching mechanism of PBG based on phase 
transition and anisotropic orientation of LCs.

Keywords: self-organization, molecular orientation, liquid crystal, azobenzene, light 
response, photonic band gap

1. Introduction

The structural coloration is basically caused by interaction between light and periodic 
 nanostructured-materials, and light absorption with dyes or pigments is not required for 
the structural coloration. One can find structural coloration of various materials in nature, 
and the structural colors are iridescent and very durable, for example, opal, peacock wings, 
and so on. Recently, there is an increasing interest in developing bioinspired nanostructures 
with controlled symmetry, size, and defects on a large scale for photonic crystals (PCs) [1–7]. 

Generally, the fabrication processes are divided into bottom-up and top-down methods. The 
top-down methods are mostly based on lithography-related techniques, which are expensive 
and requiring high technology [8–11]. The bottom-up methods are primarily about the self-
assembly of component units such as emulsions, colloidal particles, and block copolymers 
[12–16].

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Liquid crystalline (LC) materials are attracting significant interest on the bottom-up nano-

fabrication of advanced photonic materials and devices with unique configuration and novel 
tuning mechanism. LCs undoubtedly represent such a marvelous dynamic system based on 
molecular reorientation behavior affecting macroscopic properties [17–19]. On the other hand, 

the responsiveness of LCs to various stimuli such as temperature, light, mechanical force, and 
electric and magnetic fields as well as chemical and electrochemical reactions can attribute 
to fascinating tunability of photonic band gap (PBG) in the periodic nanostructure, which 
provides numerous opportunities in all-optical integrated circuits and next-generation com-

munication system. Here, several examples of self-organized LC nanostructures are intro-

duced, and fabrication of three-dimensional (3D) PCs containing azobenzene LC molecules 
and photoswitching of PBG are discussed.

2. Self-organized PCs and PBG tuning based on LCs

2.1. Self-organized LC nanostructures

We introduce several examples for the fabrication methods of precisely constructing of PCs 
using self-organized LC nanostructures of cholesteric LC (ChLC), LC blue phase, and holo-

graphic polymer-dispersed LC.

2.1.1. Cholesteric LC

Dissolving a chiral compound in a nematic LC causes helix formation, resulting in the selective 
reflection of circular light corresponding to the helical pitch and helical sense. The pitch, the dis-

tance over which the director field rotates by 2π radians, is sensitive to external stimuli such as 
temperature, light, electric field, and mechanical stress [20–25]. Kurihara et al. have reported on 
the photochemical change in transparency as well as the selective reflection of a cholesteric LC 
(ChLC) resulting from the photoisomerization of a chiral azobenzene compound doped in a host 
nematic LC [26–31]. It is based on the photochemical change in helical twisting power (HTP) of 
the chiral azobenzene compounds under irradiation of UV and visible light. A combination of a 
rigid chiral diol core and azobenzene group led to larger photochemical changes in HTP, resulting 
in a reversible change of selective reflection over whole range of visible region with faster photo-

chemical switching as shown in Figure 1. HTPs of the chiral azobenzene compounds increased 
or decreased by UV light, and the color change of reflection light was seen even with naked eyes.

On the other hand, Muševič et al. developed ChLC microdroplets, in which the arrangement 
of ChLC molecules was with parallel anchoring of the LC molecules at the surface. The heli-
cal structure of the LC originates from the center of the droplet and gives rise to concentric 
shells of constant refractive index. The introduction of chirality in ChLCs in the spherical 
shape resulted in the formation of a multilayered spherical Bragg resonator with an alterna-

tion periodic refractive index [32]. This dielectric structure is optically equivalent to the well-
known Bragg-onion optical microcavity. In addition, Li et al. reported photoresponsive ChLC 
droplets with large helical twisting power [33].
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2.1.2. LC blue phase

Blue phases (BPs) are among the most fascinating photonic nanostructures in the area of 

LCs [34]. They are known to self-organization into the 3D frustrated nanostructures, which 
originate from the competition between the packing topology and chiral forces. The peri-
odic nanostructures are self-organized from the so-called double-twisted cylinders that are 
usually stabilized by the formation of defects or disclinations. As the 3D PCs, BPs feature 
remarkable bandgap tunability over an extensive spectrum in response to various exter-

nal stimuli such as temperature [35, 36], mechanical strength [37], electric field [38], and 

light [39–41]. The spectral band gap position of selective reflection can be readily predeter-

mined by varying the chiral fraction of BP mixtures. However, BPs have received increasing 
attentions especially in recent years, but the reflection wavelength tuning is usually quite 
narrow. The ability to dynamically tune the photonic bandgap in cubic BPs across a wide 
wavelength range is highly desirable. Effort to improve the instability and irreversibility 
of BPs has been made with polymer-stabilized structure [18] and incorporation of unusual 

bent-core mesogen [42].

Figure 1. Changes in the selective reflection of the ChLC after UV irradiation (a) and visible light (b) irradiation at 
25°C. And the photograph (c) of color change of the ChLC by varying UV irradiation time 0 s (left), 4 s (middle), and 10 s 
(right). [31] Copyright 2005, Wiley-VCH.
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2.1.3. Holographic polymer-dispersed LC

Holographic polymer-dispersed liquid crystal (H-PDLC) materials belong to a phase separa-

tion material system where the LCs can form droplets, of controllable sizes, that are phase-sep-

arated from the polymer-rich regions during the photopolymerization process. Interestingly, 
it has enabled the in situ fast one-step fabrication of self-organized PCs. The control of the 
bandwidth of the reflection resonance, related to the light intensity and spatial porosity dis-

tributions, was investigated to optimize the optical performance.

For example, Cartwright et al. reported a graded reflection grating based on the H-PDLC 
material system [43, 44]. An obvious rainbow-colored reflection was observed from the same 
viewing angle by a modification to this standard configuration where the triangular prism is 
replaced with a cylindrical lens. Modified optical setup is based on a cylindrical lens to gener-

ate a graded holographic interference pattern along the x-axis from the incident and reflected 
beams. It is expected to compact graded PBG structures for linear variable optical filters.

The marriage of holography and self-organized LC materials is highly expected to produce 
a diverse range of novel 1D, 2D, and 3D nanostructures for various applications in electro- 
optical filters, wavelength division multiplexer, free-space optical switches, information dis-

play devices, and so on [45–49].

2.2. PBG tuning of 3D photonic crystals

Three-dimensional PCs such as opal and inverse opal structure can be easily prepared by col-
loidal self-assembly approach. The fabrication of inverse opal structure infiltrated by azoben-

zene LC molecules for 3D PCs and the mechanism of photoswitching of PBG are described.

For 3D PCs, the reflection wavelength (λ) under normal incident condition is expected by 
equation of Bragg diffraction as follows [50]

  λ = 2  √ 

__

   2 __ 
3
     d  √ 

________________

    n  
sphere

     2  f +   n  
void

     2  (1 − f)     (1)

where d is the diameter of the sphere, n
sphere

 and nvoid are the refractive indices of the sphere 
and the medium in the voids of opal, respectively, and f is the volume fraction of the sphere. 
In this way, the peak wavelength can be roughly tuned by two approaches: either by control 
of the diameter of the sphere or by control of the refractive index. If one can control photo-

chemically phase transition or birefringence of LCs in 3D PCs, they will be candidates for 
applications to optical devices such as display and memory.

On the other hand, light among various promising stimuli shows distinct and significant 
advantages due to its spatial, remote, and temporal controllability. It is also noteworthy that 
the light sources with different wavelength, intensity, and polarization are readily accessi-
ble. Photocontrol of chemical and physical functions of various molecular systems has been 
studied vigorously using photochemical configurational change of azobenzene derivatives 
[51–54]. The photochromism of azobenzene and its derivatives due to cis-trans isomeriza-

tion has been widely investigated. For PC containing azobenzene molecules, ‘photochemical 
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phase transition’ between the alignment phase and isotropic phase, or ‘photoinduced optical 
anisotropy’ based on photoselective reorientation behavior is very useful parameter for self-
organization and optical photonic crystal switching. Here, fabrication of three-dimensional 
(3D) PC containing azobenzene molecules and photoswitching of PBG are discussed.

2.2.1. PBG tuning by phase transition change

Three-dimensional PCs such as opal and inverse opal structure can be infiltrated with stimuli-
responsive materials, thus enabling PBG tuning. Kubo et al. reported on the drastic change 
in optical properties for the inverse opal structure containing low molar mass LCs, by taking 
advantage of the nematic-isotropic phase transition [50]. It is based on change in the light scat-

tering intensity between LC phase and isotropic phase.

SiO
2
 inverse opal template could be fabricated by infiltration of SiO

2
 spheres into the voids 

of polystyrene (PS) opal film and calcination of PS as shown in Figure 2. When SiO
2
 inverse 

opal film infiltrated with 4-cyano-4′-pentylbiphenyl (5CB), the reflection spectra of the 
LC-infiltrated inverse opal film were changed with increase in the temperature as shown in 
Figure 3. In the initial state at 25°C, 5CB is in the nematic phase and the film is white due to 
light scattering. The reflection has two weak peaks. With the gradual temperature rise, the 
positions of the peaks shifted slowly and a distinct peak at around 610 nm, which is derived 

Figure 2. Schematic of PS opal (a) and SiO
2
 inverse opal (b) structures and their photographs.
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from PBG, appeared rapidly at the phase transition temperature into the isotropic phase at 

40°C. The color of film becomes red. This result shows that switching of the optical properties 
can be realized due to a phase transition of the LCs, leading to thermos-tunable PCs.

Kubo et al. also reported the photoswitching of reflection for SiO
2
 inverse opal film infiltrated 

with photo-response azobenzene containing LC mixture [55]. By UV light, a reflection peak 
increased rapidly and then saturated, indicating appearance of PBG. The trigger for this dras-

tic change was the trans-cis photoisomerization of the azobenzene derivatives in the films. 
The excitation of the π-π* transition of azobenzene molecules at around 360 nm results in a 
transformation from trans to cis isomers. The photoinduced cis form of azobenzene group has 
a bent shape and hence tends to disorganize the phase structure of nematic LCs.

The observed change could be reversed to the original state, decrease of reflectance, by irradi-
ating with visible light. The recovery was induced by cis-trans photoisomerization, followed 
by a phase transition from the isotropic to the nematic phase under visible light (436 nm). 
Such a switching effect could also be observed in transmission spectra. It is supposed due 
to the fact that the LC molecules in the nematic phase in the spheroidal voids are aligned 
parallel to the void surfaces, but the orientation is completely random among spheres. It 
is similar to the phenomena observed for polymer-dispersed liquid crystal (PDLC). On the 
other hand, when the LC was transformed into an isotropic phase by UV light, the anisot-
ropy in the dielectric constant disappeared. That is, the dielectric constant of the LC in all of 

the spheroidal voids became the same, and hence, a reflection peak due to Bragg diffraction 
appears [56–58]. On the basis of this scenario, dynamic change in the optical properties was 
observed repeatedly by alternating irradiation with UV and visible light. It was completely 
reversible, exhibiting good stability and reproducibility during the light irradiation cycle as 
shown in Figure 4.

Figure 3. Reflection spectra of SiO
2
 inverse opal film infiltrated with 5CB at the temperature from 25°C to 40°C [50]. 

Reproduced. Copyright 2004, American Chemical Society.
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2.2.2. PBG tuning by molecular reorientation

For low-molar-mass LC-infiltrated inverse opal film as mentioned in the previous section, 
the stability of the switched state was not enough although the photoswitching was revers-

ible. It is due to the thermal back reaction of the azobenzene compound and fluidity of the 
low-molar-mass LC. In contrast with low-molar-mass LCs, polymeric LCs are well known to 
show excellent storage stability. Kurihara et al. reported the stable and reversible shift of the 
Bragg diffraction band for SiO

2
 inverse opal structure infiltrated with 4,4′-methoxy hexyloxy 

azobenzene polymethacrylate, PAz (schematic molecular structure is shown in Figure 5), and 

reflection change were investigated when irradiation of linearly polarized light (LPL) and 
circularly polarize light (CPL) of Ar + later (λ = 488 nm) [59].

Photoisomerization behavior is demonstrated by absorption band change as shown in 
Figure 6. By UV light, trans-cis isomerization is induced, the absorption peak at 360 nm 
decreases, and the peak at 450 nm increases (Figure 5(a) and (c)). By irradiation of visible 
light, cis-trans photoisomerization is induced, and reverse changes in absorption spectra are 
induced (Figure 6(b) and (d)).

Anisotropic state of azobenzene compounds based on their molecular orientation can be con-

trolled via reversible isomerization behavior by light and thermal stimuli [60–62]. Namely, 

alignment state of trans-form is perpendicular to the direction of polarized light (known as 
Weigert effect [20, 63–64]), and the alignment is destroyed by formation of cis-form.

The orientation state is evaluated by polarized absorption spectra and by birefringence, Δn, 
measurement. From angle dependence of absorbance at the peak of 360 nm to the polar-

ized axis, orientation direction perpendicular to the polarized direction of induced LPL was 
demonstrated. When Δn is estimated by change in transmitted light of the azobenzene film 

Figure 4. Time-dependent change in the reflectance of 5CB/azobenzene LC mixture-infiltrated inverse opal film at 
603 nm by UV and visible light irradiation. The black bars show the periods for the irradiation of UV light (<400 nm), 
and the gray bars show the periods for irradiation of visible light (436 nm). For other periods, the sample was kept in the 
dark [58]. Copyright 2002, American Chemical Society.
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Figure 5. Schematic molecular structure of PAz.

Figure 6. Changes in absorption spectra of PAz in THF after UV light (365 nm, 8 mW/cm2) (a) and visible light (436 nm, 
60 mW/cm2) (b) irradiation. Changes in absorption spectra of PAz film irradiated UV light (365 nm, 10 mW/cm2) (c) and 

following visible light (436 nm, 58 mW/cm2) (d) at room temperature.
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placed between two crossed polarizers, Δn of PAz was estimated to be 0.128, as shown in 
Figure 7 [65].

Azobenzene polymer can be infiltrated into the SiO
2
 inverse opal film by heating to melt. The 

pore diameter and volume fraction of SiO
2
 inverse opal, d and f, were estimated by compar-

ing wavelength of the reflection peaks of the SiO
2
 inverse opal films infiltrated with various 

solvents with different refractive indices. For SiO
2
 inverse opal film, d = 278 nm and f = 0.118, 

reflection spectra before and after injection of PAz are shown in Figure 8. The injection of 
PAz caused a shift of the reflection peak from 480 nm to 710 nm, because of an increase in the 
refractive index from 1.0 of air to 1.6 of PAz.

By LPL irradiation of light, reflection measured with polarizer parallel and perpendicular 
to the polarization direction of LPL is plotted in Figure 9. The reflection peaks depend on 
the irradiation time and polarization direction. By irradiation of a linearly polarized light at 
488 nm (Ar + laser), azobenzene groups were aligned in the direction perpendicular to the 
polarization direction of the laser light.

After irradiation of LPL, reflection band shifted to longer wavelength with little shoulder 
at shorter wavelength. By observation with parallel and perpendicular polarizers, different 
two bands were respectively observed. The maximum wavelengths of the reflection bands at 
shorter and longer wavelength regions were 706 nm and 725 nm, respectively. Therefore, the 
refractive indices of PAz in the pores after the LPL irradiation, ordinary refractive index (n

o
) 

and extraordinary refractive index (n
e
), were estimated to be, respectively, 1.57 and 1.62 by 

using Bragg diffraction (Eq. (1)) with the parameters d (278 nm), f (0.118), and nSiO
2
 (1.45). 

Namely, the photoinduced birefringence of PAz was 0.05 in the pores of SiO
2
 inverse opal. It is 

less optical anisotropy comparing to solid film of PAz (0.13), indicating insufficient alignment 

Figure 7. Schematic for birefringence measurement and the result of PAz.
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due to huge surface energy in the pores of SiO
2
. In addition, reflection intensity decreased 

and increased by small and larger refractive index differences between PAz (1.57 and 1.62) 
and SiO

2
 (1.45).

3. Conclusion

Optical properties of LCs represent the responsibility of external stimuli such as tempera-

ture, light, mechanical force, and electric and magnetic fields as well as chemical and electro-

chemical reactions, which are a driving force leading to dynamic change of materials from 
molecular level to macroscopic level. Dynamic system of LCs makes it a quite advantageous 

Figure 8. Plot of reflection wavelength change of SiO
2
 inverse opal structure depending on solvents with various 

refractive indices (a) and reflection spectra before and after infiltration of PAz (b).
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approach toward bottom-up nanofabrication of photonic materials with novel tuning mecha-

nism. In addition, the responsiveness to various stimuli can attribute to fascinating tunability 
of PBG, which provides numerous opportunities in all-optical integrated circuits and next-
generation communication system.
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