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Abstract

The aim of this chapter is threefold. First, we show some advances in complexity dynamics
of set-valued discrete systems in connection with the Devaney’s notion of chaos. Secondly,
we start to explore some relationships between control sets for the class of linear control
systems on Lie groups with chaotic sets. Finally, through several open problems, we invite
the readers to give a contribution to this beauty theory.
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1. Introduction

Relevant classes of real problems are modelled by a discrete dynamical system

xnþ1 ¼ f xnð Þ , n ¼ 0, 1, 2,… (1)

where X; dð Þ is a metric space and f : X ! X is a continuous function. The basic goal of this

theory is to understand the nature of the orbit O x; fð Þ ¼ f n xð Þ= n ¼ 0; 1; 2;…f g for any state

x∈X, as n becomes large and, in general this is a hard task. The study of orbits says us how the

initial states are moving in the base space X and, in many cases, these orbits present a chaotic

structure. In 1989 in [1], Devaney isolates three main conditions which determine the essential

features of chaos.

Definition 1 Let X be a metric space and f : X ! X a continuous map. Hence, f .

a. is transitive if for any couple of non-empty open subsets U and V of X there exists a natural

number k such that f k Uð Þ ∩V 6¼ ∅.

b. is periodically dense if the set of periodic points of f is a dense subset of X.

1Partially supported by Conicyt, Chile through Regular Fondecyt Projects no. 1151159 and no. 1150292 respectively.

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



c. has sensitive dependence on initial conditions if there is a positive number δ (a sensitivity

constant) such that for every point x∈X and every neighbourhood N of x there exists a

point y∈N and a non-negative integer number n such that d f n xð Þ; f n yð Þð Þ ≥ δ.

Next, we mention a remarkable characterisation of transitive maps. In fact, as a consequence of

the Birkhoff Transitivity Theorem (see [2] for details), it is possible to prove.

Proposition 2 Let X be a complete metric space which is also perfect (closed and without isolated

points). If f : X ! X is continuous, then f is transitive if and only if there exists at least one orbit

O x; fð Þ dense in X.

Remark 3 Also, other concepts very useful in this work are the following: i) f is weakly mixing iff for

any non-empty open subsets U and V of X there exists a natural number k such that f k Uð Þ ∩V 6¼ ∅ and

f k Vð Þ ∩V 6¼ ∅. ii) f is mixing iff given two non-empty open subsets U and V of X there exists a natural

number k such that f n Uð Þ ∩V 6¼ ∅ for all n ≥ k. iii) f is exact iff given a non-empty open subsets U there

exists a natural number k such that f k Uð Þ ¼ X. It is clear that f exact ) f mixing ) f weakly mixing

) f transitive.

It is worth to point out that sensitivity dependence on initial conditions was widely under-

stood as being the central idea in chaos for many years. However, in a surprising way, Banks

et al. has proved that transitivity and periodically density imply sensitivity dependence (for

details see [3]). Furthermore, for continuous functions on real intervals, Vellekoop and

Berglund in [4] show that transitivity by itself is sufficient to get chaos. This last result is not

necessarily true in other type of metric spaces (see Example 4.1 in [5]).

However, sometimes we need to know information about the collective dynamics, i.e. how are

moved subsets of X via iteration or dynamics induced by f. For example, if X denotes an

ecosystem and x∈X, then, by using radio telemetry elements, we can obtain information about

the movement of x in the ecosystem X. In this form, it is possible to build an individual

displacement function f : X ! X. Of course, this function could be chaotic or not. Eventually,

we could also be interested to get information about the collective dynamics induced by f,

means, to follow the dynamics of a group of individuals. Thus, in a natural way the following

question appears: what is the relationship between individual and collective dynamics? This is

the main topic of this chapter.

Given the system (1), consider the set-valued discrete system associated to f defined by

Anþ1 ¼ f Anð Þ, n ¼ 0, 1, 2,… (2)

where f is the natural extension of f to the metric space K Xð Þ;Hð Þ of the non-empty compact

subsets of X endowed with the Hausdorff metric H induced by the original distance d of X.

In a more general set up, this work is strictly related with the following fundamental question:

what is the relationship between individual and collective chaos?

As a partial response to this question, in this chapter we search the transitivity of a continuous

function f on X in relation to the transitivity of its extension f to K Xð Þ: Our main result here

establishes that f transitive implies f transitive. That is to say, collective chaos implies individ-

ual chaos under the dynamics of f .
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On the other hand, we propose a new approach to this problem: to study the dynamics

induced by f on the subextension Kc Xð Þ of K Xð Þ: Precisely, on the class of non-empty

compact-convex subsets of X. We prove that the induced dynamics is less chaotic than the

original one!

Finally, we mention that some relevant problems in the theory of control systems can be also

approached by the theory of set-valuated map. In fact, to any initial state x of the system, one

can associate its reachable set A xð Þ. In other words, A xð Þ contains all the possible states of the

manifold that starting from x you can reach in non-negative time by using the admissible

control functions U of the system. The aim of this section is twofold. First of all, to apply to the

class of linear control systems on Lie groups, the existent relationship between control sets of an

affine control system Σ on a Riemannian manifoldM with chaotic sets of the shift flow induced

by Σ on M� U , [6]. In particular, we are looking for the consequences of this relation on the

controllability property. At the very end, we propose a challenge to the readers to motivate the

research on this topic through some open problem relatives to the mentioned relationship.

2. Preliminaries

In this section, we mention some notions and fundamental results we use through the chapter.

2.1. Extensions

If X; dð Þ is a metric space and f : X ! X continuous, then we can consider the space K Xð Þ;Hð Þ

of all non-empty and compact subsets of X endowed with the Hausdorff metric induced by d

and f : K Xð Þ ! K Xð Þ, f Að Þ ¼ f Að Þg, the natural extension of f to K Xð Þ. Also, we denote by

Kc Xð Þ ¼ A∈K Xð Þ=A is convexf g. If A∈K Xð Þ we define the “e -dilatation of A” as the set

N A; eð Þ ¼ x∈X= d x;Að Þ < ef g, where d x;Að Þ ¼ inf
a∈A

d x; að Þ.

The Hausdorff metric on K Xð Þ is given by

H A;Bð Þ ¼ inf e > 0= A⊆N B; eð Þ and B⊆N A; eð Þf g:

We know that K Xð Þ;Hð Þ is a complete (separable, compact) metric space if and only if X; dð Þ is

a complete (separable, compact) metric space, respectively, (see [3, 7, 8]).

Also, if A∈K Xð Þ, the set B A; eð Þ ¼ B∈K Xð Þ=H A;Bð Þ < ef g denotes the ball centred in A and

radius e in the space K Xð Þ;Hð Þ.

Furthermore, given a continuous function I; dð Þ!
f
I; dð Þ on a real interval I, we also consider the

extension Kc Ið Þ;Hð Þ!
f c

Kc Ið Þ;Hð Þ, where f c is the restriction f
�

�

Kc Ið Þ
.

2.2. Baire spaces

In this section, we review some properties of Baire spaces.

Definition 4 A topological space X is a Baire space if for any given countable family of closed sets

An : n∈Nf g covering X, then int Anð Þ 6¼ ∅ for at least one n.
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Definition 5 In any Baire space X,

1. D⊂X is called nowhere dense if int cl Dð Þð Þ ¼ ∅:

2. Any countable union of nowhere dense sets is called a set of first category.

3. Any set not of first category is said to be of second category.

4. The complement of a set of first category is called a residual set.

Remark 6 It is important to note that:

a. Any complete metric space is a Baire space.

b. Every residual set is of second category in X.

c. Every residual set is dense in X.

d. The complement of a residual set is of first category.

e. If B is of first category and A⊆B, then Ais of first category.

(For details, see [8–10])

In particular, if X ¼ I is an interval, then C Xð Þ and C X;Rð Þ, endowed with the respective

supremum metrics, are Baire spaces.

In a Baire space X, we say that “most elements of X” verify the property (P) if the set of all x∈X

that do not verify property (P) is of first category in X. In this form, sets of second category can be

regarded as “big” sets. A relevant area of the real analysis is to estimate the “size” of some sets

associated to a continuous interval function f such as the set P fð Þ of periodic points of f , or the

set F fð Þ of fixed points of f . Typically, continuous interval functions have a first category set of

periodic points (see [11]) and, in particular, a first category set of fixed points. It has also been

recently proved that a typical continuously differentiable interval function has a finite set of fixed

points and a countable set of periodic points (see [12] and references therein). It is also well-

known that the class of nowhere differentiable functionsND Ið Þ is a residual set in C Ið Þ (see [13, 14]).

Also, a special class of functions in C Ið Þ is the class CNL Ið Þ of all continuous functions whose

graphs “cross no lines” defined in a negative way as follows (see [10]):

Definition 7 Let f : a; b½ � ! a; b½ � a continuous map and L : R! R a function whose graph is a

straight line. We say that L crosses f (or f crosses L) if there exists x0 ∈ a; b½ � and δ > 0 such that

f x0ð Þ ¼ L x0ð Þ and either.

(a) L xð Þ ≤ f xð Þ for all x∈ x0 � δ; x0½ � ∩ a; b½ � and L xð Þ ≥ f xð Þ for all x∈ x0; x0 þ δ½ � ∩ a; b½ �; or.

(b) L xð Þ ≥ f xð Þ for all x∈ x0 � δ; x0½ � ∩ a; b½ � and new L xð Þ ≤ f xð Þ for all x∈ x0; x0 þ δ½ � ∩ a; b½ �.

The following result can be found in [10]:

Theorem 8 ([10]) The set CNL Ið Þ ¼ f ∈ C Ið Þ= f crosses no linesf g is residual in C Ið Þ.

The set CNL Ið Þ will play an important role in the next sections.
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2.3. The dynamics of control theory

In Section 7, we propose some challenges through the relationship between the notion of

chaotic sets in the Devaney sense and control sets for the class of Linear Control Systems on

Lie Groups, [15]. In particular, we explicitly show some results concerning the controllability

property in terms of chaotic dynamics.

In the sequel, we follow the relevant book The Dynamics of Control by Colonius and

Kliemann, [6]. Let M be a d dimensional smooth manifold. By an affine control system Σ in M,

we understand the family of ordinary differential equations:

Σ : _x tð Þ ¼ X x tð Þð Þ þ
X

m

j¼1

uj tð ÞY
j x tð Þð Þ, u ¼ u1;…; umð Þ∈U (3)

where X,Yj, j ¼ 0, 1,…, m are arbitrary C
∞ vector fields on M: The set U ⊂L∞ R;Ω⊂R

mð Þ is the

class of restricted admissible control functions where Ω⊂R
m with 0∈ intΩ, is a compact and

convex set.

Assume Σ satisfy the Lie algebra rank condition, i.e.

for any x∈M ) Span
LA

X;Y1
;…;Ym

� �

xð Þ ¼ d:

Of course, LAmeans the Lie algebra generated by the vector fields through the usual notion of

Lie bracket. Furthermore, the ad -rank condition for Σ is defined as follows:

for any x∈M ) Span adi Yj
� �

: j ¼ 1;…;m and i ¼ 0; 1;…
� �

xð Þ ¼ d:

For each u∈U and each initial value x∈M, there exists an unique solution w t; x; uð Þ defined on

an open interval containing t ¼ 0, satisfying w 0; x; uð Þ ¼ x. Since we are concerned with

dynamics on Lie Groups, without loss of generality we assume that the vector fields X,

Y1,…, Ym are completes. Then, we obtain a mapping Φ satisfying the cocycle property

Φ : R�M� U ! M, t; x; uð Þ↦Φ t; x; uð Þ and Φ tþ s; x; uð Þ ¼ Φ t;Φ s; x; uð Þ;Θsuð Þ

for all t, s∈R, x∈M, u∈U : Where, for any t∈R, the map Θt is the shift flow on U defined by

Θs uð Þ tð Þ≔u tþ sð Þ: Hence, Φ is a skew-product flow. The topology here is given by the

product topology between the topology of the manifold and the weak* topology on U :

It turns out the following results.

Lemma 9 [6] Consider the set U equipped with the weak* topology associated to L∞ R;Rmð Þ ¼

L1 R;Rmð Þ∗
�

as a dual vector space. Therefore,

1. U ; dð Þ is a compact, complete and separable metric space with the distance given by

d u1; u2ð Þ ¼
X

∞

n¼1

1

2n

Ð

R
< u1 tð Þ � u2 tð Þ; vn tð Þ > dt

�

�

�

�

1þ
Ð

R
< u1 tð Þ � u2 tð Þ; vn tð Þ > dt

�

�

�

�

:

Here, vn : n∈Nf g⊂ L1 R;Rmð Þ is a dense set of Lebesgue integrable functions.
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2. The map Θ : R� U ! U defines a continuous dynamical systems on U . Its periodic points

are dense and the shift is topologically mixing (and then topologically transitive).

3. The map Φ defines a continuous dynamical system on M� U:

On the other hand, the completely controllable property of Σ, i.e. the possibility to connect any

two arbitrary points of M through a Σ-trajectory in positive time, is one of the most relevant

issue for any control system. But, few systems have this property. A more realistic approach

comes from a Kliemann notion introduced in [16].

Definition 10 A non-empty set C ⊂M is called a control set of (3) if.

i. for every x∈M there exists u∈U such that w t; x; uð Þ : t ≥ 0f g⊂ C

ii. for every x∈ C, C ⊂ cl A xð Þð Þ

iii. C is maximal with respect to the properties ið Þ and iið Þ:

A xð Þ denotes the states that can be reached from x by Σ in positive time and cl its closure

A xð Þ ¼ y∈M : ∃u∈U and t > 0 with y ¼ w t; x; uð Þf g:

Moreover, for an element x∈M, the set of points that can be steered to x through a Σ-trajectory

in positive time is denoted by

A
∗ xð Þ ¼ ∪

τ>0
y∈M : ∃u∈U ; e ¼ w

τ,u xð Þ
� �

:

Finally, we mention that the Lie algebra rank condition warranty that the system is locally

accessible, which means that for every τ > 0,

int A ≤ τ xð Þð Þ and int A
∗

≤ τ
xð Þ

� �

are non empty, for any x∈M:

3. f transitive implies f transitive

As we explain, in terms of the original dynamics and its extensions a natural question arises:

what are the relations between individual and collective chaos? As a partial response to this

question, in the sequel, we show that the transitivity of the extension f implies the transitivity

of f : For that, we need to describe some previous results.

Lemma 11 [5] Let A be a non-empty open subset of X. If K∈K Xð Þ and K⊂A, then there exists

e > 0 such that N K; eð Þ⊂A:.

Definition 12 Let A⊂X be. Then the extension of A to K Xð Þ is given by e Að Þ ¼ K∈K Xð Þ= K⊂Af g.

Remark 13 e Að Þ ¼ ∅⇔A ¼ ∅:.

Lemma 14 [5] Let A⊂X be, A 6¼ ∅, an open subset of X. Then, e Að Þ is a non-empty open subset of

K Xð Þ.
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Lemma 15 [5] If A, B⊂X, then: i) e A ∩Bð Þ ¼ e Að Þ ∩ e Bð Þ, ii) f e Að Þð Þ⊆e f Að Þð Þ, and iii) f
p
¼ f p , for

every p∈N.

Now, we are in a position to prove the following results

Theorem 16 Let f : X ! X be a continuous function. Then, f transitive implies f transitive.

Proof: Let A, B be two non-empty open sets in X. Due to Lemma 13, e Að Þ and e Bð Þ are non-

empty open sets in K Xð Þ. Thus, by transitivity of f , there exists some k∈N such that

f
k
e Að Þð Þ ∩ e Bð Þ ¼ f k e Að Þð Þ ∩ e Bð Þ 6¼ ∅

and, from Lemma 14, we obtain

e f k Að Þ
� �

∩ e Bð Þ ¼ e f k Að Þ ∩B
� �

6¼ ∅

which implies f k Að Þ ∩B 6¼ ∅ and, consequently, f is a transitive function.

4. Two examples

Now we show that, in general, the converse of Theorem 15 is not true.

Example 4.1 (Translations of the circle). If λ∈R is an irrational number and we define

Tλ : S1 ! S1 by Tλ eiθ
� �

¼ ei θþ2πλð Þ, then it was shown by Devaney [1] that each orbit

Tn
λ
eiθ
� �

=n∈N
� �

is dense in S1 and, due Proposition 2, Tλ is transitive. Nevertheless, Tλ has

no periodic points and, because Tλ is isometric, it does not exhibit sensitive dependence on

initial conditions either.

If K∈K S1
� �

, because Tλ preserves diameter, then diam Kð Þ ¼ diam Tλ

n
Kð Þ

� �

, for all n∈N.

Now, let K∈K S1
� �

such that diam Kð Þ ¼ 1, and let e > 0 sufficiently small. Then

F∈U ¼ B K; eð Þ ) diam Fð Þ ≈ 1

G∈V ¼ B 1f g; eð Þ ) diam Gð Þ ≈ 0:

Thus, diam Tλ

n
Fð Þ

� �

≈ 1 ∀n∈N and, consequently, Tλ

n
Uð Þ ∩V ¼ ∅ for all n∈N, which

implies that Tλ is not transitive on K S1
� �

.

Example 4.2 Define the “tent” function f : 0; 1½ � ! 0; 1½ � as f xð Þ ¼ 2x if 0 ≤ x ≤ 1=2 and

f xð Þ ¼ 2 1� xð Þ if 1=2 ≤ x ≤ 1.

It is not difficult to show that f is an exact function on [0,1]. In fact, intuitively we can see that,

after each iteration, the number of tent in the graphics is increasing, whereas the base of each

tent is decreasing and they are uniformly distributed over the interval 0; 1½ �.
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Thus, if U is an arbitrary non-empty open subset of 0; 1½ �, then U contains an open interval J

and, after certain number of iterations, there exists a tent, with height equal to one, whose base

is contained in J, which implies that f Uð Þ ¼ 0; 1½ � and, according to Remark 3, f is an exact

mapping and, consequently, f is a mixing function.

The conclusions in Examples 4.1 and 4.2 come from the next result, Banks [17] in 2005.

Theorem 17 If f : X ! X is continuous, then the following conditions are equivalent:

i) f is weakly mixing, ii) f is weakly mixing, iii) f is transitive.

Hitherto, we have used the strong topology induced by the H-metric on K Xð Þ. However,

considering the we-topology on K Xð Þ generated by the sets e Að Þ with A an open set in X, we

obtain the following complementary result, see [5]:

Theorem 18 For a continuous map f : X ! X the following conditions are equivalent:

i) f is transitive in X; dð Þ, ii) f is transitive in the we-topology.

5. Sensitivity and periodic density of f

Let f : X ! X be a continuous function and let f be its corresponding extension to the hyper-

space K Xð Þ. Then, the study of sensitivity of f in the base space in relation to the sensitivity of f

on K Xð Þ has been very exhaustively analysed in the last years. Román and Chalco published

the first result in this direction [18] in 2005, where the authors prove

Theorem 19 f sensitively dependent implies f sensitively dependent.

Proof: If f has sensitive dependence, then there exists a constant δ > 0 such that for every

K∈K Xð Þ and every e > 0 there exists G∈B K; eð Þ and n∈N such that H f n Kð Þ; f n Gð Þð Þ ≥ δ.

Now, let x∈X be and e > 0. Then, taking K ¼ xf g∈K Xð Þ, we have that there exists

G∈B xf g; eð Þ and n∈N such that H f n xf gð Þ; f n Gð Þð Þ ¼ H f n xð Þ; f n Gð Þð Þ ≥ δ.

Thus, H f n xð Þ; f n Gð Þð Þ ¼ supy∈G d f n xð Þ; f n yð Þð Þ ≥ δ and, due to the compactness of G and the

continuity of f , there exists y0 ∈G such that H f n xð Þ; f n Gð Þð Þ ¼ d f n xð Þ; f n y0
� �� �

≥ δ.

But, G∈B x; eð Þ implies G⊂B x; eð Þ and, consequently, y0 ∈B x; eð Þ. This proves that f is sensi-

tively dependent (with constant δ).

The reverse of this theorem is not true. In fact, recently Sharma and Nagar [19] show an

example where X; dð Þ is sensitive but K Xð Þ;Hð Þ is not. Now, in order to overcome that short-

coming, the authors in [19] introduce the following notion of sensitivity:

Definition 20 (Stronger sensitivity [19]). Let f : X ! X be a continuous function. Then f is strongly

sensitive if there exists δ > 0 such that for each x∈X and each e > 0, there exists n0 ∈N such that for

every n ≥n0, there is a y∈X with d x; yð Þ < e and d f n xð Þ; f n yð Þð Þ > δ.
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Obviously, the notion of stronger sensitivity is more restrictive than sensitivity, and the authors

in [19] obtain the following results:

Theorem 21 If f : X ! X is a continuous function and K Xð Þ;H; f
� �

is strongly sensitive then

X; d; fð Þ is strongly sensitive.

In the compact case, it is possible to obtain a characterization as follows.

Theorem 22 Let X; dð Þ be a compact metric space and f : X ! X a continuous function. Then

K Xð Þ;H; f
� �

is strongly sensitive if and only if X; d; fð Þ is strongly sensitive.

In connection with these results, recently Subrahmomian ([20], 2007) has been shown that most

of the important sensitive dynamical systems are all strongly sensitive (the author here calls

them cofinitely sensitive). Hence, we can say that for most cases, sensitivity is equivalent in

both cases X; dð Þ and K Xð Þ;Hð Þ. It turns out that, strongly sensitivity and sensitivity are

equivalent on the class of interval functions, which implies that

Theorem 23 If f : I ! I is a continuous function, the following conditions are equivalent.

a) I; d; fð Þ is sensitive, b) K Ið Þ;H; f
� �

is sensitive.

We finish this section assuming the existence of a dense set of periodic points for f , we have

Theorem 24 Let X; dð Þ be a compact metric space and f : X ! X a continuous function. If f : X ! X

has a dense set of periodic points then f : K Xð Þ ! K Xð Þ has the same property.

Proof: Let K∈K Xð Þ and e > 0. Then there exists a e=2-net covering K, That is to say, there are

x1,…, xp in K such that K⊂B x1; e=2ð Þ∪…∪B xp; e=2
� �

: Because f has periodic density, there are

yi ∈X and ni ∈N such that:

yi ∈B xi; e=2ð Þ , ∀i ¼ 1,…, p and f ni yi
� �

¼ yi , ∀i ¼ 1,…, p:

Now, takeG ¼ y1;…; yp

n o

: By construction, we haveH K;Gð Þ < e and, moreover, f n1n2…np yi
� �

¼

yi, for all i ¼ 1,…, p. Therefore, f n1n2…np Gð Þ ¼ G, which implies that f has periodic density.

The converse of this theorem is no longer true (for a counterexample, see Banks [17]). How-

ever, to find conditions on f warranting the existence of a dense set of periodic points for f is a

very hard problem which still remains open.

6. The dynamics on the Kc Ið Þ;Hð Þ extension

In the previous sections, we have studied the diagram

K Xð Þ;Hð Þ !
f

K Xð Þ;Hð Þ

↑ ↑

X; dð Þ !
f X;dð Þ

(4)
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and the chaotic relationships between f and f . However, in the setting of mathematical model-

ling of many real-world applications, it is necessary to take into account additional consider-

ations such as vagueness or uncertainty on the variables. This implies the use of interval

parameters and, consequently, to deal with interval systems. That is, it is necessary to consider

an interval X ¼ I and to study the following new diagram:

Kc Ið Þ;Hð Þ !
f c

Kc Ið Þ;Hð Þ

↑ ↑

I; dð Þ !
f I;dð Þ

(5)

along with the analysis of the connection between their respective dynamical relationships.

Here f c denotes the restriction of f to Kc Ið Þ, the class of all compact subintervals of I. For

A ¼ a; b½ �, B ¼ c; d½ �∈Kc Ið Þ, the Hausdorff metric can be explicitly computed as

H A;Bð Þ ¼ max a� cj j; b� dj jf g: (6)

The aim of this section is to show that the Devaney complexity of the extension f c on Kc Ið Þ is

less or equal than the complexity of f on the base space I. More precisely, f c is never transitive

for any continuous function f ∈ C Ið Þ. Also, we will show that f c has no dense set of periodic

points for most functions f ∈ C Ið Þ: Finally, we prove that f c has no sensitive dependence for

most functions f ∈ C Ið Þ.

As a motivation, we present the following examples.

Example 6.1 Consider the “tent” function f : 0; 1½ � ! 0; 1½ � defined by

f xð Þ ¼
2x if 0 ≤ x ≤

1

2

2 1� xð Þ if
1

2
≤ x ≤ 1:

8

>

<

>

:

Then it is well known that f is D-chaotic on 0; 1½ � (see [1]). Moreover, because f is a mixing

function on 0; 1½ �, then f is transitive on K 0; 1½ �ð Þ (see [17]). Also, we observe that x ¼ 2
3 is a fixed

point of f . On the other hand, it is clear that if K is a compact and convex subset of X ¼ 0; 1½ �,

then f Kð Þ is also a compact and convex subset of X. Consequently, if we let Kc 0; 1½ �ð Þ denote

the class of all closed subintervals of 0; 1½ �, then we can consider f c as a mapping

f c : Kc 0; 1½ �ð Þ ! Kc 0; 1½ �ð Þ. We recall that Kc 0; 1½ �ð Þ is a closed subspace of K 0; 1½ �ð Þ (see [21]).

Now, considering the open balls B 0; 1½ �; 1
10

� �

and B 0f g; 1
10

� �

in Kc 0; 1½ �ð Þ, we have.

K∈B 0; 1½ �; 1
10

� �

) 2
3 ∈K which implies 2

3 ∈ f
p

c Kð Þ, ∀p∈N:.

On the other hand, if F∈B 0f g; 1
10

� �

, then F⊂ 0; 1=10½ � . Consequently, H f
p

c Kð Þ; F
� �

≥
17
30 for every

K∈B 0; 1½ �; 1
10

� �

and F∈B 0f g; 1
10

� �

.
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Therefore,

f
p

c B 0; 1½ �;
1

10

	 
	 


∩B 0f g;
1

10

	 


¼ ∅, ∀p∈N:

Thus, f c is not transitive on Kc 0; 1½ �ð Þ.

Example 6.1 shows a function f which is transitive on the base space X ¼ 0; 1½ � and f is also

transitive on the total extension K 0; 1½ �ð Þ, but f c is not transitive on the subextension Kc 0; 1½ �ð Þ.

The following example shows a function f : 0; 1½ � ! 0, 1� with a dense set of periodic points,

and where the total extension of f to K 0; 1½ �ð Þ also has a dense set of periodic points, whereas f c
does not have a dense set of periodic points on Kc 0; 1½ �ð Þ.

Example 6.2. Let X ¼ 0; 1½ � and consider the “logistic” function f : 0; 1½ � ! 0; 1½ � defined by

f xð Þ ¼ 4x 1� xð Þ. It is well known that f is D-chaotic on 0; 1½ � (see [1]). Moreover, f is a mixing

function. Thus, in particular, f has a dense set of periodic points and, therefore, f also has a

dense set of periodic points on the total extension K 0; 1½ �ð Þ) (see Theorem 24).

However, f c has no a dense set of periodic points on Kc Xð Þ.

In order to see this, we claim that the open ball B 1
8 ;

3
8

� �

; 18

� �

in Kc 0; 1½ �ð Þ;Hð Þ does not contain

periodic points of f c.

In fact, if K ¼ c; d½ �∈B 1
8 ;

3
8

� �

; 18

� �

, then c� 1
8

�

�

�

� < 1
8 and d� 3

8

�

�

�

� < 1
8, which implies that 0 < c < 1

4

and 1
4 < d < 1

2.

Thus, we obtain that 1
4 ∈K ) 3

4 ∈ f Kð Þ ) f Kð Þ 6¼ K.

On the other hand,

3

4
∈ f Kð Þ )

3

4
∈ f n Kð Þ, ∀n ≥ 2 ) f n Kð Þ 6¼ K, ∀n ≥ 1

and, consequently, f c has no periodic points in the ball B 1
8 ;

3
8

� �

; 14

� �

⊆ Kc 0; 1½ �ð Þ;Hð Þ, which

implies that f c has no dense set of periodic points on Kc 0; 1½ �ð Þ;Hð Þ.

Lemma 25 f c transitive on Kc a; b½ �ð Þ implies f transitive on a; b½ �.

Proof. Let U,V non-empty open subsets of X ¼ a; b½ �. We can choose x∈U, y∈V and e > 0

such that B x; eð Þ⊂U and B y; eð Þ⊂V. Now, in Kc a; b½ �ð Þ consider the open balls B xf g; eð Þ and

B yf g; eð Þ with respect to the H-metric. Due to the transitivity of f c on Kc a; b½ �ð Þ, there exists

n∈N such that f
n

c B xf g; eð Þð Þ ∩B yf g; eð Þ 6¼ ∅.

Therefore, there exists an interval J∈B xf g; eð Þ such that f
n

c Jð Þ ¼ f n Jð Þ∈B yf g; eð Þ. However,

J⊂B x; eð Þ and, analogously, f n Jð Þ⊂B y; eð Þ, which implies that f n B x; eð Þð Þ ∩B y; eð Þ 6¼ ∅ and,

consequently, f n Uð Þ ∩V 6¼ ∅. And f is a transitive function on a; b½ �.

Chaos on Set-Valued Dynamics and Control Sets
http://dx.doi.org/10.5772/intechopen.72232

107



It is well-known that if X ¼ I is an interval, then most functions f ∈ C Ið Þ has no dense orbits,

that is to say, there exists a residual set D⊂ C Ið Þ such that every function f ∈D has no point

whose orbit is dense in I (see [22]) and, consequently, most functions f ∈ C Ið Þ are not transitive.

From Lemma 24, we can conclude that f c is not transitive for most functions f ∈ C Ið Þ.

The next theorem provides a stronger result.

Theorem 26 Let f : a; b½ � ! a; b½ � be continuous. Then f c is not transitive on Kc a; b½ �ð Þ.

Proof. By Schauder Theorem, f has at least one fixed point p∈ a; b½ �.

Case 1. Suppose that p∈ a; bð Þ and let r ¼ max p� a; b� pf g. Without loss of generality, we can

suppose that r ¼ p� a and, because a < b, it is clear that r > 0.

Now, let r0 ¼ b� p > 0 and let e ¼ r0

2. If we consider the open balls B a; b½ �; eð Þ, B af g; eð Þ∈

Kc a; b½ �ð Þ, it follows that K∈B a; b½ �; eð Þ ) p∈K ) p∈ f
n
Kð Þ for any n∈N.

On the other hand,

F∈B af g; eð Þ ) H F; af gð Þ < e ) F⊂ a, aþ e� :

Because r0 < r we get

H f
n
Kð Þ; F

� �

≥ p� a� e ¼ r�
r0

2
> 0

for each K∈B a; b½ �; eð Þ, F∈B a; eð Þ and for any n∈N. Thus,

f
n
B a; b½ �; eð Þð Þ ∩B a; eð Þ ¼ ∅ , ∀n∈N:

Consequently, f is not transitive on Kc a; b½ �ð Þ.

Case 2. Suppose that f has no fixed points in a; bð Þ. From the continuity of f , we have that

f xð Þ > x for all x∈ a; bð Þ or f xð Þ < x for all x∈ a; bð Þ. This clearly implies that f is not a transitive

function, and consequently, due to Lemma 24, f c is not transitive on Kc a; b½ �ð Þ.

An important question to answer is what about the size of the set of periodic points of f c. It is

clear that there are some functions f ∈ C Ið Þ with a dense set of periodic points on I, and such

that their extensions f c also has a dense set of periodic points on Kc Ið Þ (for instance, f xð Þ ¼ x).

Therefore, an analogous result to Theorem 26, but for periodic density of f c, cannot be

obtained. However, as we will see, most functions f ∈ C Ið Þ do not have an extension f c with a

dense set of periodic points on Kc Ið Þ. To prove it, we need the following lemma.

Lemma 27 Let I be a compact interval in R, and f : I ! I be a continuous function. If we suppose that

f c has periodic density on Kc Ið Þ, then f has periodic density on I.

Proof. If x0 ∈ I and e > 0 then x0f g∈Kc Ið Þ and, consequently, there exists K∈Kc Ið Þ and n∈N

such that

Chaos Theory108



a. H x0f g;Kð Þ < e

b. f
n

c Kð Þ ¼ K.

Combining a. and b. we get

d x0; f
n xð Þð Þ < e, for all x∈K: (7)

Because f
n
Kð Þ ¼ f n Kð Þ ¼ f n Kð Þ ¼ K and f n is continuous on K then, by the Schauder’s Fixed

Point Theorem, there exists xp ∈K such that f n xp
� �

¼ xp. Thus, xp is a periodic point of f and,

due to (7), we obtain d x0; xp
� �

< e. Hence, f has periodic density on I. □

Theorem 28 Let I ¼ a; b½ � be a compact interval in R. Then f c does not have a dense set of periodic

points in Kc Ið Þ, for most functions f ∈ C Ið Þ.

Proof. The proof is based on an exhaustive analysis of the behaviour of the fixed points of f .

We connect this analysis with an adequate residual set in C Ið Þ. The analysis of each fixed point

of f is fundamental to decide whether the function f allows or not an extension f c that has a

dense set of periodic points. More precisely, the behaviour of each fixed point will imply only

two (mutually exclusive) options:

A. f c does not have a dense set of periodic points, or.

B. f ∈ CNL Ið Þ½ �
c
, which is a set of first category in C Ið Þ.

Towards this end, let f : a; b½ � ! a; b½ � be a continuous function. By the Schauder’s Fixed Point

Theorem, f has at least one fixed point p∈ a; b½ �. The proof is divided in.

Case 1: f has no fixed points in a; bð Þ.

In this case, we have the following three subcases:

1iÞ p ¼ a is the unique fixed point of f .

We have, either

f xð Þ > x , ∀ x∈ a; bð Þ ) x < f xð Þ < f 2 xð Þ < … < f n xð Þ < …
� �

, or

f xð Þ < x , ∀ x∈ a; bð Þ ) x > f xð Þ > f 2 xð Þ > … > f n xð Þ > …
� �

:

In both cases it follows that f has no periodic points in a; bð Þ.

1iiÞ p ¼ b is the unique fixed point of f .

This case is analogous to the case 1iÞ.

1iiiÞ p ¼ a and p ¼ b are the unique fixed points of f .

This case is also analogous to the cases 1iÞ and 1iiÞ.

Therefore, in case 1 the function f does not have a dense set of periodic points in a; b½ �. Due to

Lemma 24, f c does not have a dense set of periodic points in Kc a; b½ �ð Þ.
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Case 2: f has at least one fixed point p∈ a; bð Þ.

We have the following subcases:

2iÞ ∃ q∈ a; bð Þ , q 6¼ p such that f qð Þ ¼ p.

Without loss of generality, suppose that q∈ a; pð Þ. Then, taking 0 < e < min q�a
2 ;

p�q
2

� �

, we can

consider the open ball B q� e; qþ e½ �; eð Þ in the space Kc a; b½ �ð Þ. If J ¼ c; d½ �∈B q� e; qþ e½ �; eð Þ,

from (6) we have

c� q� eð Þj j < e and d� qþ eð Þj j < e

which implies that a < c < q and q < d < p and, consequently, q∈ J whereas p∉J. Thus,

q∈ J ) f qð Þ ¼ p∈ f Jð Þ ) f Jð Þ 6¼ J : (8)

On the other hand, p∈ f Jð Þ implies that

p∈ f n Jð Þ, ∀n ≥ 2 ) f n Jð Þ 6¼ J, ∀n ≥ 2 , (9)

and, consequently, f c has no periodic points in the ball B q� e; qþ e½ �; eð Þ⊆ Kc a; b½ �ð Þ;Hð Þ, which

implies that f c does not have a dense set of periodic points on Kc a; b½ �ð Þ;Hð Þ.

2iiÞ q ¼ a, q 6¼ p, is the unique point such that f að Þ ¼ p.

Without loss of generality, we can suppose that f xð Þ > p, for all x∈ a; pð Þ.

Now, in addition to hypothesis 2iiÞ, we have two subcases:

2iia1Þ f does not cross the line y ¼ p and f xð Þ > p for all x∈ a; pð Þ.

In this situation, f xð Þ ≥ p for all x∈ a, b�. Thus, choosing q∈ a; pð Þ and 0 < e < max q�a
2 ;

p�q
2

� �

, we

can consider the open ball B qf g; eð Þ to have

K ¼ c; d½ �∈B qf g; eð Þ ) K⊂ a; pð Þ: (10)

From our hypothesis, we obtain

f n zð Þ > p , ∀z∈K, ∀n∈N, (11)

which implies that f n Kð Þ 6¼ K, ∀n∈N. Consequently, f c has no periodic points in the ball

B qf g; eð Þ. In other words, f c does not have a dense set of periodic points in Kc Ið Þ.

2iia2Þ f does not cross the line y ¼ p and f xð Þ < p for all x∈ a; pð Þ.

In this case, f xð Þ ≥ p for all x∈ a; b½ �. Thus, choosing q∈ p; bð Þ and 0 < e < max q�p
2 ;

b�q
2

n o

, we can

consider the open ball B qf g; eð Þ to obtain

K ¼ c; d½ �∈B qf g; eð Þ ) K⊂ p; bð Þ: (12)

Again, from our hypothesis, we get
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f n zð Þ < p , ∀z∈K, ∀n∈N, (13)

which implies that f n Kð Þ 6¼ K, ∀n∈N and, consequently, f c has no periodic points in the ball

B qf g; eð Þ. In other words, f c does not have a dense set of periodic points in Kc Ið Þ.

2iibÞ f crosses the line y ¼ p.

It is clear that, in this case, f ∈ CNL Ið Þ½ �c which, due to Theorem 8 and Remark 6, is a set of first

category in C a; b½ �ð Þ.

2iiiÞ q ¼ b, q 6¼ p, is the unique point such that f bð Þ ¼ p.

This case is analogous to case 2iiÞ and, consequently, if f does not cross the line y ¼ p then f c
does not have a dense set of periodic points in Kc Ið Þ, whereas if f crosses the line y ¼ p, then

f ∈ CNL Ið Þ½ �c.

2ivÞ q1 ¼ a and q2 ¼ b, q1, q2 6¼ p, are the unique points such that f að Þ ¼ f bð Þ ¼ p.

In this case, we have the following subcases:

2iva1Þ f does not cross the line y ¼ p and f xð Þ > p and f xð Þ > p for all x∈ a; bð Þ pf g.

This case is analogous to the case 2iia1Þ and the same is true for 2iva2Þwhen f does not cross the

line y ¼ p and f xð Þ < p for all x∈ a; bð Þ pf g which is analogous to the case 2iia2Þ Finally, there

only remains two subcases:

2ivb1Þ f crosses the line y ¼ p and f xð Þ > p in a; pð Þ and f xð Þ < p in p; bð Þ, and.

2ivb2Þ f crosses the line y ¼ p and f xð Þ < p in a; pð Þ and f xð Þ > p in p; bð Þ.

It is clear that in both cases f ∈ CNL Ið Þ½ �
c
.

Thus, as a direct consequence of the analysis of the behaviour of the set of fixed points of f , it

turns out that the unique cases in which f could have an extension f c with a dense set of

periodic points on Kc Ið Þ are when there exists a fixed point p of f such that f crosses the line

y ¼ p at x ¼ p. In other words, we obtain

HDS Ið Þ ¼ f ∈ C Ið Þ= f c has a dense set of periodic points in Kc Ið Þ
� �

) HDS Ið Þ⊆ CNL Ið Þ½ �
c
,

But, CNL Ið Þ is a residual set in C Ið Þ, therefore from Remark 6, we conclude that HDS Ið Þ is of

first category in C Ið Þ. Equivalently, f c does not have a dense set of periodic points, for most

functions f ∈ C Ið Þ, which ends the proof.

Finally based on the following result,

Theorem 29 ([23]) For most functions f ∈ C Ið Þ, the set of all points where f is sensitive is dense in the

set of all periodic points of f .

we show an analogous result for the sensitivity property, as follows.

Theorem 30 For most functions f ∈ C Ið Þ, the extension f c ∈ C Kc Ið Þð Þ is not sensitive.

Proof. This is a direct consequence of Theorem 28 and Theorem 29.
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7. Control sets of linear systems and chaotic dynamics

The aim of this section is twofold. First of all, to start to apply to the class of linear control

systems on Lie groups, the existent relationship between control sets of an affine control

system Σ on a Riemannian manifold M with chaotic sets of the shift flow induced by Σ on

M� U , [6]. In particular, we are looking for the consequences of this relation on the controlla-

bility property The second part is intended to motivate the research on this topic to writing

down some open problems relatives to this relationship.

7.1. Linear control systems on lie groups

Let G be a connected d dimensional Lie group with Lie algebra g. A linear control system ΣL on

G is an affine system determined by

ΣL : _x tð Þ ¼ X x tð Þð Þ þ
X

m

j¼1

uj tð ÞY
j x tð Þð Þ, u ¼ u1;…; umð Þ∈U (14)

where X is linear, that is, its flow X tð Þt∈R is a one-parameter group of G-automorphism, the

control vectors Yj, j ¼ 1,…, m are invariant vector fields, as elements of g. The restricted class

of admissible control U is the same as before.

Certainly, the drift vector field X is complete and the same is true for every invariant vector

field Yj, j ¼ 1,…, m. As usual, we assume that ΣL satisfy the Lie algebra rank condition, i.e.

for any x∈M ) Span
LA

X ;Y1
;…;Ym

� �

xð Þ ¼ d:

The system is said to be controllable if A eð Þ ¼ A is G:

The class of systems ΣL is huge and contains many relevant algebraic systems as the classical

linear and bilinear systems on Euclidean spaces [6], and the class of invariant systems on Lie

groups, [24]. Furthermore, according to the Jouan Equivalence Theorem [25], ΣL is also rele-

vant in applications. It approaches globally any affine non-linear control system Σ on a

Riemannian manifold when the Lie algebra of the dynamics of Σ is finite dimensional.

One can associate to X a derivationD of g defined byDY ¼ � X ;Y½ � eð Þ, Y∈ g:Indeed, the Jacobi

identity shows D X;Y½ � ¼ DX;Y½ � þ X;DY½ � is in fact a derivation. The relation between wt and

D is given by the formula

wt expY
� �

¼ exp etDY
� �

, for all t∈R, Y∈ g:

Consider the generalised eigenspaces of D defined by

gα ¼ X∈ g : D� αð ÞnX ¼ 0 for some n ≥ 1f g

where α∈Spec Dð Þ. Then, gα; gβ

h i

⊂ gαþβ when αþ β is an eigenvalue of D and zero otherwise.

Therefore, it is possible to decompose g as g ¼ g
þ ⊕ g

0 ⊕ g
�, where
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g ¼ g
þ
⊕ g

0
⊕ g

�, where

g
þ ¼ ⊕

α:Re αð Þ>0
g
α
, g

0 ¼ ⊕
α:Re αð Þ¼0

g
α
and g

� ¼ ⊕
α:Re αð Þ<0

g
α
:

Actually, gþ, g0, g� are Lie algebras and g
þ, g� are nilpotent. Denote by Gþ, G� and G0 the

connected and closed Lie subgroups of G with Lie algebras gþ, g� and g
0 respectively.

Despite the fact that for an invariant system the global controllability property is local, this

class has been studied for more than 50 years, see [24] and the references there in. The

important point to note here is: for an invariant system the reachable set from the identity is a

semigroup. However, in [26] the authors show that this is not the case for a linear system

which turns the problem more complicated. Therefore, we would like to explore the men-

tioned connection between control sets and the Devaney and Colonius-Kliemann ideas. This

section is the starting point for the ΣL class. We begin with a fundamental result.

Theorem 31 Assume the system ΣL satisfy the Lie algebra rank condition. Therefore, there exists a

control set

Ce ¼ cl A eð Þð Þ ∩A∗ eð Þ

which contains the identity element e in its interior. Here, A∗ eð Þ is the set of states of G that can

be sent by ΣL to e in positive time.

For a proof in a more general set up, see [6].

Recently, we were able to establish some algebraic, topological, and dynamical conditions on ΣL

to study uniqueness and boundness of control sets and it consequences on controllability : But,

the state of arts is really far from being complete. In order to approach this problem for ΣL, as in

[27] we assume here that G has finite semisimple centre, i.e. all semisimple Lie subgroups of G

have finite center. We notice that any nilpotent and solvable Lie group, and any semisimple Lie

group with finite centre has the finite semisimple centre property. But also, the product between

groups with finite semisimple centre have the same property. We also assume that A is open.

This is true if for example, the system satisfy the ad -rank condition. About the uniqueness and

boundness of control sets of a linear systems, we know few things [27].

Theorem 32 Let ΣL a linear control system on the Lie group G:

1. If G ¼ G�G0Gþ is decomposable, Ce is the only control set with non-empty interior. In

particular, this is true for any solvable Lie group.

2. Suppose that G is semisimple or nilpotent, it turns out that

if cl AG�ð Þ, cl A∗

Gþ

� �

and G0 are compact sets C is bounded:

3. If G is a nilpotent simply connected Lie group, it follows that

C is bounded⇔ cl AG�ð Þ and cl A∗

Gþ

� �

are compact sets and D is hyperbolic:

Furthermore, it is possible to determine algebraic sufficient conditions to decide when C is

bounded. Actually, in a forthcoming paper we show that
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Theorem 33 Let ΣL be a linear control system on the Lie group G: Assume that G is decomposable and

Gþ,0 is a normal subgroup of G. Hence, cl G�
∩Að Þ is compact.

A analogous result is obtained for Gþ
∩A assuming that G�,0 is normal. Of course, Gþ,0 is a

normal subgroup of G if and only if gþ ⊕ g
0 is an ideal of g. On the other hand,

g
þ
⊕ g

0 and g
þ
⊕ g

0 are ideals of g⇔ g
þ

; g
0

� �

¼ 0 and g
þ

; g
�½ �⊂ g

0
:

7.2. Chaos and control sets

We start with an explicitly relationship between chaotic subsets ofM� U and the Σ-control sets.

Theorem 34 Let ℭ⊂ M� U and the canonical projection πM : M� U ! M: Hence,

πM ℭð Þ ¼ x∈M : there exists u∈U with x; uð Þ∈ℭf g

is compact and its non-void interior consists of locally accessible points. Then,

1. ℭ is a maximal topologically mixing set if and only if there exists a control C such that

ℭ ¼ cl x; uð Þ∈M� U : w t; x; uð Þ∈ int Cð Þ for every t∈R
� �

In this case, C is unique and int Cð Þ ¼ int πM ℭð Þð Þ, cl Cð Þ ¼ cl πM ℭð Þð Þ.

2. The periodic points of Φ are dense in ℭ.

3. Φ restrict to ℭ is topologically mixing, topologically transitive and has sensitive depen-

dence on initial conditions.

In order to apply this fundamental result for a non-controllable linear control system, the

boundness property of its control set is crucial. Let us assume that C is a bounded control set

with non-empty interior of ΣL and define ℭ ¼ π
�1
M Cð Þ ¼ cl C� UCð Þ where

UC ¼ u∈U : exist x∈ C with w t; x; uð Þ∈ int Cð Þ for every t∈R
� �

:

The Lie group G is finite dimensional and UC is a closed subset of the compact class of

admissible control U ⊂L∞ R;Ω⊂R
mð Þwith the weak* topology. Since the projection is a contin-

uous map, it turns out that πM ℭð Þ is compact and ℭ, C are uniquely defined.

On the other hand, we are assuming that ΣL satisfy the Lie algebra rank condition, hence the

system is locally accessible at any point of the state space. Therefore, we are in a position to

apply Theorem 32, first, for some classes of controllable linear systems, as follows.

Theorem 35 Let ΣL be a linear control system on a Lie group G. Any condition.

1. G is compact, or

2. G is Abelian, or
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3. G has the finite semisimple centre property and the Lyapunov spectrum of D is 0f g

implies that the skew flow Φ is chaotic in G� U .

Proof. Under the hypothesis in 1ð Þ, any control set is bounded. Furthermore, if G is compact,

the Lie algebra rank condition assures that the linear control system ΣL is controllable on G,

see [15]. Hence, Φ is topologically mixing, topologically transitive and the periodic points of Φ

are dense in G� U , which give us the desired conclusion.

It is well known that any Abelian Lie group is a product G ¼ R
m � Tn between the Euclidean

space Rm and the torus Tn ¼ S1 �…� S1 (n times), for some m, n∈N: In this case, ΣL is also

controllable [15]. Indeed, since the automorphism group of Tn is discrete, any linear vector

field on the torus is trivial. But, we are assuming the Lie algebra condition on G which

coincides with the Kalman rank condition in Rm
: And, on the compact part, we apply 1ð Þ:

Hence, the skew flow Φ is chaotic in G� U . In fact, π�1
M Cð Þ ¼ G� U and the hypothesis of the

compacity on the projection in Theorem 32 is not necessary for the lifting, see Proposition 4.3.3

in [6]. The same is true for 3ð Þ: Actually, for this more general set up, we recently prove that the

system is also controllable, [28, 29].

In the sequel, we use some topological properties of Ce to translate these properties to its

associated chaotic set ℭ, as follows.

Theorem 36 Let ΣL be a linear control system on a Lie group G: It holds.

1. If G ¼ G�G0Gþ there exists one and only one chaotic set ℭ ¼ π
�1
M Ceð Þ in G� U given by

ℭ ¼ cl x; uð Þ : w t; x; uð Þ∈ int Ceð Þ for every t∈R
� �

⊂M� U

2. If G is nilpotent and D has only eigenvalues with non-positive real parts, then the only

chaotic set ℭ ¼ π
�1
M Cð Þ in G� U is closed

3. If G is nilpotent and D has only eigenvalues with non-negative real parts then the only

chaotic set ℭ ¼ π
�1
M Cð Þ in G� U is open

Proof. If G is decomposable, we know that there exists just one control set: the one which

contains the identity element. Hence, ℭ ¼ π
�1
M Ceð Þ is the only chaotic set of Φ on G� U which

proves 1ð Þ: To prove 2ð Þ and 3ð Þ, we observe that the Lyapunov spectrum condition on the

derivation D associated to the drift vector field X is equivalent to the control set Ce be closed or

open, respectively. Since the projection πG : G� U ! G is a continuous map with the weak*

topology on U , the lifting π�1
G Ceð Þ is both closed and open, respectively.

7.3. Challenge

In this very short section, we would like to invite the readers to work on the relationship

between chaotic and control sets. We suggest to go further in this research through some

specific examples on low-dimensional Lie groups. For that, we give some relevant information
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about two groups of dimension three: the simply connected nilpotent Heisenberg Lie group H

and the special linear group SL 2;Rð Þ. We finish by computing an example on H.

1. The nilpotent Lie algebra h ¼ R
3
;þ; ;

� �

, has the basis E12;E23;E13f g with E12;E23½ � ¼ E13:

Here, Eij denotes the real matrix of order 3 with zero everywhere except 1 in the position ij:

The associated Heisenberg Lie group has the matrix representation

G ¼ g ¼

1 x z

0 1 y

0 0 1

0

B

@

1

C

A
: x; y; z∈R

8

>

<

>

:

9

>

=

>

;

!
w:g! x;y;zð Þ

R
3
:

As invariant vector fields, the basis elements of g has the following description

E12 ¼
∂

∂x
, E23 ¼

∂

∂y
þ x

∂

∂z
and E13 ¼

∂

∂z
:

The canonical form of any g-derivation is given by

D ¼

a d 0

b e 0

c f aþ e

0

B

@

1

C

A
: a, b, c, d, e, f ∈R:

Any linear vector field X reads as

X x; y; zð Þ ¼ axþ dyð Þ
∂

∂x
þ bxþ eyð Þ

∂

∂y
þ

b

2
x2 þ

d

2
y2 þ cxþ fyþ aþ eð Þz

	 


∂

∂z
:

2. The vector space g ¼ sl 2;Rð Þ of all real matrices of order three and trace zero is the Lie

algebra of the Lie group G ¼ SL 2;Rð Þ ¼ det�1 1ð Þ. Let us consider the following generators of g:

Y1 ¼
0 1

�1 0

	 


, Y2 ¼
0 1

0 0

	 


and Y3 ¼
1 0

0 �1

	 


: The Lie group G is semisimple, then any

g derivation is inner which means that there exists an invariant vector field Y such that ad Yð Þ

represents : Thus, a general form of a derivation reads as

α ad Y1
� �

þ β ad Y2
� �

þ γ ad Y3
� �

:

Example 7.1 On the Heisenberg Lie group, consider the system

ΣL : g
�
tð Þ ¼ X g tð Þð Þ þ u1 tð ÞE12 g tð Þð Þ þ u2 tð ÞE23 g tð Þð Þ, u ¼ u1; u2ð Þ∈U (15)

where X is determined by the derivation D ¼ ad E12ð Þ ¼ E32: Since the group is nilpotent, it has

the semisimple finite centre property. The Lyapunov spectrum ofD reduces to zero. Finally, the

reachable set from the identity A is open. In fact, the ad-rank condition is obviously true

because D E12ð Þ ¼ E13. It turns out that the skew flow Φ is chaotic in H � U :
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