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Abstract

Vibrational spectroscopy, namely near infrared (NIR) and Raman spectroscopy, is based
on the interaction between the electromagnetic radiation and matter. The technique is
sensitive to chemical and physical properties and delivers a wide range of information
about the analyzed sample, but in order to extract the information, multivariate calibra-
tion of the spectral data is required. The main goal of this work will be to present in
detail the available multivariate calibration strategy for development of NIR and Raman
spectroscopic methods, which was successfully applied in pharmaceutics.

Keywords:multivariate calibration, vibrational spectroscopy, NIR spectroscopy, Raman
spectroscopy, design of experiments

1. Introduction

The development and implementation of vibrational spectroscopic methods such as near infra-

red (NIR) or Raman spectroscopy has increased significantly as the use of computer techno-

logy and chemometric methods has become more available. Considering the pharmaceutical

domain, these methods have been extensively applied to quantify active pharmaceutical ingre-

dients, excipients, or physical properties either as offline method for intermediate/final product

characterization [1] or as real-time-monitoring methods implemented within blending [2],

granulation [3], extrusion [4], tableting [5], coating [6], or freeze-drying processes [7].

The high-throughput analysis associated with vibrational spectroscopy favored its application

to gain better process understanding, sustaining the pharmaceutical product development from

a Quality by Design and Process Analytical Technology point of view [8], thus enhancing the

opportunity to develop well-understood, well-controlled, and continuously optimized manu-

facturing processes and products [5]. The nondestructive nature of vibrational spectroscopic
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methods is of great importance in the quality evaluation of production batches, as they allow

the testing of a high number of samples or the entire process, depending on the type of method.

Using classical methods, such as chromatography the quality of a 1–3 million tablet batch

is certified on 20–30 tablets, and many functional excipients that directly influence product

performance are not quantified. These limitations are exceeded by implementing process

analytical instruments, such as NIR or Raman [9].

Near infrared spectra are generated by molecular vibrations that imply a change of the dipole

moment (dCH,dNH,dOH,dSH) and are further complicated by overtones and combina-

tion bands that reduce the specificity of spectra. In case of Raman spectroscopy, the spectra are

generated by inelastic scattering, caused by chemical groups that undergo a change in polar-

izability when excited with an incident light beam. These differences in molecular contribution

to the generation of spectral data make the two methods complementary [10].

NIR and Raman spectra are considered a source of multivariate data, as they contain informa-

tion related to physical and chemical properties of the analyzed sample. Thus, the application

of chemometric methods for extracting predictive spectral variability and reducing orthogonal

sources of variation is indispensable [11]. The sensitivity to both physical and chemical prop-

erties of the sample can be considered an advantage, if the analyst wants to predict several

quality attributes of a drug product, such as content uniformity and crystalline structure.

However, if only active content characterization is desired and polymorphism is not consid-

ered to be a critical attribute, but it is present, the calibration phase still has to include both

aspects to ensure the accuracy of prediction for active content. The main disadvantage of

vibrational spectroscopic methods relates to the need of an extensive calibration set that needs

to include chemical, physical, instrumental, and environmental variability that is expected in

future prediction sets and analysis conditions.

Vibrational spectroscopy iswell suited to themeans ofmultivariate calibration, as each observation

is characterized by analytical signal/absorbance recorded at multiple wavelengths. Using multiple

predictor variables instead of one wavelength overcomes some univariate calibration problems

related to selectivity, precision, and diagnosis, resulting in a more robust calibration model [12].

2. Calibration set development strategies

The milestone in the development of a vibrational spectroscopic method is the chemometric

model that is able to accurately predict the sample properties considered in calibration phase.

Before building a model, there are several key steps that need to be considered, as they directly

influence its quality and predictive performance. The first step would be the specification of

responses along with variation ranges, followed by the selection of instrumental method and

configuration, building a representative calibration set, recording of spectral data, data pre-

processing, and developing the multivariate regression model that is further tested using

external prediction sets. Each step plays an important role; however, a well-built calibration

set is the best starting point to a well-performing model, as it is the source of spectral data that

is used for further processing and model development.
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In the calibration set development phase, the analyst has to incorporate the expected variabil-

ity of future prediction sets, to ensure the representativeness of the samples. This expected

variability is given first by the quality attributes that are to be predicted, for example, the

concentration ranges of important formulation constituents. Frequently, this is not enough for

a robust model, and other type of variability has to be included in the calibration process, such

as process-induced variability or environmental variability. Production samples contain

process-induced variability; however, constructing a calibration set solely on production sam-

ples is not appropriate as the factor ranges do not cover the required interval. A first option

would be to prepare pilot-plant samples reproducing full-scale conditions. As the number of

responses increases, the calibration set becomes larger and quickly becomes unfeasible due to

the high costs of production. The second option would be to prepare laboratory samples in

which the concentration ranges of desired components are varied simultaneously within

appropriate ranges to avoid correlations [13].

The calibration set development strategy applied for the development of quantitative spectro-

scopic methods depends on the sample complexity (the number of responses and the number

of interfering factors included in the calibration) and on the type of method that is developed,

here considering off-line or real-time-monitoring methods. In the following section, a descrip-

tion of calibration opportunities will be provided starting from the simplest cases and heading

toward more complex situations.

2.1. Different levels of the investigated property

The most simple calibration situations include a low number of responses, one or two, here

considering a chemical and a physical property of a sample. In this case, the calibration set

development strategy simply resumes to the preparation of a sample with different levels of

the investigated property. Mbinze et al. developed quantitative NIR and Raman methods for

the assay of antimalarial oral drops and prepared a calibration set by diluting a stock solution

of quinine to obtain three concentration levels. For each level, three series with three replicates

were prepared resulting in a calibration set with 27 samples [14]. Tomuta et al. used NIR to

characterize meloxicam tablets by evaluating content uniformity, tablet hardness, disintegra-

tion, and friability. For content uniformity assay, the calibration set included active ingredient

concentration range (five levels), days (three), and batches (three) as a source of variation,

whereas in the case of physical properties assay the middle formulation was compressed on

seven levels of compression force, ranging from 5 to 42 kN. Compressing the powder mixture

with different forces yielded tablets with different hardness, disintegration, and friability.

Different settings of a one-process factor were enough to induce variability in physical proper-

ties of the samples [15]. In a similar study, Tomuta et al. developed NIR method for physico-

chemical characterization of low active content indapamide tablets (2%, w/w) [1]. Virtanen

et al. evaluated the crushing strength of theophylline tablets through Raman spectroscopy by

considering both a process factor and a formulation factor to generate variability in tablet

surface roughness. In this case, the tablets were prepared considering two particle sizes of

theophylline, as raw material for the granulation phase, followed by mixing with lubricants

and by compressing each granulate on five different compression forces [16].
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The impact of polymorphism is a well-recognized phenomenon in the pharmaceutical indus-

try, as the differences in crystalline structure of the same active ingredient generate different

physical properties that get reflected in the quality of the final medicinal product. Croker et al.

developed NIR and Raman methods to quantify FII and FIII of nootropic drug-piracetam from

binary mixtures using a calibration set of 15 formulations with FII ranging from 0 to 100% [17].

Gómez et al. calibrated a Raman method for the content uniformity control of low-dosebreak-

scored acenocumarol tablets by under and overdosing the powdered commercial medicinal

product, by adding either lactose or the active pharmaceutical ingredient to the mixture. Two

commercial products with different content uniformity were considered and the two calibra-

tion sets included 7 samples in the range of 1–3% (w/w) and 12 samples in the range of 0.35–

1.50% [18]. Creating calibration sets by under-overdosing samples can result in correlated

concentrations between API and excipients [19]. Collinearity between concentrations leads to

spurious predictions by attributing changes to the correlated formulation component instead

of the real contributor [20].

Changing the production scale generates samples that incorporate different types of variability

from the primary conditions through which the calibration set was prepared. As laboratory-

prepared samples lack manufacturing variability, the accuracy of prediction may be affected

for production prediction sets. This limitation has been exceeded by extending the calibration

set with production samples [13], adjusting the sampling strategy, pre-conditioning the cali-

bration set to future expected environmental conditions [21], or by mathematically adding

process variability to laboratory samples [20].

Blanco et al. developed NIR methods to control individual steps of paracetamol tablet

manufacturing, resuming to an intermediate granulation step and tableting. Prior to building a

calibration model, both laboratory-prepared samples and industrial production samples were

taken into account to evaluate the eventual spectral differences. In case of the granule-active

content assay, the calibration set was built solely on laboratory-prepared samples, whereas in the

case of tablet assay the differences between laboratory and production samples made the cali-

bration set include both, in order to ensure representativeness. For granule particle size charac-

terization, samples collected over a period of 2 years ensured the presence of future expected

variability in prediction set [22].

Blanco et al. used NIR to characterize mirtazapine tablets in terms of content uniformity and

tablet hardness. For active ingredient content, the calibration set included production tablets

from 20 batches and 34 laboratory-prepared samples, whereas for tablet hardness the laboratory

samples were compacted in the range of 300–740 MPa. Including production samples for both

responses reduced the systematic errors and gave better predictions [13]. By adding spectra from

different manufacturing scales to the calibration set, the spectral variability becomes more

representative, an important aspect for prediction accuracy. As the number of manufacturing

samples is lower compared to the initial calibration set, proper weighting is necessary to avoid

the dominating tendency of the larger dataset. To this regard, Farrel et al. applied Tikhonov

regularization as a multi-criterion-based weighting selection method to augment the perfor-

mance of NIR models regarding their ability to predict production scale products [23].

Blanco et al. proposed a method to incorporate physical variability that originates from pro-

duction into the calibration. The concept relies on calculating a process spectrum, which added

to the laboratory sample spectra incorporates process-related physical changes. The process
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spectrum represents the difference between the laboratory sample spectrum and the interme-

diate/final product spectra of an identical composition prepared on a different scale. The vari-

ability given by the process spectra can be further increased by multiplying the data with

different coefficients [20, 24].

In situations where solid-state transformations occur within the manufacturing process, it is

frequently desired to construct the calibration set with components obtained through the same

method to have more representative formulations. Netchacovitch et al. used Raman spectros-

copy to determine crystalline itraconazole in amorphous solid dispersions prepared by hot-

melt extrusion. Calibration set included three levels of concentration and was built by using

crystalline API powder, six batches of grinded extrudates with amorphous API, and placebo-

grinded extrudate [25].

Pan et al. calibrated NIR method for the quantification of low-level Irbesartan Form B from

pharmaceutical tablets. Form B is known to have a limited solubility and is formed from Form

A via a solution-mediated process. To incorporate physical variability into the calibration set,

the sample preparation procedure supposed the use of specifications similar to the manu-

facturing process. The robustness of the method to process induced physical variability, the

effect of tablet hardness, granule size, and atmospheric humidity was evaluated. It was dem-

onstrated that the prediction accuracy was influenced only by relative humidity, generating a

positive bias in samples stored at 50%RH. Therefore, the entire calibration and validation was

reconsidered by pre-conditioning the samples at 25�C and 50%RH for 20 h, prior to recording

the spectra and building the model. This way, the robustness of the method was increased to

future expected variations in environmental conditions [21].

2.2. Design of experiment strategy

As the number of factors increases, the calibration set becomes more complex and different

strategies have to be applied to avoid correlated responses. If two formulation components C1

and C2 are correlated, a change in the concentration of C1 can be spuriously predicted as a

change in C2. In DoE, factors are varied simultaneously in a systematic manner, providing

orthogonality, an essential condition for estimating regression coefficients [26]. There are

several design types that can be used for calibration purposes, starting from the classic full

factorials down to central composite, mixture, or D-optimal designs. Considering more com-

plex formulations, NIR spectroscopy has been applied to determine the amount of amoxicillin

in the presence of seven other excipients. By applying a three-factor (API, saccharose, and

other excipients) experimental design, the concentration of factors was varied orthogonally

[27]. Ferreira et al. used a calibration set prepared according to a DoE with three factors:

hydrochlorothyazide, cellulose, and other excipients to train a NIR method for the quantifica-

tion of the active ingredient in pharmaceutical samples [28].

Li et al. calibrated Raman method to quantify active ingredient content considering the pres-

ence of different sources of variability: degradation compound, relative humidity, change of

scales, and compression force. Laboratory samples were prepared based on a 32 full-factorial

design where the active ingredient ranged between 80 and 120%, from which a subset of

samples were spiked with the degradation product, added in two molar ratios. Each powder

mixture was compacted at 8 and 30 kN in laboratory scale and three design points were

compacted at manufacturing scale [29]. Casian et al. developed NIR and Raman methods for
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the quantification of two APIs found in significantly different concentrations from immediate

release tablets. The calibration set was built on a full-factorial design with two factors and five

levels with a total of 25 formulations [10]. The use of full-factorial designs is feasible with two

factors if five levels of variation are used [52]. Adding one more factor will generate 125

experimental runs that are impractical [26, 53].

Netchacovitch et al. calibrated a Raman method to quantify low-level polymorphic impurities

in a pharmaceutical formulation through a 12-run central-composite experimental design [25].

Central composite designs are extensions of the two-level full-factorial designs that are built by

adding symmetrically axial points. Dependent on the position of axial points, factors can be

varied on three levels (central composite face-centered design) or five levels (central composite

circumscribed) [26].

Short et al. used NIR to evaluate relative density and crushing strength of four component

tablets. Compared to other studies, where only the compaction pressure was considered as a

factor to induce variability in the investigated response, in this case formulation composition

was varied also. The calibration set consisted of 29 formulations (mixture design) with each

formulation being compressed at different pressures [30]. Lyndgaard et al. developed a Raman

method to quantify paracetamol content from tablets through blisters. The calibration set

included 18 formulations, selected on the basis of a ternary mixture design (paracetamol,

starch, and sucrose) with each factor being varied on six levels [31]. Igne et al. evaluated the

effect of API physical form, excipient particle size, different manufacturer, and changes in

environmental conditions on the performance of a NIR model. The calibration samples were

prepared according to a 29-run quaternary mixture design with every formulation being

compressed at two of five different forces. Only changes in the particle size of lactose produced

biased predictions in both ambient and chamber conditions. The authors tested variable-

selection methods to increase method robustness to raw material variability [32].

Griffen et al. used Raman spectroscopy to quantify all tablet constituents, three active ingredients

and two excipients. In this case, the calibration set was built on a first-order (linear) five-level,

five-factor mixture design that uniformly covered the concentration ranges of the components.

The concentration of individual components ranged from 1 to 85% (w/w) [33]. Mixture designs

are well suited for formulation application, where the sum of all ingredients adds up to 100%

and where factors cannot be manipulated independently one from another. Porfire et al. used a

D-optimal design with three variables and five levels to build a calibration set with 63 formula-

tions with the purpose of quantifying encapsulated simvastatin and two functional excipients L-

α-phosphatidylcholine and cholesterol from liposomes [34]. Saraguca et al. developed an NIR

method to simultaneously quantify paracetamol and three other excipients from powder blends

using a calibration set constructed on a 40-run D-optimal mixture design [19].

A D-optimal design is frequently applied for a high number of factors as it gives a lower number

of runs compared to factorial designs. The D-letter originates from its criterion of selecting the

best subset of factor combinations from a pool of theoretically possible combinations, which relies

on maximizing the X’X matrix Determinant [26]. In another study, Heinz et al. trained NIR and

Raman to quantify ternary mixtures of alpha, gamma, and amorphous forms of indomethacin

from ternary mixtures using a 13-sample calibration set built on a cubic model experimental

design [35]. Lin et al. developed an at-line blend uniformity NIR method for simultaneous
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quantification of four active ingredients with structural similarity, found in different concentra-

tions. Calibration was built on six formulations, where five factors (four APIs and one diluent)

were varied on six levels while avoiding correlations. The performance of the model was

improved by adding a set of spectral data from a different production scale [43].

When DoE is used, correlations are significantly reduced dependent on the type of design,

number of factors, and experimental runs. However, an increased number of factors will

require a high number of experimental runs to avoid collinearity, which rapidly increases the

costs. Several papers have addressed the question of how many samples are needed to ensure

a robust calibration [19]. The fact that models with similar performance were developed on a

reduced design compared to its full-factorial counterpart suggests the presence of redundant

information in full-factorial designs [36].

Saraguca proposed a method that relies on building the model on a limited number of samples

and uses the remaining formulations to test the predictive performance in terms of RMSECV

and RMSEP. In the following steps, the calibration set was extended by transferring one formu-

lation at a time from the test set until the calculated cross-validation and prediction errors

stabilized. The sample selection procedure focused on maximizing the concentration variability

of all components [19].

Alam et al. proposed a method for calibration set development in spectral space instead of

concentration space. Orthogonality in spectral response will yield a better estimation of coeffi-

cients with a minimum number of samples, while orthogonality in concentration space will not

necessarily translate into spectral orthogonality, as the contribution of each component to the

sample spectrum is different. The method is based on decomposing the pure component

spectra of a formulation into orthogonal directions (scores), which will be varied around a

model tablet score through DoE. The model tablet score represents the score of the spectra

recorded on a target formulation projected onto the orthonormal basis vector of the pure

components spectra. After designing the spectral space calibration set, the composition of each

spectra is retrieved by mathematical means [37].

2.3. Calibration strategy for calibration in-line monitoring methods

The application of vibrational spectroscopy for in-line monitoring implies the use of fiber optic

probes mounted at the interface of the process itself to acquire spectral data with a defined

rate. The simplest way to calibrate an in-linemethod is to acquire real-time spectra through the

entire process length along with collecting samples at regular intervals. The response values

obtained through reference methods are correlated with the spectral data, considering the

process time as a link between the two [38–40]. More extensive calibrations also evaluate the

effect of sample presentation, changing process, and formulation parameters, to challenge the

robustness of the methods.

For coating application, the calibration strategy relies on the linear variation of spectral

response as the contribution of the coating material increases and the tablet core contribution

decreases [41]. Moes et al. developed quantitative NIR method using three batches of tablets

by varying the tablet core weight (240–200–160 g) and the amount of coating suspension

resulting in different coating thicknesses [42]. Möltgen et al. used five full-scale experimental
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runs to develop a quantitative NIR method (one run) and to evaluate the effect of changing

exhaust air temperature and spray rate (two runs) and the effect of tablet density and flow

motion in the coater (two runs). For quantitative calibration, samples were collected through

the entire process and analyzed using reference methods [6]. For the quantification of coating

thickness by means of Raman spectroscopy, Kauffman et al. calibrated the method by consid-

ering film thickness and film composition variables. Tablets were coated on five levels ranging

0.5–6%weight gain by varying their residence time in the coater. As for film composition, three

different TiO2 levels were evaluated due to the strong Raman signal of this component offering

the potential for an indirect measure [41]. In the case of thin coatings, the generation of a

calibration set can become a difficult task and can become limited due to the lack of reference

methods. In this situation, an alternative to classical regression methods would be the Science-

Based Calibration (SBC) approach, which allows the calibration without a reference method by

separating spectral variability into orthogonal (covariance matrix) and predictive parts (related

to the coating). Möltgen et al. applied SBC to develop quantitative NIR method for in-line

evaluation of thin hydroxypropyl methylcellulose (HPMC) coatings through four experimen-

tal runs. For calibration, the pure HPMC spectrum was used as the coating response spectrum

and the covariance matrix included hardware, core, water, and process-related noise. The

method developed without reference samples predicted accurately coating thickness values

in the range of 8–28 μm demonstrating the value of SBC [43].

In order to predict granule moisture content in a six-segmented fluid bed dryer through NIR

spectroscopy, a calibration set of 20 experiments was applied. Granules were prepared with

five moisture levels by varying the drying air temperature and drying time. Each moisture

level had four replicates prepared on two different days [3].

Clavaud et al. developed a global regression model for moisture content estimation from freeze-

dried medicine. As expected, the calibration set was extensive, including three types of active

ingredient with different concentrations, different vial diameters, and excipient amounts. To

include intra- and inter-product variability, 5 batches and 100 samples were used for each product

[44]. Martinez et al. calibrated NIR method for in-line quantification of two active ingredients in a

batch-blending process by investigating the influence of sample presentation. With regard to this,

the high-loading API was used either in the form of a cohesive powder or in a granular form

prepared by melt-extrusion. The observed spectral differences were resumed to the polymer

wavelength absorption band that coincided with the water region. The offline calibration of the

method was built on 13 samples which included both forms of the high-loading API [2].

Wahl et al. evaluated in-line the content uniformity of ternary mixtures with an NIR mounted

on the feed frame of a tablet press. For calibration, the active ingredient and two excipients

concentrations were varied through eight experiments selected by means of a D-optimal

design and two extra runs added to ensure equidistant steps in the content of each component.

Spectral data were recorded in a dynamic acquisition mode, simulating real conditions [5].

Karande et al. developed NIR method for real-time monitoring of tableting based on a 105-

sample calibration set generated through a simplex lattice design with four factors (chlorphen-

iramine maleate, lactose, microcrystalline cellulose, and magnesium stearate). Prior to building

the calibration, the effect of sampling was evaluated by recording NIR spectra in both static

and dynamic conditions. The differences between measurements revealed the importance of
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ensuring similar sampling conditions for calibration as for actual real-time monitoring [9]. For

another application, Karande et al. evaluated the effect of different spectral-sampling strategies

on the performance of an NIR model, to accurately predict blend components in quaternary

mixtures. Calibration samples (24 formulations-D-optimal mixture design) were recorded in

three ways: laboratory mixing and static spectral acquisition; IBC (intermediate bulk con-

tainer) mixing and static spectral acquisition; IBC mixing and dynamic spectral acquisition.

Dynamic sampling yielded the best calibration model with highest accuracy, demonstrating

the importance of selecting similar sampling conditions to the actual testing [45].

Based on the presented examples found in literature, the most frequently applied methods to

design a calibration set were as follows:

• One chemical/physical property: formulations with three to five levels of variation for the

response that span the desired range of concentration/physical property.

• One chemical and one physical property: formulations with three to five levels of varia-

tion for the chemical response and for the physical property calibration are considered

only for target formulation (five levels).

• Two chemical/physical properties: any type of DoE (full-factorial, central composite, mix-

ture design, D-optimal) to avoid collinearity and spurious predictions.

• Three chemical/physical properties: simple lattice mixture designs or D-optimal designs.

• In-line methods: models built by correlating sampled product properties with in-line

collected spectra. Most rigorous studies also investigated the effect of process parameters

on the NIR spectra.

3. Handling chemical, physical, and environmental interferences

The dependence of the NIR spectra on the sample’s chemical and physical properties caused

by absorption and scatter effects can be an advantage of this type of spectroscopy, but at the

same time, the scatter effects caused by sample variations or even by environmental phenom-

ena can create a series of analytical problems. In such cases, each type of interferences has to be

considered in the calibration model development. In the following section, the importance of

chemical, physical, and environmental interferences will be described, providing insights on

specific spectral variations produced by each category and highlighting how to handle them in

order to increase model robustness [1, 2].

Generally, a quality NIR analysis should provide a model that manages a correct interconnec-

tion of the spectral variables with the samples properties of interest. At the same time, an ideal

calibration model will not react to instrument variation, environmental changes, background

interferences, and will be mostly focused on the information of interest. Chemometrics is the

science that enables the extraction of relevant information, as well as the reduction of unrelated

information as well as interfering parameters.

Spectral interferences resulting from variable physico-chemical sample properties (e.g., parti-

cle size variation and moisture content) or instrumental effects (e.g., path-length variation,
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light scattering, and random noise) can be reduced, eliminated, or standardized by using

spectral pretreatments, prior to the multivariate data analysis [3]. Since the correct selection of

spectral pretreatment can significantly improve the reliability of the model, this topic will be

discussed in the following paragraphs. The most common pre-processing techniques can be

divided into two groups: pretreatments for spectral normalization and for smoothing/differ-

entiation. The first group achieves spectral normalization through scatter-correction methods.

Scatter effects are common for all spectroscopic techniques and the phenomenon appears

mostly because of the physical variabilities between samples or path-length variations. Two

of those pre-processing concepts are standard normal variate (SNV) and multiplicative scatter

correction (MSC) which also normalize the baseline shifts of different samples [4, 5]. The

second set of pre-processing methods has the capacity to reduce or remove the noise by

smoothing and differentiating the spectral values. The most common spectral derivatives are

based on the Savitzky-Golay (SG) [6] and the Norris-Williams algorithms [7].

In most cases, in order to obtain best results, there is the need to apply both types of

pretreatment techniques one after the other. Peeters et al. tested both types of pre-processings

not only to reduce light scattering effects but also to minimize peak shifts of Raman and NIR

spectra. They applied SNV, MSC, and first and second derivatives obtained by calculating 15-

point quadratic Savitzky-Golay filters, in order to develop a method for the off-line prediction

of tablet properties [8]. Sylvester et al. developed an in-line NIR-monitoring method for a

freeze-drying process using the SNV pre-processing in order to remove multiplicative interfer-

ences caused by scatter and particle size variations and the first Savitzky-Golay derivative to

reduce baseline shifts and to improve the spectral resolution [9]. The successful development

of a real-time method for monitoring continuous powder flow from a tableting machine feeder

was described by Alam et al. Savitzky-Golay derivatization was first applied for smoothing,

followed by SNV for scatter correction [10]. Environmental interferences can be caused by

sample, instrument, or even laboratory variations; this type of interferences causes misalign-

ments or shifts of the spectra and is commonly overcome by applying alignment/warping

techniques to the data [3]. Those methods stretch or compress the signal in order to match it

in the best way possible with a given reference spectra [11, 12].

All pre-processing methods have the purpose to reduce the undesirable variability and inter-

ferences from the data, but there is always a risk of choosing an inappropriate type or applying

a severe pre-processing that would also remove valuable information. Because of this, choos-

ing the correct technique is one of the most important steps in data pre-processing and model

development.

A last useful solution to deal with problems caused by interferences is wavelength selection

method. The model development can be done based on the specific spectral domain that

contains the information of interest. In order to select the domain of interest or to eliminate

irrelevant wavelength domains, principal component analysis (PCA) can be performed. Prior

to the PCA, the collected spectra should be pre-processed and column centered, then the

analysis can be performed on the data matrix. Finally, the variables should be selected

according to high peak loadings obtained for all relevant principal components (PCs), and the

position of the resulting features should be compared with the original spectrum to validate

the selection.
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4. Data pre-processing

During the development of a multivariate calibration model, systematic variation such as

baseline shifts and scatter effects, not relevant for the prediction of the response variables (Y),

is present in predictor variables (X). Pre-processing methods are used in order to remove the

systematic variation not related to the Y-matrix, which might impair the interpretation or

predictive ability of the developed model.

The main goals of data-pre-processing are the following:

a. improvement of the robustness and accuracy of subsequent analyses;

b. improved interpretability: raw data are transformed into a format that will be better

understandable by both humans and machines;

c. detection and removal of outliers and trends; and

d. reduction of the dimensionality of the data mining task and removal of irrelevant and

redundant information [46].

The methods generally used for data pre-processing are divided into two categories. The first

consists of classical pre-processing methods, used for normalization, smoothing, and differen-

tiation. The second is represented by methods for variable selection and dimensionality reduc-

tion [47]. Among these methods, the most appropriate has to be chosen, such as to only remove

unwanted variation, without excluding or altering chemically relevant information [48].

When used in an inappropriate way, pre-processing may introduce artifacts or cause loss of

information. Thus, the purpose of the analysis is important for the selection of the most

appropriate pre-processing method, because scattering is disruptive for compound identifica-

tion and quantitation, but is useful to study the physical properties of the sample. As a

consequence, the best pre-processing method, ensuring a correct data analysis and robust

results, has to be chosen by testing and comparing the results of different methods [48].

4.1. Pre-processing methods

4.1.1. Spectral normalization

In many analytical methods, the variables measured for a given sample are increased or

decreased from their true value by a multiplicative factor, which is called the scaling or gain

effect. In spectroscopic methods, the scaling effect arises from path-length effects, scattering

effects, source or detector variations, so the relative value of variables should be used during

multivariate modeling rather than the absolute measured value. The sample normalization is

one of the most important pre-processing methods, which is applied in an attempt to correct

for multiplicative scaling effects, the shifts and the trends in baseline and curvilinearity, by

identifying some aspect for each sample which should be essentially constant from one sample

to the next, and correcting the scaling of all variables based on this characteristic [48].

Normalization methods can be subdivided into two main groups: simple normalization

methods (min-max normalization, one-norm, vector normalization, standard normal variate),
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requiring only the information from the spectrum to be normalized, and normalization

methods requiring the presence of collective spectral data matrices or of reference spectra

(multiplicative scatter correction and extended multiplicative signal correction (EMSC) [46].

Among these, the most used scattering correction algorithms include the SNV and MSC. The

two pretreatments give similar results, being considered exchangeable, but the results

obtained through both algorithms are compared usually, since they may be different [49].

SNV was proposed to reduce multiplicative effects of scattering, particle size, and multicol-

linearity changes over the NIR spectra. This approach starts with mean centering and consists

of dividing mean-centered spectra by the standard deviation over the spectral intensities [50].

SNV normalizes each spectrum returning a mean of 0 and a variance of 1 spectra dataset [48].

The disadvantage is the assumption that multiplicative effects are uniform over the whole

spectral range, so artifacts may be introduced by this transformation.

The de-trend method is another approach to correct for baseline shift, which removes the

baseline curvature by expressing it as a quadratic function of the wavelengths. The modeled

baseline is subtracted from the spectrum, so de-trend can be used after SNV to circumvent any

curvilinear trend, where the baseline drift is a function of wavelength [50]. The MSC

pretreatment performs a linear regression of each spectrum on a reference spectrum, which is

usually the mean of all available spectra, for example, the average spectra of the calibration set,

or a generic reference spectrum can also be applied [49].

4.1.2. Smoothing and differentiation

The smoothing algorithms are used in order to correct the spectral noise, while differentiation

is used to enhance spectral resolution and to eliminate background absorption. The most

common ways to achieve smoothing are the use of noise filters for de-noising and smoothing

and Savitzky-Golay smoothing/derivative filters for smoothing/resolution enhancement.

Noise filters are specific low-pass filters which can be used to reduce random noise. Their

drawback is that the signal-to-noise ratio is increased at the expenses of distorting the signal.

The most popular smoothing filters are the zeroth-order SG-smoothing/derivative filter, the

binomial filter, and the moving average filter [46].

Derivatives are used for their capability to remove both additive and multiplicative effects in

the spectra. The first derivative removes only the baseline; the second derivative removes both

baseline and linear trend. The first derivative is estimated as the difference between two

subsequent spectral measurement points, while the second-order derivative is estimated as

the difference between two successive points of the first-order derivative spectra [51]. The most

popular derivation method is SG algorithm, proposed by Golay and Savitzky in 1962 [52]. The

method has the advantage that computation of the derivatives and smoothing are carried out

in a single step. The algorithm used in this method is based on fitting a polynomial in a

symmetric window on the raw data, in order to find the derivative at the center point. The

parameters of the polynomial are calculated and the derivative of this function is found, this

value being used as the derivative estimate for this center point. The same operation is

subsequently applied to all points in the spectra. Two decisions are important to be made

in this algorithm, i.e., the window width (width of the subset of the data) and the fitted

Calibration and Validation of Analytical Methods - A Sampling of Current Approaches46



polynomial order. The highest derivative that can be determined depends on the degree of the

polynomial used during the fitting [51].

4.1.3. Dimensionality-reduction methods

These methods rely on reducing the dimension of the predictor space spanned by a number of

variables or wavelengths, in order to find the subspace mainly containing variations related to

the response matrix. The orthogonal projection and the variable-selection methods are in this

group. Orthogonal signal correction (OSC) and its modified version direct orthogonal signal

correction ((D)OSC) are the most common among this group, developed to remove systematic

variation in the descriptor matrix, that is not correlated to the response matrix. In other words,

the pre-processing is performed in such a way that the removed parts are orthogonal (not

linearly related) to the response matrix [53, 54]. The method has the advantage of correcting at

once multiple artifacts.

An alternative OSC algorithm was developed by Trygg and Wold and is called orthogonal

projection to latent structures (OPLS). The objective of OPLS is the same as of OSC, but the

approach is different, i.e., the OPLS method analyzes the variation explained in each PLS

component. The non-correlated systematic variation in descriptor matrix is removed, making

interpretation of the resulting PLS model easier, and the non-correlated variation can be

analyzed further [55].

Variable-selection techniques consist of selecting particular variables related to the response,

instead of removing the interference modeled as a spectrum, the aim being to identify a subset

of wavelengths that produces the smallest possible error [56]. Selecting the most correlated

wavelengths may lead to better performance in PLS and PCR, but, on the other hand, selection

of the most correlated wavelengths may eliminate those that correct for the influence of

interfering compounds or factors [56].

4.2. Pre-processing strategy

In practical applications, combinations of pre-processing methods are usually employed in

search for the best algorithm, involving more than one pre-processing step. According to

Rinnan et al., several rules may serve as guidelines: scatter correction (except of normalization)

should always be performed prior to differentiation; normalization can be used at both ends of

the correction, but usually is easier to be assessed if it is done prior to any other strategy; MSC

gives a smaller baseline correction than SNV with subsequent de-trending; it is not

recommended to perform de-trending followed by SNV [51].

The ideal pre-processing strategy should only remove artifacts present in the data, without

introducing any unwanted artifacts or variability in the data. When physical properties, that is,

tablets’ crushing strength, are evaluated through vibrational spectroscopy, typical pre-

processing methods such as SNV, MSC, and the derivatives cannot be used, because they lose

the baseline-shifting information, which is relevant for the physical properties. The data in this

case should be modeled as such or after normalization [16]. Three approaches are described in

the literature, for the selection of the most appropriate strategy: the trial-and-error approach;

visual inspection and the use of data-quality parameters [57].
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In the trial-and-error approach, all pre-processing methods are applied to the data and the pre-

processed data are used as an input to a calibration model, which is further used to assess the

quality of the pre-processing strategy by an internal measure, such as RMSEP or RMSECV [57].

For example, Karande et al. chose among various pre-processing methods through comparing

the figures of merit (explained variance, R2, RMSEC, and RMSECV) of the developed partial

least-squares (PLS1) regression models, for the quantification of micronized drug and excipi-

ents in tablets by NIR spectroscopy. The raw calibration spectra were pretreated with SNV

followed by first derivative and SNV followed by second derivative pre-processing. All

models were developed using the entire spectral range or narrow spectral ranges. The best

performance of the calibration method (highest explained variance, lowest RMSEC and

RMSECV) was obtained using the whole spectral range, pretreated with SNV followed by first

derivative spectral pre-processing [9] . The same approach has been used by Porfire et al. in the

attempt to select the best pretreatment method in the development of calibration models for

prediction of chemical composition and crushing strength of sustained-release tablets with

indapamide. PLS regression was performed for non-processed spectra as well as for spectra

treated by various pre-processing methods (i.e., FD, SD, SNV, MSC, FD + SNV, FD + MSC), and

the most suitable pretreatment algorithm was chosen based on the results obtained for PLS

model validation through cross-validation, i.e., based on its RMSECV and bias [58].

In visual inspection method, the effect of pre-processing is assessed before a model is

constructed. Thus, because artifacts have been removed during pre-processing, samples

should show more spectral overlap after pre-processing in visual inspection, and differences

between groups of samples should be more pronounced. However, as visual inspection may

be very difficult and not objective, the data are not usually inspected in “spectral mode” but in

a lower dimensional space, obtained usually through principal component analysis [57]. PCA

reduces the dimensionality of the problem by generating linear combinations of the original

variables returning new “latent” variables. Each original variable is weighted by a loading

representing the importance of the considered variable on the variance of the data. The

variability of the data is expressed by new dimensions called principal components, and the

projection of a pixel onto the PCs is called its score. The result of PCA is the decomposition of

the pre-processed matrix in a score matrix and a loading matrix [48]. PCA is used for data

overview, for example, for detecting outliers, groups, and trends among observations, for

evaluating relationships among variables, and between observations and variables. In PCA,

data in the matrix X are transferred into a new coordinate system defined by principal

components. The direction in variable space occupied by the most varying data points will

define the location of the first PC, and the second PC will be given by the largest variation

orthogonal to the first component. PCs are extracted until only minor variation is left

unexplained by the PC model, each component consisting of a score vector and a loading

vector. Observations close to each other in a score plot have similar properties, and variables

close to each other in a loading plot are correlated. Thus, the score plot is useful for the

detection of strong outliers, clustering, and time trends [59] .

The detection of strong outliers through PCA is done by analyzing the score plot. The strong

outliers are removed, as they may have a degrading impact on model quality. A statistic tool

called Hotteling’s T
2 may be used in conjunction with the score plot for the detection of

strong outliers. This tool is a multivariate generalization of Student’s t-test, defining the
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normal area corresponding to 95 or 99% confidence. Subsequently, for a better understand-

ing of the properties of grouped data, a splitting of data into smaller groups according to the

nature of the clustering is done, and separate PCA models may be fitted. For the detection of

weakly deviating observations (moderate outliers), which are not strong enough to show up

as outliers in score plots, the residuals of each observation are used. The detection tool is

called DmodX (a notation for distance to the model in X-space). A value of Dmodx is

calculated for each observation, and the values are plotted in a control chart where the

maximum tolerable distance (Dcrit) for the dataset is given. The plot of DmodX enables an

overview of the unsystematic process variation, as moderate outliers have DmodX values

higher than Dcrit [59].

Before PCA, scaling of data is usually performed, because variables have different numerical

ranges so they will have different variance and they will weight differently in the data

analysis. The most common approach is the unit variance (UV) scaling, consisting in divid-

ing each variable by its standard deviation. The result is that each variable has equal vari-

ance, meaning that the “length” of each variable is identical, although the mean values still

remain different [59].

Tôrres et al. used Hotelling’s T2 chart to analyze the NIR spectra of a training (calibration) set

for the development of a monitoring method for the stability of captopril in tablets. Before

being analyzed by PCA, NIR spectra were smoothed as described by Savitzky-Golay with a

21-point window and second-order polynomial and were processed by MSC for the correction

of baseline variation due to non-homogeneity of particle’s distribution [60]. The Hotelling’s T2

chart measures the distance from an observation to the center of the samples under normal

operating conditions and evaluates whether a particular sample has a systematic deviation

from the samples considered to be under statistical control [61]. As all samples from the

training set were assumed to be normal, the training chart was not expected to identify

systematic deviations in these samples in the training phase, so the number of PC retained in

the model was selected to minimize the number of false alarms (false positives and false

negatives) during the training phase of the control charts [60].

5. Regression methods

Regression analysis is a modeling technique used to investigate the relationship between

dependent variables (responses or y’s variables) and independent variables (predictor, factors

or x’s variables). According to the number of variable, three cases can be distinguished:

1. Simple linear regression—one y and one x variable.

2. Univariate linear regression—one y and several x’s variables.

3. Multivariate linear regression—several y’s and several x’s variables [62].

The objective of a regression method can be achieved by means of a model where the observed

result (dependent variables, response, y’s variables) is described as a function of independent

variables (x’s variables) and the noise is left as residual.
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In a regression analysis, the relationship between two data matrix X (BxK) and Y (NxM) are

related to each other. A regression model can be written as in a matrix form as

Y ¼ XB (1)

where Y is the matrix of x’s variables; X is the matrix of y’s variables; B is the matrix of

regression coefficient, B(KxM).

A good estimate of regression coefficient (B matrix) provides a good fit to Y and good

prediction of future unknown parameters yT. More, the regression coefficient vector should be

of mechanistic understanding and interpretable [59, 63, 64].

A large number of regression methods were developed, all with the goal of finding the best

estimation of B. In the calibration of spectroscopic methods, only multivariate regression

techniques can be applied, and the most used are (1) multiple linear regression (MLR), (2)

principal component regression, (3) partial least-squares regression, and (4) orthogonal partial

least-squares regression (O-PLS). In the last years, some advanced regression methods as (5)

Bayesian ridge regression (Bayes-RR) (6) support vector regression (SVR) or (7) decision tree

regression (DTR) have started to be used.

5.1. Multiple linear regression

Multiple linear regression is an extension of simple linear regression model. In the case of MLR

determination, the relationship between x’s—variables and y’s—variables is achieved by

means of a model where the responses (y’s—variables) are described as a function of analyzed

factors (x’s—variables) and the noise is left in the residual (ε) (Eq. (1)) [65]

y ¼ f x1; x2; x3…:; xnð Þ þ ε (2)

The function f is approximated by a polynomial equation (Eq. (3)),

y ¼ b0 þ b1x0 þ b0x2 þ…þ b0xn þ ε (3)

where bi (i = 1, 2, 3, …,n) are the regression coefficients and describe the effect of each term on

the response y.

The polynomial equation (Eq. (3)) can be written in matrix way as follows:

y ¼ Xbþ ε (4)

where X are the matrix of x’s variables and b the vector, and the multiple linear regression is

used to determinate vector b.

If there are orthogonalities between x’s variables, Eq. (4) can be written as

b ¼ XTX
� ��1

XTy (5)

In this equation, matrix XTX become a diagonal matrix and b is easily calculated.
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If not all the x’s variables can be controlled, the number of x’s variables extends the number of

experimental runs or the number of experimental runs is larger than the number of x’s vari-

ables, the co-linearity between x’s variables arises and the orthogonality no longer exists, so the

inverse of XTX cannot be applied.

Except the cases when the calibration of spectroscopic methods is performed following the

design of experiment strategy in the other multivariate calibration, the orthogonalities do not

exist and the MLR cannot be applied. That is the reason why other regression methods based

on latent variables as partial last squares are preferred and become popular. When the calibra-

tions are performed based on latent variables, inside of using the original variables in the

regression, a new set of orthogonal (latent) variables is calculated and leads to reduction of

the original dimension of x’s variables matrix and performs the least-square estimation.

5.2. Principal component regression

Principal component regression is a regression method based on principal component analysis

and it is used when datasets are highly collinear. In a PCA regression, the original set of

collinear variables is transformed to a new set of correlated variables. So, the principal compo-

nent analysis is used to decompose the x’s variables into a principal component (orthogonal

basis) and a subset of components in order to predict y’s variables. The basic idea of the

principal component regression is to calculate the principal components and then use some of

these components as predictors in a linear regression model fitted using the typical least-

squares procedure [66, 67].

In the case of PCR determination, the relationship between x’s variables and y’s variables is

achieved by means of a matrix of lower dimension (TPT), called principal components, and a

matrix of residuals (E).

X ¼ 1Xþ TPT
þ E (6)

where X contains X average; T is a matrix of scores that summarizes the X variables; P is a

matrix of loadings showing the influence of the X variables; E is a matrix of residuals (the

deviations between the original and the predicted values) [66].

The main idea of principal regression is to replace Xmatrix of row date to a smaller orthogonal

score—loading matrix (TPT matrix) that summarized the original X matrix, and then to relate

the T-scores to y’s variables.

The core of PCR is that a small number of principal components is enough to explain the

variability into the data. In most of the cases, it might be found out that four to six principal

components are enough to explain more that 90% of the variance into the data.

5.3. Partial least squares

The partial least-squares regression is the most popular method for the creation of models used

in the development of NIR and Raman spectrometric methods and is used to develop a linear

link between two matrices, the NIR/Raman spectral data and the reference values.
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The PLS approach was first proposed by Herman Wold around 1975 for the modeling of

complicated datasets in terms of chains of matrices, the so-called path models. PLS regression

is preferable to develop calibration models because unlike MLR, it can analyze data with

strongly collinear, noisy, and numerous X-variables, and also simultaneously model several

response variables [68]. PLS was developed for situation in which the data have more inde-

pendent variables than observations (the “small n, large p”) or/and where collinearity is

present among dataset [69].

The PLS finds a multivariate model (linear or polynomial) that describes the relationship

between Y matrix (dependent variables) and X matrix (predictor variables) expressed as

Y ¼ fðXÞ þ E (7)

PLS may be easily understood geometrically if we imagine the matrices X and Y as N points in

two spaces. The X-space with K axes, and the Y-space with M axes, where K is the number of

columns in Xmatrix andM the number of columns in Ymatrix. The objectives of PLS is to find

a latent variable so that the best approximate X-space, the best approximate Y–space, and the

greatest possible correlation between X-space and Y space.

A PLS model can be written as

X ¼ 1Xþ TP
T þ E (8)

Y ¼ 1Y þUC
T þ F (9)

T ¼ U þH (10)

where X contains the X average; Y contains the Y average; T is a matrix of scores that summa-

rizes theX variables;U is a matrix of scores that summarizes the Y variables; E, F, H is a matrix of

residuals (the deviations between the original and the predicted values) [12].

In a PLS algorithm, there are additional loading called weight. P is the matrix of weigh

expressing the correlation between X and U and is used to calculate T. C is the matrix of weigh

expressing the correlation between Y and T and is used to calculate U [12, 70].

5.4. Orthogonal partial least squares

OPLS has been developed in order to separate information in the X matrix that is correlated

with Y matrix form Y-uncorrelated information. The idea of O-PLS algorithm was to remove

systematic variation uncorrelated with the response with the goal and to reduce the number of

components in order to increase interpretability of the model [55, 69, 71].

The main idea of O-PLS is to separate the systematic variation in X into two parts, one which is

related to both X and Y (co-varying noise) and one which is orthogonal to Y (structured noise).

Two O-PLS algorithms were developed, the first (O1-PLS) is unidirectional X ) Y and the

second (O2-PLS) is bi-directional X⇔Y and is able to separate these different types of varia-

tions in both X and Ymatrices [63, 64]. The practical result of using O-PLS algorithms inside of

PLS is cleaner models that are easier to display and interpret.
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An O2-PLS model can be written as

X ¼ 1X0 þ TPT þ ToP
T
o þ E (11)

Y ¼ 1Y0 þUCT þUoC
T
O þ F (12)

T ¼ UBu þHTU (13)

U ¼ TBT þHUT (14)

where X is a contain de X average; Y is a contain de Y average; T is a matrix of scores that

summarizes the X variables; U is a matrix of scores that summarizes the Y variables; P is a

matrix of weigh that express the correlation between X and U; C is a matrix of weigh that

express the correlation between Y and T; E, F, HTU, HUT are the matrixes of residuals.

The matrixes TPT and UCT hold the joint X/Y information overlap [12, 63, 64].

In the last years, O2-PLS has become the preferred regression technique for the development of

calibration models in NIR and Raman spectroscopy.

5.5. Bayesian ridge regression

Another regression method recently proposed for multivariate calibration of spectroscopic

methods is Bayesian ridge regression. The method presents similarities with least squares,

and the estimated coefficients tend toward zero in order to avoid collinearity [44].

In a Bayes-RR regression model, higher-level prior Gaussian distributions can be introduced

over α2 and α, and the prediction can be performed by integrating over α2, α, and the regression

parameters w. Since this prior distribution is conjugate to the likelihood function, the predictive

distribution is also Gaussian [72]

p yjα,α2
� �

¼

ð

p yjw,α2
� �

p wjαð Þdw (15)

The Bayes-RR is a widely used regression technique in machine learning based on the ridge

regression [73], and in the last years its performance for the development of excellent models

for spectroscopic calibration has been proved [72, 74, 75].

5.6. Support vector regression (SVR)

The support vector machines (SVMs) are a set of learning methods mostly used for classifica-

tion that can be used as a regression technique which is called the support vector regression. In

the last years, SVM started to be used in chemometrics for NIR spectra classification and

multivariate calibration. The SVR uses the same principles as the SVM and is based on finding

the hyperplane maximizing the margin between classes. The hyperplane maximizing the

margin is justified by statistical learning theory endowed with a probabilistic test error bound

that is minimized when the margin is maximized. The regression is performed using kernel

functions that transform the data into a higher dimensional feature space to make a linear
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separation possible. The models obtained by SVR are more complex and difficult to interpret

in comparison with those obtained by other regression techniques [44, 76, 77].

5.7. Decision tree regression

Decision tree regression is a type of decision tree algorithm that can be applied to solve regres-

sion problems. Decision trees represent one of the main techniques used for discriminant analy-

sis, classification, and prediction in knowledge discovery. It is widely used because it closely

resembles human reasoning and is easy to understand. The principle is to compute a regression

in a tree structure from breaking down a dataset into smaller and smaller subsets. Recently, some

applications in multivariate calibration of spectroscopic methods have been proposed [44, 77–79].
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