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1. Introduction 

Many combinatorial optimization problems can be formulated as: for a given set system over 

E (i.e., for a pair (E, ) where  ⊆ 2E is a family of feasible subsets of finite set E), and for a 
given function F : →R, find an element of  for which the value of the function F is 
minimum or maximum. In general, this optimization problem is NP-hard, but for some 
specific functions and set systems the problem may be solved in polynomial time. For 
instance, greedy algorithms may optimize linear objective functions over matroids [11] and 
Gaussian greedoids [5], [15], [32], while bottleneck objective functions can be maximized 
over general greedoids [16]. A generalization of greedoids in the context of dynamic 
programming is discussed in [1] and [2]. 
Another example is about set functions defined as minimum values of monotone linkage 
functions. These functions are known as quasi-concave set functions. Such a set function can 
be maximized by a greedy type algorithm over the family of all subsets of E 
[19],[24],[29],[30],[34], over antimatroids and convex geometries [17], [20], [25], join-
semilattices [28] and meet-semilattices [21]. A relationship was also established between 
submodular and quasi-concave functions [28] that allowed to build series of branch and 
bound procedures for finding maximum of submodular functions. 
Originally, quasi-concave set functions were considered [23] on the Boolean 2E 

 (1) 

In this work we extend this definition to various set systems. One of the natural extensions 

is a join-semilattice. Here,  ⊆ 2E is a join-semilattice if it is closed under union, i.e., A∪B ∈  
for each A,B ∈ . 
Another direction of our research is to adapt the definition of the quasi-concave set 
functions to set systems that are not necessarily closed under union. Let E be a finite set, and 
a pair (E, ) be a set system over E. A minimal feasible subset of E that includes a set X is 

called a cover of X. We will denote by C(X) the family of covers of X. Then the inequality (1) 

turns into the following.  

Definition 1 A function F defined on a set system (E, ) is quasi-concave if for each X, Y ∈ , and 

Z ∈ C(X ∪ Y ) O
pe
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 (2) 

If a set system is closed under union, then the family of covers C(X ∪ Y ) contains the unique 

set X∪Y , and the inequality (2) coincides with the original inequality (1). 
This chapter is organized as follows. Section 1 contains an extended introduction. Section 2 
gives basic information about monotone linkage functions. We show that for a number of 
combinatorial structures the class of functions defined as the minimum values of monotone 
linkage functions coincides with the class of quasi-concave set functions. Section 3 deals 
with the construction of efficient algorithms for maximizing quasi-concave functions which 
are associated with monotone linkage functions. It is shown that properties of combinatorial 
structures affect their corresponding optimization algorithms. Section 4 deals with 
applications to clustering in bioinformatics. In this section we use a particular class of quasi-
concave set functions as natural criteria for cluster analysis. We describe how the Fibonacci 
heap structure can dramatically reduce the computational complexity. Section 5 contains 
conclusions and directions of future research. 

2. Preliminaries 

Here we will give definitions of some set properties that are discussed in the following 

sections. We will use X ∪ x for X ∪ {x}, and X − x for X − {x}. 

A non-empty set system (E, ) is called accessible if for each non-empty X ∈ , there exists 

an x ∈ X such that X − x ∈ . 

For each non-empty set system (E, ) accessibility implies that ∅ ∈ . 

Definition 2 A closure operator, : 2E→2E, is a map satisfying the closure axioms: 

 
Definition 3 The set system (E, ) is a closure system if it satisfies the following properties 

 
Let a set system (E, ) be a closure system, then the operator 

 (3) 

is a closure operator. 
A convex geometries was introduced by Edelman and Jamison [9] as a combinatorial 
abstraction of ”convexity”.  
Definition 4 [16] The closure system (E, ) is a convex geometry if the family  satisfies the 
following property 

 (4) 

It is easy to see that property (4) is dual to accessibility. Then, we will call it up-accessibility. If 
in each non-empty accessible set system one can reach the empty set ∅ from any feasible set 
X ∈  by moving down, so in each non-empty up-accessible set system (E, ) the set E may 
be reached by moving up. 

It is clear that a complement set system (E,  ) (system of complements), where  = {X ⊆ E 

: E −X ⊆ }, is up-accessible if and only if the set system (E, ) is accessible. 
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In fact, accessibility means that for all sets X ∈  there exists a chain ∅= X0 ⊂ X1 ⊂ ... ⊂Xk = 

X such that Xi = Xi−1 ∪ xi and Xi ∈  for 0 ≤ i ≤ k, and up-accessibility implies the existence of 

the corresponding chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E. Consider a set family for which this chain 

property holds for each pair of sets X ⊂ Y . 

Definition 5 A set system (E, ) satisfies the chain property if for all X, Y ∈ , and X ⊂ Y , there 

exists an y ∈ Y − X such that Y − y ∈ . We call the system a chain system. 

In other words, a set system (E, ) satisfies the chain property if for all X, Y ∈ , and X ⊂ Y, 

there exists a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such that Xi = Xi−1 ∪ xi and Xi ∈  for 0 ≤ i ≤ k. 
It is easy to see that (E, ) is a chain system if and only if (E, ) is a chain system as well. 

Consider a relation between accessibility and the chain property. If ∅ ∈ , then accessibility 

follows from the chain property. In general case, there are accessible set systems that do not 

satisfy the chain property (for example, consider E = {1, 2, 3} and  = {∅, {1}, {2}, {2, 3}, {1, 2, 

3}}) and vice versa, it is possible to construct a set system, that satisfies the chain property 

and it is not accessible (for example, let now  = {{1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}). In fact, if we 

have an accessible set system satisfying the chain property, then the same system but 

without the empty set (or without all subsets of cardinality less then some k) is not 

accessible, but satisfies the chain property. The analogy statements are correct for up-

accessibility. 

Examples of chain systems include convex geometries (see proposition 8) and complement 

systems called antimatroids, matroids and all independence systems (matchings, cliques, 

independent sets of a graph). Consider a less common example. 

Example 6 For a graph G = (V,E), the set system (V, ) given by 

 
is a chain system. The example is illustrated in Figure 1. 
 

 
                     (a)                                                                           (b) 

Fig. 1. G = (V,E) (a) and a family of connected subgraphs (b). 

To show that (V, ) is a chain system consider some A,B ∈  such that A ⊂ B. We are to 

prove that there exists an b ∈ B − A such that A ∪ b ∈ . Since B is a connected subgraph, 

there is an edge e = (a, b), where a ∈ A and b ∈ B − A. Hence, A ∪ b ∈ . 
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For a set X ∈ , let ex(X) = {x ∈ X : X − x ∈ } be the set of extreme points of X. Originally, 

this operator was defined for closure systems [9]. An element e ∈ A was called an extreme 

point if e ∉  (A − e). Our definition does not demand the existing of a closure operator, but 
when the set system (E, ) is a convex geometry ex(X) becomes the set of original extreme 
points of a convex set X. 

Note, that accessibility means that for each non-empty X ∈ , ex(X) ≠ ∅. 

Definition 7 The operator ex :  → 2E satisfies the heritage property if X ⊆ Y implies ex(Y ) ∩ X ⊆ 

ex(X) for all X, Y ∈ . 
We choose the name heritage property following B. Monjardet [26]. This condition is well-
known in the theory of choice functions where one uses also alternative terms like Chernoff 

condition [7] or property α [31]. This property is also known in the form X − ex(X) ⊆Y − ex(Y). 

The heritage property means that Y − x ∈  implies X − x ∈  for all X, Y ∈  with X ⊆ Y 

and for all x ∈ X. 
The extreme point operator of a closure system satisfies the heritage property, but the 
opposite statement in not correct. Indeed, consider the following example illustrated in 
Figure 2 (a): let E = {1, 2, 3, 4} and 

 

It is easy to check that the extreme point operator ex satisfies the heritage property, but the 

set system (E, ) is not a closure system ({2, 4}∩{3, 4} ∉ ). It may be mentioned that this set 
system does not satisfy the chain property. Another example (Figure 2 (b)) shows that the 
chain property is also not enough for a set system to be a closure system. Here 

 

and the constructed set system satisfies the chain property, but is not a closure set ({1, 3} ∩ 

{3, 4} ∉ F). 

 
                                          (a)                                                                               (b) 

Fig. 2. Heritage property (a) and chain property (b). 

Proposition 8 A set system (E, ) is a convex geometry if and only if 

(1) ∅ ∈ , E ∈   
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(2) the set system (E, ) satisfies the chain property 
(3) the extreme point operator ex satisfies the heritage property. 

Proof. Let a set system (E, ) be a convex geometry. Then the first condition automatically 
follows from the convex geometry definition. Prove the second condition. Consider X, Y ∈ 

, and X ⊂ Y. From (4) it follows that there is a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E such that Xi = 

Xi−1 ∪ xi and Xi ∈ F for 0 ≤ i ≤ k. Let j be the least integer for which Xj ⊇ Y . Then Xj−1  Y , 
and xj ∈ Y . Thus, Y − xj = Y ∩ Xj−1 ∈ . Since xj ∉ X, the chain property is proved. To prove 
that ex(Y ) ∩ X ⊆ ex(X), consider p ∈ ex(Y ) ∩ X, then Y − p ∈  and X ∩ (Y − p) = X − p ∈ , 
i.e., p ∈ ex(X). 
Conversely, let us prove that the set system (E, ) is a convex geometry. We are to prove 
both up-accessibility and that X, Y ∈  implies X ∩ Y ∈ . Since E ∈ , up-accessibility 
follows from the chain property. Consider X, Y ∈ . Since E ∈ , the chain property 
implies that there is a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E such that Xi = Xi−1 ∪ xi and Xi ∈  for  

0 ≤ i ≤ k. If j is the least integer for which Xj ⊇ Y , then Xj−1  Y , and xj ∈ Y . Since xj ∈ ex(Xj ), 
we obtain xj ∈ ex(Y ). Continuing the process of clearing Y from the elements that are absent 
in X, eventually we reach the set X ∩ Y ∈ .   ■ 

3. Monotone linkage functions 

Monotone linkage functions were introduced by Joseph Mullat [29]. 

A function π: E × 2E → R is called a monotone linkage function if 

 (5) 

For each X ⊆ E define function F : (2E − ∅) → R as follows 

 
(6) 

Example 9 Consider a graph G = (V,E), where V is a set of vertices and E is a set of edges. Let 

degH(x) denote the degree of vertex x in the induced subgraph H ⊆ G. It is easy to see that function 
π(x,H) = degH(x) is monotone linkage function and function F(H) returns the minimal degree of 
subgraph H. 
Example 10 Consider a proximity graph G = (V,E,W), where wij represents the degree of similarity 
of objects i and j. A higher value of wij reflects a higher similarity of objects i and j. Define a monotone 

linkage function π(i,H)
  

that measures proximity between subset H ⊆V and their element 

i. Then the function  can be interpreted as a measure of density of the set H. 

It was shown [23], that for every monotone linkage function π, function F is quasi-concave 

on the Boolean 2E. Moreover, each quasi-concave function may be defined by a monotone 
linkage function. In this section we investigate this relation on different families of sets. 
For any function F defined on a set system (E, ), we can construct the corresponding 
linkage function 

 

(7) 
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where [x,X]  = {A ∈  : x ∈ A and A ⊆ X}. 

The function πF is monotone. Indeed, if x ∈ X and [x,X]  ≠ ∅, then X ⊆ Y implies [x,X]  ≠ ∅ 
and 

 

If x ∈ X and [x,X]  = ∅, then X ⊆ Y implies 

 

It is easy to verify the remaining cases. 
In the sequel we will consider various types of set systems. At first, we investigate the set 
systems closed under union, i.e., we study quasi-concave functions on join-semilattices. 
Theorem 11 A set function F defined on a join-semilattice  is a quasi-concave function if and only 

if there exists a monotone linkage function π such that  for each X ∈  − ∅. 

Proof. If a monotone linkage function π is given, then F(X∪Y) = π(x*,X∪Y), where 

 1. Without loss of generality, assume that x* ∈ X. Thus, 

 

Conversely, if we have a quasi-concave set function F, we can define the monotone linkage 
function πF (x,X) using the definition 7. Let us denote

 
, and prove 

that F = G on  − ∅. 

Now, for each X ∈  − ∅ 

 

where 
 

On the other hand, 

 

where Ax is a set from [x,X]  on which the value of the function F is maximal i.e., 

 

From quasi-concavity of F it follows that 

 

Therefore, G(X) ≤F(X), and, hence,    ■ 

Now, consider set systems that are not closed under union. 

                                                 
1
 argmin f(x) denote the set of arguments that minimize the function f. 
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Let (E, ) be an accessible set system. Denote + =  − ∅. Then, having the monotone 

linkage function π , we can construct for all X ∈ + the set function 

 

It is easy to see that 

 (8) 

Indeed, for each X ∈ + 

 

where 
 

The following theorem finds conditions on the set system (E, ) and on the function F 

ensuring that the function GF coincides with F. 

Theorem 12 [18] Let (E, ) be an accessible set system. Then for every quasi-concave set function  

F : + → R 

 

if and only if the set system (E, ) satisfies the chain property. 
Thus, for an accessible set system satisfying the chain property each quasi-concave function 

F determines a monotone linkage function πF , and a set function defined as a minimum of 

this monotone linkage function πF coincides with the original function F. 

As examples of such set systems may be considered greedoids [16] that include matroids 

and antimatroids, and antigreedoids including convex geometries. By an antigreedoid we 

mean a set system (E, ) such that its complement set system (E, ) is a greedoid. 

Note, that if F is not quasi-concave, the function GF does not necessarily equal F. For 

example, let  = {∅, {1}, {2}, {1, 2}} and let 

 

The function F is not quasi-concave, since F({1}∪{2}) < min(F({1}), F({2})). It is easy to check 

that here GF ≠ F, because πF (1, {1, 2}) = πF (2, {1, 2}) = 1, and so GF ({1, 2}) = 1. Moreover, the 

function GF is quasi-concave. To understand this phenomenon, consider the opposite 

process. 

Let (E, ) be an accessible set system. If a monotone linkage function π : E × 2E → R is given, 

we can construct the set function Fπ : 
+ → R: 

 
(9) 

To extend this function to the whole set system (E, ) define 
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Theorem 13 [18] Let (E, ) be an accessible set system. Then the following statements are equivalent 

(i) the extreme point operator ex :  → 2E satisfies the heritage property. 
(ii) for every monotone linkage function π the function Fπ is quasi-concave. 

Thus, if a set system (E, ) is accessible and the operator ex satisfies the heritage property, 
then for each set function F, defined on (E, ), one can build the quasi-concave set function 
GF that is an upper bound of the original function F. If, in addition, the set system has the 
chain property, the class of set functions defined as the minimum values of monotone 
linkage functions coincides with the class of quasi-concave set functions. 
Corollary 14 A set function F defined on a convex geometry (E, ) is quasi-concave if and only if 

there exists a monotone linkage function π such that  for each X ∈ −∅. 

Another approach to the result of Theorem 13 is in extending the function F to the Boolean 

2E by building a new linkage function πex. 
Let (E, ) be an accessible set system and π be a monotone linkage function. Define 

 
(10)

where 
 

Theorem 15 [25] Let (E, ) be an accessible set system and the extreme point operator ex satisfies 
the heritage property. If function π is a monotone linkage function, then 

(i) function πex is also monotone and 
(ii) its function  coincides with the function Fπ(X) = 

 for each X ∈ −∅. 

Now, Theorem 13 immediately follows from the properties of quasi-concave functions on 
the Boolean [23]. 
Remark 16 [25] Any extreme point operator ex satisfying the heritage property may be represented 
by some monotone linkage function π in the following way 

 (11)

and vice versa, if the linkage function π is monotone, the operator ex defined by (11) satisfies the 
heritage property. 

4. Maximizers of quasi-concave functions 

Consider the following optimization problem: given a monotone linkage function π, and an 

accessible set system (E, ), find a feasible set A ∈ +, such that Fπ(A) = max{Fπ(B) : B ∈ +}, 
where the function Fπ is defined by (9). From quasi-concavity of the function Fπ it follows 
that the set of optimal solutions is a join-semilattice with a unique maximal element. Our 
goal is to find this maximal element, which we call the ∪ − maximizer. For instance, for the 
functions defined in Example 9 ∪ − maximizer is the largest subgraph with the maximum 
minimum degree. In Example 10 we look for the largest subset with the highest density. 
A greedy-type algorithm for finding the ∪ − maximizer on the Boolean was constructed by 
Mullat [29] and has been effectively applied in data mining [22], biology [33], and for 
computer vision [35]. 
Here we want to investigate the more general set systems. 

www.intechopen.com



Quasi-Concave Functions and Greedy Algorithms 

 

469 

4.1 Chain algorithm on convex geometries 

A convex geometry is a closure system, and so closed under intersection. Hence, each set X⊆ 
E has an unique cover which is a closure of X, i.e.,  (X) and the family of feasible sets F of a 

convex geometry (E, ) form a join-semilattice L , with the lattice operation: X ∨ Y =  (X 

∪Y ). Hence, for convex geometries the inequality (2) reads as follows F(X ∨ Y ) ≥ min{F(X), 

F(Y )} for each X, Y ∈ L . 
Consider the special structure that quasi-concave function Fπ determines on a convex 
geometry. It has been already noted that the family of feasible sets maximizing function Fπ  is 
a join-semilattice with a unique maximal element. Denote this family by 0, and let a0 be the 
value of function Fπ on the sets from 0. We denote by 1 the family of sets, which 

maximize function Fπ over + − 0, and by a1 the value of function Fπ on these sets. 

Continuing this process, we have , where t + 1 is a number of different values 

of function Fπ. It is easy to see that  is a subsemilattice of L , where j = {X ∈ 
+ : Fπ(X) ≥ a j}. We call these subsemilattices upper level semilattices. Denote by K j

 the 

maximal element - 1 of the upper level semilattice j. Since i ⊆ i+1, we obtain K0 ⊆ K1 ⊆ ... 

⊆ Kt, where Kt is 1 of the join-semilattice L , i.e., Kt
 = E. 

Let K0 = H0 ⊂ H1 ⊂ ... ⊂ Hr = Kt be the subchain of all different 1-s of the chain K0 ⊆ K1 ⊆ ... ⊆ 

Kt. Thus, to find a ∪ − maximizer, we have to find just H0. In fact, we construct an algorithm 

that finds the complete chain H0 ⊂ H1 ⊂ ... ⊂ Hr = E of different 1-s. This chain of ”local 
maximizers”2 has a number of interesting applications [24]. 
For any real number u we define the u-level set of a family  as 

 

It is clear that if Fπ is quasi-concave, then the u-level set of a join-semilattice is a join-

semilattice as well. The input of the following algorithm is a threshold u and a set X ∈ , 

while it returns 1 of non-empty ( +∩[∅,X])u. The algorithm is motivated by procedures 
from [28] and [29]. 
The Level-Set Algorithm (u,X) 

1. Set A = X 

3. While A ≠ ∅ do 

   3.1 Set Iu(A) = {x ∈ ex(A) : π(x,A) ≤ u}  

   3.2 If Iu(A) = ∅ then stop and return A 
   3.3 Set A = A − Iu(A) 
4. Return A. 

Theorem 17 Let (E, ) be a convex geometry. Then, for every monotone linkage function π and the 
corresponding function  the Level-Set Algorithm (u,X) returns 1 of 

non-empty semilattice ( + \ [∅,X])u and returns ∅ when this u-level set is empty. 
Proof. At first, note that  Since any convex geometry is 

closed under intersection, then all sets generated by the algorithm belong to the convex 
geometry. 

                                                 

2 Indeed, for each A ∈ +, and for each null Hl, if A  H
l then F(A) < F(Hl). 
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Consider the case when the algorithm returns A ≠ ∅. Since Iu(A) = ∅, then Fπ(A) > u, i.e. A ∈ 

( + ∩ [∅,X])u. It remains to be proven that A is the null of the u-level set, i.e., that B ∈ ( + ∩ 

[∅,X])u implies A ⊇ B. Suppose the opposite was true, and let X = X0
 ⊃ X1

 ⊃ ... ⊃ Xk = A be a 

sequence of sets generated by the algorithm, where Xi+1
 = Xi − Iu(Xi) for 0 ≤ i < k. Since B ∈ 

( + ∩ [∅,X])u, then X ⊇ B. On the other hand, since A  B, there exists the least integer j for 

which Xj  B. Then Xj−1
 ⊇ B, and there is xj ∈ Iu(Xj−1) that belongs to B. So, Xj−1

 ⊇ B , xj ∈ B 

and xj ∈ ex(Xj−1), then from heritage property it follows that xj ∈ ex(B). Hence, monotonicity 

of function π implies F(B) ≤ π(xj ,B) ≤ π (xj ,Xj−
1) ≤ u, a contradiction. 

If the algorithm returns A = ∅, then ( + ∩ [∅,X])u = ∅. Assuming the opposite, then there is 

a non-empty set B ∈ ( + ∩ [∅,X])u. By analogy, with the first part of the proof, we obtain 
that Fπ(B) ≤ u, a contradiction.   ■ 
The following Chain Algorithm finds the chain of all local maximizers for a non-empty join-
semilattice L . 
The Chain Algorithm (E, π, ) 

1. Set Γ0 = E 
2. i = 0 

3. While Γi ≠ ∅ do 
   3.1 u = F(Γi) 
   3.2 Γi+1 = Level-Set(u, Γi) 
   3.3 i = i + 1 

4. Return the chain Γ0 ⊃ Γ1 ⊃ ... ⊃ Γi−1. 
Theorem 18 Let (E, ) be a convex geometry. Then, for every monotone linkage function π and the 

corresponding function  the Chain Algorithm returns the chain Γ0 ⊃ 

Γ1 ⊃ ... ⊃ Γp, which coincides with H0
 ⊂ H1

 ⊂ ... ⊂ Hr
 - the chain of all different 1-s of the upper level 

semilattices. 
Proof. First, prove that for each l = 0, 1, ..., p, Γl is 1 of some upper level semilattice. It is clear, 

that if Fπ(Γl) = aj , then Γl ∈ Lj . To prove that Γl is 1 of Lj , we have to show that for each A ∈ 
+, A  Γl implies Fπ(A) < Fπ(Γl). Suppose that the opposite is true, and let k be the least 

integer for which there exists A ∈ +, such that A  Γk and Fπ(A) ≥ Fπ(Γk). Note that k > 0, 

because Γ0
 = E is 1 of join-semilattice L , and so A  Γ0

 never holds. The structure of the 

Chain Algorithm implies Fπ(Γk) > Fπ(Γk−1). Hence Fπ(A) > Fπ(Γk−1) and, consequently, A ⊆ Γk−1. 

Thus A ∈ ( + ∩ [∅,Γk−1])u, where u = Fπ(Γk−1). On the other hand, from Theorem 17 it follows 

that Γk is 1 of ( + ∩ [∅,Γk−1])u, i.e., A ⊆ Γk, a contradiction. 

It remains to show that for each Hi
 there exists l ∈ {0, 1, ...p} such that Γl = Hi. Assume the 

opposite, and let Hj
 be a maximal 1 for which the statement is not correct. Since Hr

 = Γ0, then 

j < r, i.e., there exists l ∈ {0, 1, ...p} such that Hj+1 = Γl. From Fπ(H j) > Fπ(H j+1) = Fπ(Γl) and H j
 ⊂ 

H j+1 = Γl, it follows that H j
 ∈ ( + ∩ [∅,Γl])u, where u = Fπ(Γl). Thus H j ⊆ Γl+1, where Γl+1

 is 1 of 

( + ∩ [∅,Γl])u. On the other hand, since Γl+1
 is 1 of some upper level semilattice and H j

 is the 

closest 1 to H j
 
+1, then Γl+1

 ⊆ H j
 ⊆ H j

 
+1 = Γl. Hence H j

 = Γl+1, a contradiction.   ■ 

Corollary 19 Let (E, ) be a convex geometry. Then, for every monotone linkage function π, the 

Chain Algorithm finds a ∪ − maximizer of the quasi-concave function 
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Actually, a convex geometry is the unique structure on which the Chain Algorithm 
produces optimal solutions. To prove it we have to show that for each set system that is not 
a convex geometry there exists a monotone linkage function for which the Chain Algorithm 
does not find the ∪ − maximizer. It is obvious that if a set system is not up-accessible, then 
the Chain Algorithm may not reach the optimal solution. 
Now, consider an up-accessible set system (E, ) that does not satisfy the heritage property, 
i.e., there exists A,B ∈  such that A ⊂ B, and there is a ∈ A such that B − a ∈  and A − a ∉ . 
Up-accessibility of the set system (E, ) implies that there exists a sequence of feasible sets 

 
where Bi = Bi−1 − ai for 1 ≤ i ≤ p, and ap+1 = a. Define a linkage function π on pairs (x,X) where 
X ⊆ E, X ≠ ∅ and x ∈ X: 

 
It is easy to verify that function π is monotone. Then the Chain Algorithm generates only 
one set E, on which the value of the function Fπ is equal to 1, while Fπ(A) = 2. Thus, the Chain 
Algorithm does not find a feasible set that maximizes the function Fπ. So, we have the 
following theorem. 
Theorem 20 Let (E, ) be an accessible and an up-accessible set system. Then the following 
statements are equivalent 

(1) the set system (E, ) is a convex geometry 

(2) The Chain Algorithm finds a ∪ − maximizer of the quasi-concave function  

for every monotone linkage function π 
The Chain Algorithm is of greedy type, since it is based on the best choice principle: it 
chooses on each step the extreme elements (with respect to the linkage function) and, in 
such a way, approaches the optimal solution. The run-time of the algorithm depends largely 
on the efficiency of linkage function computation. For instance, in Example 10 the 
complexity of computing the initial linkage function values π(x, V ) for all the vertices in V is 
O(|E|), where E is a set of edges. For straightforward implementation the time required for 
finding the minimum value is O(|V |). After deleting the vertex with minimum value of π, 
the time required for updating the linkage function values for all the neighboring vertices of 
the deleted vertex is O(|V |), since the update can be carried out in time O(1) by subtracting 
the corresponding weight wij. So, the total time required for straightforward implementation 

of the Chain Algorithm in Example 10 is O(|E| + |V |2) = O(|V |2). 
In general case, the Chain Algorithm finds the ∪ − maximizer of a convex geometry (E,F) in 

O(P|E|+U|E|2) time, where P is the maximum complexity of computing the initial linkage 
function values π(x,E) over all x ∈ E, and U is the maximum complexity of updating the 
linkage function values. 
For some special linkage functions the running time can be improved by using more 
efficient data structure that will be discussed in the next section. 

4.2 Chain algorithm on join-semilattices 

Now we have a monotone linkage function π, and a join-semilattice  ⊆ 2E, and we are 
interested in finding a maximal maximizer of the function Fπ defined as F(X) = minx∈X π(x,X) 
according to (6). 
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Since a join-semilattice should not to be up-accessible, we have to find another way to reach 

each feasible set. 

Consider the following operator: 

 
(12)

If  is a join-semilattice, ω(X) is the largest set in  contained in X (if such a set exists). In 

other words, ω (X) is the 1 of the subsemilattice [∅,X]  if the subsemilattice is not empty, 

and ∅, otherwise. 

Note, that a join-semilattice  should not have the minimum element, and we use the 

element ∅ only to complete the definition of the operator ω. 

The operator ω is called interior (dual to closure) operator: 

(i) ω (X) ⊆ X, 
(ii) ω (X) = ω (ω (X)), 

(iii ) X ⊆ Y ⇒ ω (X) ⊆ ω (Y ). 
ω (X) is an interior of X. The fixed points of ω (X = ω (X)) are called the open sets of ω and 

forms the dual closure system [27]. A set system (E, ) is a dual closure system if and only if 

the complement set system (E, ) is a closure system. If  is a join-semilattice and the 

operator ω is defined by (12), then the family of open sets coincides with , excluding, 

possible, the empty set. 

We assume that for each X ⊆ E a procedure for finding interior ω (X) is available. Later we 

will consider some examples of procedures building interior efficiently. 

From quasi-concavity of function Fπ  it follows that the set of maximizers is a join-semilattice 

with a unique maximal element. It is easy to see that the structure of upper level semilattices 

investigated for convex geometries holds for join-semilattice as well. To obtain the chain H0 

⊂ H1 ⊂ ... ⊂ H r = E of different 1-s we use the Chain Algorithm with the following 

transformation: instead of assigning some set we replace it by its interior. 

The Level-Set Algorithm-JS (u,X) 
1. Set A = ω (X) 

3. While A ≠ ∅ do 

   3.1 Set Iu(A) = {x ∈ A : π(x,A) ≤ u}  

   3.2 If Iu(A) = ∅ then stop and return A 
   3.3 Set A = ω (A − Iu(A)) 
4. Return A. 

The Chain Algorithm-JS (E, π,F) 
1. Set Γ0 = ω (E) 
2. i = 0 

3. While Γ i ≠ ∅ do 
   3.1 u = F(Γ i) 

   3.2 Γ i+1 = Level-Set(u, Γ i) 
   3.3 i = i + 1 

4. Return the chain Γ 0 ⊃ Γ 1 ⊃ ... ⊃ Γ i−1. 
Similarly with the proof of Theorem 18 we obtain the following result. 
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Theorem 21 Let  ⊆ 2E
 be a non-empty join-semilattice. Then, for every monotone linkage function 

π and the corresponding function  the Chain Algorithm-JS returns the chain 

Γ0
 ⊃ Γ1

 ⊃ ... ⊃ Γp, which coincides with H0 ⊂ H1 ⊂ ... ⊂ Hr
 - the chain of all different 1-s of the upper 

level semilattices. 
Consider the complexity of the Chain Algorithm-JS. The run-time of the algorithm depends 

largely on the efficiency of interior construction. The Chain Algorithm-JS finds the ∪ − 

maximizer of a join-semilattice (E, ) in O(|E|(P + T + U|E|)) time, where P is the 

maximum complexity of computing the initial linkage function values π(x,E) over all x ∈ E, 

U is the maximum complexity of updating the linkage function values, and T is the 

maximum complexity of interior construction. 

4.2.1 Algorithms for interior construction 
The efficiency of the interior construction depends on the representation of a join-

semilattice. Here we consider a join-semilattice specified by a quasi-concave function. In 

addition, we consider an antimatroid that is a specific case of a join-semilattice.  

1. Quasi-Concave constraints. Assume that the family Ω ⊆ 2E of feasible sets is determined 

by the following constraints: for each H ∈ Ω , (H) > α, where  is a quasi-concave 

function defined by a monotone linkage function . It is easy to see that the set Ω is an α-

level set of 2E, i.e., Ω = {X ⊆ E :  (X) > α}. Since  is a quasi-concave function, the set  Ω is a 

join-semilattice. The problem is to find interior ω(X) over Ω for every set X ⊆ E, i.e., to find 1 

of the non-empty join-semilattice Ω ∩[∅,X]. Note that the Level-Set Algorithm(α,X) enables 

us to find 1 of the non-empty join-semilattice (2E ∩[∅,X])α, i.e., ω(X) over Ω. The modified 

Level-Set Algorithm is as follows: 

Quasi-Concave Interior Algortihm (α,X) 
1. Set A = X 

3. While A ≠ ∅ do 

   3.1 Set Iα(A) = {x ∈ A : (x,A) ≤ α}  

   3.2 If Iα(A) = ∅ then stop and return A 

   3.3 Set A = A − Iα(A) 
4. Return A. 

The Quasi-Concave Interior Algorithm finds the interior ω(X) in O(P|X|+ U|X|2) time, 
where P is the maximum complexity of computing the initial linkage function values (x,X) 

over all x ∈ X, and U is the maximum complexity of updating the linkage function values. 
2. Antimatroids. There are many equivalent axiomatizations of antimatroids, that may be 

separated into two categories: antimatroids defined as set systems and antimatroids defined 

as languages. An algorithmic characterization of antimatroids based on the language 

definition was introduced in [6]. Another algorithmic characterization of antimatroids that 

depicted them as set systems was developed in [17]. While classical examples of 

antimatroids connect them with posets, chordal graphs, convex geometries, etc., game 

theory gives a framework in which antimatroids are interpreted as permission structures for 

coalitions [4]. There are also rich connections between antimatroids and cluster analysis [20]. 

In mathematical psychology, antimatroids are used to describe feasible states of knowledge 

of a human learner [12]. 
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Definition 22 [16]A non-empty set system (E, ) is an antimatroid if 
(A1) (E, ) is an accessible set system 

(A2) for all X, Y ∈ , and X Y, there exist an x ∈ X − Y such that Y ∪ x ∈ . 
It is easy to see that the chain property follows from (A2), but these properties are not 
equivalent. 
Proposition 23 [5][16]For an accessible set system (E, ) the following statements are equivalent: 
(i) (E, ) is an antimatroid 

(ii)  is closed under union (X, Y ∈  ) ⇒X ∪ Y ∈ ). 
Therefore an antimatroid is a join-semilattice that includes the empty set. The interior 

operator ω defined by (12) returns for each set X ⊆ E the maximal feasible subset called the 
basis of X. 
Since an antimatroid (E, ) satisfies the chain property, to find ω(X), one can build the chain 

∅ ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xm = ω(X) belonging to . 
Antimatroid Interior Algortihm(X, ) 

1. A = ∅ 

2. Find x ∈ X - A, such that A ∪ x ∈ S  
    if no such x exists, then stop and return A 

3. Set A = A ∪ x and go to 2. 

The Antimatroid Interior Algorithm returns the basis ω(X) for each set X ⊆ E that 
immediately follows from the chain property. 

Let an antimatroid (E, ) be given by a membership oracle which for each set A ⊆ E decides 

whether A ∈  or not. Then the Antimatroid Interior Algorithm finds the interior of a set in 

at most k(k + 1)/2 oracle calls, where k = |X|. Thus the complexity of interior construction is 

O(|X|2θ), where θ is the complexity of the membership oracle. 

Consider another way to define antimatroids. Let P = {x1 < x2 < ... < xn} be a linear order on E. 

Define 

 

It is easy to see that (E,DP ) is an antimatroid. 
Let (E, 1) and (E, 2) be two antimatroids. Define 

 

Then (E, 1 ∨ 2) is also an antimatroid [16]. 
Every antimatroid can be represented as a join of a family of its maximal chains. Hence, each 

antimatroid may be defined by a set T of linear orders as 

 
(13)

By analogy with convex realizers of convex geometries [10] the set T is called a realizer. 

Thus, if {P1, P2, ..., Pk} is a realizer of (E, ), then each element of  is a join of elements in 

. Note, that each  

Since each (E,  ) is an antimatroid , there are k interior operators , where ωP(X) = {y ∈ 

E : y ≤P min }, i.e., let P = {x1 < x2 < ... < xn} and a minimal element of  with respect to the 

order P be xi = min , then ωP (X) = {x1, x2, ..., xi−1}. 
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Proposition 24  
 

Proof. Let A = ∪P∈T ωP (X). Since for each P ∈ T, ωP (X) ⊆ X and ωP (X) ∈ , then ωP (X) ⊆ 

ω(X), which implies A ⊆ ω(X). Conversely, from (13) ω(X) = ∪P∈TXP , where XP ∈ DP. Since 

ω(X) ⊆X implies XP ⊆ X for all P ∈ T, then XP ⊆ ωP (X) and so ω(X) ⊆ A.   ■ 
Let an antimatroid (E, ) be given by a realizer T = {P1, P2, ..., Pk}, then the following 
algorithm builds the interior set using Proposition 24. 
Ordering Interior Algorithm(X, ) 

1. For i = 1 to k do 
   1.1 build  

2. Return  

A straightforward implementation of the Ordering Interior Algorithm runs in O(k|E|), 
where k is the cardinality of a realizer. 

5. Ortholog clustering 

This section deals with applications of quasi-concave functions to clustering in 
bioinformatics. We concentrate on the one of the problem of comparative genomics. 
Comparative genomics is a field of biological research in which the genome sequences of 
different species are compared. Although living creatures look and behave in many 
different ways, all of their genomes consist of DNA, the chemical chain that includes the 
genes that code for thousands of different kinds of proteins. Thus, by comparing the 
sequence of the human genome with genomes of other organisms, researchers can identify 
regions of similarity and difference. This information can help scientists better understand 
the structure and function of human genes and thereby develop new strategies to combat 
human disease. Comparative genomics also provides a powerful tool for studying 
evolutionary changes among organisms. 
A fundamental problem in comparative genomics is the detection of genes from different 
organisms that are involved in similar biological functions. This requires identification of 
homologous genes that are similar to each other because they originated from a common 
ancestor. Such genes are called orthologs [13]. 
We describe an ortholog clustering method where we require that any sequence in an ortholog 
cluster has to be similar to other sequence from other genomes in that ortholog cluster. 

5.1 Ortholog detection using multipartite graph clustering 
The input for the ortholog clustering problem is a set of genetic sequences along with 
information about the organisms they belong to. The goal is to find similar sequences from 
different organisms. The ortholog detection problem is complicated due to the presence of 
another type of very similar sequences in the same organism. These sequences, called 
paralogs, are result of duplication events when a gene in an organism is duplicated to occupy 
two different positions in the same genome. Although both types of genes are similar, only 
orthologs are likely to be involved in the same biological role. So, for detecting orthologs it is 
critical to focus on the similarities between genes from different organisms while ignoring 
the similarities between genes within an organism. 
The requirement of selectively ignoring gene similarities for paralogous sequences can be 
conveniently represented in a multipartite graph. A graph is a multipartite if the set of 
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vertices in the graph may be divided into non-empty disjoint subsets, called parts, such that 
no two vertices in the same part have an edge connecting them. We use a multipartite 
graph, where different genomes correspond to different parts and the genes in a genome 
correspond to vertices in a part. 
Another specific problem in finding ortholog clusters is that orthologous genes from closely 
related organisms will be much more similar than those from distantly related organisms. 
Fortunately, we often have estimates of evolutionary relationships between the organisms 
that define a hierarchical graph over the partite sets. Using this evolutionary graph, called a 
phylogenetic tree, we can correct the observed gene similarities by scaling up the similarities 
between the orthologs from distantly related organisms. 
Consider the ortholog clustering problem with k different genomes, where the genome l, 
represented by Vl (l = 1, 2, ...k), contains nl genes. Then, the similarity relationships between 
genes from different genomes can be represented by an undirected weighted multipartite 

graph G = (V,E,W), where , every set Vl contains nl vertices corresponding to nl 

genes, and  (i, j = 1, 2, ..., k) is a set of weighted edges representing 

similarities between genes. The example of a multipartite graph is illustrated in Figure 3 (a). 
The relationship between these genomes is given by the phylogenetic tree relating the 
species under study (see Figure 3 (b)). 
 

 
                                        (a)                                                                               (b) 

Fig. 3. Multipartite graph (a) and phylogenetic tree (b). 

We consider an ortholog cluster as a largest subgraph with the highest density. For finding 
an ortholog cluster we assign a score F(H) to any subset H of V. A score function F denotes a 
measure of proximity among genes in H. Then an ortholog cluster H* is defined as the 
subset with the largest score value (a maximizer of F). To build a score function F(H) we use 
Definition 6 that is based on using a linkage function π(i,H) which measures the degree of 

similarity of the gene i ∈ H to other genes in H. 
Our linkage function considers the sequence similarity between genes within the ortholog 
cluster, their relationship to genes outside the cluster, and the phylogenetic distance 
between the corresponding genomes. 

We require that H contains at least two genomes. So, let , where Hl is the 
subset of genes from Vl present in H. If mij ≥ 0 is the similarity value between gene i from 
genome g(i) and gene j from another genome g(j), and p(g(i), g(j)) represents the distance 
between the two genomes, then the linkage function is defined as 

 
(14)
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For each part Vl ≠ g(i) the term  aggregates the similarity values between the genes i 

and all other genes in the subset Hl, while the second term, mij, estimates the 

relationship between gene i and genes from genome l that are not included in Hl. A large 
positive difference between two terms ensures that the gene i is highly similar to genes in Hl 

and at the same time very dissimilar from the genes not included in Hl. From a clustering 
point of view, this ensures large values of intra-cluster homogeneity and inter-cluster 
separability for extracted cluster. 
The scaling term p(g(i),l) is used for correcting the observed sequence similarities by 
magnifying the sequence similarities corresponding to genomes which diverged in ancient 
times. Given the phylogenetic tree relating the species under study, the distance p(g(i), g(j)) 
between genomes g(i) and g(j) is defined as the height, hg(i),g(j), of the subtree rooted at the 
last common ancestor of these genomes. When the species are closely related, a function that 
depends on hg(i),g(j), but grows slower will better model the distance between the species. 
Choosing an appropriately growing function is critical because a faster growing function 
will have the undesirable effect of clustering together sequence from distance species but 
leaving out the sequence from closely related species. So, in this case the distance p(g(i), g(j)) 
may be defined as (1 + log2 hg(i),g(j)). 
It is easy to verify that function π defined in (14) is monotone. Firstly note that the distance 
p(g(i), g(j)) ≥ 0 has no effect on the monotonicity. Consider the case when H is extended by 

some gene p. If i ∈ g(p), then π(i,H ∪ p) = π(i,H), otherwise π(i,H ∪ p) − π(i,H) = 2p(g(i), 
g(p))mip ≥ 0 
So, the function  is quasi-concave and we can use the Chain 

Algorithm to find the orthogonal cluster. 

5.2 Analysis and implementation 
The performance of the Chain Algorithm depends on the type of data structure one chooses 
to maintain the set of linkage function values. In Example 10 the total time required for 

straightforward implementation of the Chain Algorithm is O(|V |2). Here we build the 
efficient data structure that enables us to reduce the run-time of the algorithm. There are 
three operation that are performed at each iteration of the algorithm. 
i. find-min - this operation performs in Step 3.1 of the Chain Algorithm where the value 

F(Γi) is determined. 
ii. delete-min - this operation performs in Step 3.2 of the Chain Algorithm when the Level-

Set Algorithm finds set Iu(A) of elements with the minimum value of function π and 
removes this set from the set A. 

iii. decrease-key - this operation performs inside the Level-Set Algorithm. Deleting set Iu(A) 
entails updating the linkage function values for all neighbors of elements from this set. 

If |V | elements are organized into a Fibonacci heap [14], we can perform a delete-min 
operation in O(log V ) amortized time and a decrease-key operation in O(1) amortized time, 
while a find-min operation can be done in constant time [8]. 
Proposition 25 [33] With a Fibonacci heap, the Chain Algorithm finds an ortholog cluster in time 
O(|E| + |V | log |V |). 

Proof. The initialization of the algorithm includes computing π(i, V ) for each i ∈ V. The 
value π(i, V) depends on the weights on edges incident to i and on the relationship of the 
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genome g(i) with other genomes. We assume that the number of genomes is very small 
compared to the number of genes, i.e., k << n. Thus computing the initial linkage function 
values for all the vertices takes O(|E|). 
We use Fibonacci heap to store vertices according to their linkage function values. So, the 
value F(Γi) can be found in O(1) time, and since each deletemin operation takes O(log V ) 
amortized time, the total time for all calls to delete-min is O(V log V ). 
Each deleting of an element with minimum value of linkage function π leads to updating the 
linkage function values for all neighbours of the element. Due to the additive property of the 
linkage function (14), the update can be carried out in time O(1) by subtracting the 
corresponding value 2p(g(i), g(p))mip due to the deleted edge (i, p). 
Decreasing the value of function π involves an implicit decrease-key operation, which can be 
implemented in O(1) amortized time. As each edge is deleted once, all linkage function 
updates together require O(|E|) time. Thus, the algorithm runs in O(|E| + |V | log |V |) 
time. ■ 
The proposed ortholog clustering method was applied to the protein sequences from 
complete genomes of seven eukaryotes present in the eukaryotic orthologous groups [33]. 
The analysis of these results shows that clusters obtained using proposed method show a 
high degree of correlation with the manually curated ortholog clusters. 

6. Conclusions 

In this article, we have investigated monotone linkage functions defined on convex 
geometries, antimatroids, and semilattices in general. It has been shown that the class of 
functions defined as minimum values of monotone linkage functions has close relationship 
with the class of quasi-concave set functions. Quasi-concave functions defined on 
semilattices, antimatroids and convex geometries determine special substructures of these 
set families. This structures allow building efficient algorithms that find minimal sets on 
which values of quasi-concave functions are maximum. 
The mutual critical step of these algorithms is how to describe the set closure operator. If an 
efficient algorithm of the closure construction exists it causes the optimization algorithm to 
be efficient as well. On the other hand, we think that the closure construction problem is 
interesting enough to be investigated separately. Thus, we suppose that for an arbitrary 
semilattice the problem of closure construction has exponential complexity. 
An interesting direction for future work is to develop our methods for relational databases, 
where a polynomial algorithm for closure construction is known [3]. 
We have considered some applications of quasi-concave functions to clustering a structured 
data set, where together with pair-wise similarities between objects, we are also given 
additional information about objects organization. 
We focused on a simple structure - a partition model of data where the objects are a priori 
partitioned into groups. While clustering such data, we also considered an additional 
requirement of being able to differentiate between pairwise similarities across different 
partite sets. Existing clustering methods do not solve this problem, since they are limited to 
finding clusters in a collection of isolated objects. 
The requirement of differentially treating pair-wise relationships across different groups 
was modeled by a multipartite graph along with a hierarchical relationship between these 
groups. The problem was reduced to finding the cluster (subgraph) of the highest density in 
the multipartite graph. 
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This problem is usually formulated as finding the maximum weight multipartite clique. 
However, no efficient procedure exists for solving this problem. Due to this, clusters are 
often modeled as quasi-cliques or dense graphs. 
Traditionally, quasi-cliques are defined, using a threshold, as a relaxation of a complete 
subgraph - the relaxation can be on the degree of a vertex or on the total number of edges in 
the quasi-clique. In contrast to traditional quasi-clique definition, our definition does not use 
any threshold parameters. 
The proposed multipartite graph clustering method was successfully applied to the ortholog 
clustering problem. It may be also adapted to other clustering problem both in comparative 
genomics and in computer vision [35]. 
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