
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

25

Quasi-Concave Functions and
Greedy Algorithms

Yulia Kempner1, Vadim E. Levit2 and Ilya Muchnik3

1 Holon Institute of Technology,
2 Ariel University Center of Samaria,

3 Rutgers - the State University of New Jersey,
1,2Israel

3USA

1. Introduction

Many combinatorial optimization problems can be formulated as: for a given set system over

E (i.e., for a pair (E,) where ⊆ 2E is a family of feasible subsets of finite set E), and for a
given function F : →R, find an element of for which the value of the function F is
minimum or maximum. In general, this optimization problem is NP-hard, but for some
specific functions and set systems the problem may be solved in polynomial time. For
instance, greedy algorithms may optimize linear objective functions over matroids [11] and
Gaussian greedoids [5], [15], [32], while bottleneck objective functions can be maximized
over general greedoids [16]. A generalization of greedoids in the context of dynamic
programming is discussed in [1] and [2].
Another example is about set functions defined as minimum values of monotone linkage
functions. These functions are known as quasi-concave set functions. Such a set function can
be maximized by a greedy type algorithm over the family of all subsets of E
[19],[24],[29],[30],[34], over antimatroids and convex geometries [17], [20], [25], join-
semilattices [28] and meet-semilattices [21]. A relationship was also established between
submodular and quasi-concave functions [28] that allowed to build series of branch and
bound procedures for finding maximum of submodular functions.
Originally, quasi-concave set functions were considered [23] on the Boolean 2E

 (1)

In this work we extend this definition to various set systems. One of the natural extensions

is a join-semilattice. Here, ⊆ 2E is a join-semilattice if it is closed under union, i.e., A∪B ∈
for each A,B ∈ .
Another direction of our research is to adapt the definition of the quasi-concave set
functions to set systems that are not necessarily closed under union. Let E be a finite set, and
a pair (E,) be a set system over E. A minimal feasible subset of E that includes a set X is

called a cover of X. We will denote by C(X) the family of covers of X. Then the inequality (1)

turns into the following.

Definition 1 A function F defined on a set system (E,) is quasi-concave if for each X, Y ∈ , and

Z ∈ C(X ∪ Y) O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
ch

w
eb

.o
rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

462

 (2)

If a set system is closed under union, then the family of covers C(X ∪ Y) contains the unique

set X∪Y , and the inequality (2) coincides with the original inequality (1).
This chapter is organized as follows. Section 1 contains an extended introduction. Section 2
gives basic information about monotone linkage functions. We show that for a number of
combinatorial structures the class of functions defined as the minimum values of monotone
linkage functions coincides with the class of quasi-concave set functions. Section 3 deals
with the construction of efficient algorithms for maximizing quasi-concave functions which
are associated with monotone linkage functions. It is shown that properties of combinatorial
structures affect their corresponding optimization algorithms. Section 4 deals with
applications to clustering in bioinformatics. In this section we use a particular class of quasi-
concave set functions as natural criteria for cluster analysis. We describe how the Fibonacci
heap structure can dramatically reduce the computational complexity. Section 5 contains
conclusions and directions of future research.

2. Preliminaries

Here we will give definitions of some set properties that are discussed in the following

sections. We will use X ∪ x for X ∪ {x}, and X − x for X − {x}.

A non-empty set system (E,) is called accessible if for each non-empty X ∈ , there exists

an x ∈ X such that X − x ∈ .

For each non-empty set system (E,) accessibility implies that ∅ ∈ .

Definition 2 A closure operator, : 2E→2E, is a map satisfying the closure axioms:

Definition 3 The set system (E,) is a closure system if it satisfies the following properties

Let a set system (E,) be a closure system, then the operator

 (3)

is a closure operator.
A convex geometries was introduced by Edelman and Jamison [9] as a combinatorial
abstraction of ”convexity”.
Definition 4 [16] The closure system (E,) is a convex geometry if the family satisfies the
following property

 (4)

It is easy to see that property (4) is dual to accessibility. Then, we will call it up-accessibility. If
in each non-empty accessible set system one can reach the empty set ∅ from any feasible set
X ∈ by moving down, so in each non-empty up-accessible set system (E,) the set E may
be reached by moving up.

It is clear that a complement set system (E,) (system of complements), where = {X ⊆ E

: E −X ⊆ }, is up-accessible if and only if the set system (E,) is accessible.

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

463

In fact, accessibility means that for all sets X ∈ there exists a chain ∅= X0 ⊂ X1 ⊂ ... ⊂Xk =

X such that Xi = Xi−1 ∪ xi and Xi ∈ for 0 ≤ i ≤ k, and up-accessibility implies the existence of

the corresponding chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E. Consider a set family for which this chain

property holds for each pair of sets X ⊂ Y .

Definition 5 A set system (E,) satisfies the chain property if for all X, Y ∈ , and X ⊂ Y , there

exists an y ∈ Y − X such that Y − y ∈ . We call the system a chain system.

In other words, a set system (E,) satisfies the chain property if for all X, Y ∈ , and X ⊂ Y,

there exists a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = Y such that Xi = Xi−1 ∪ xi and Xi ∈ for 0 ≤ i ≤ k.
It is easy to see that (E,) is a chain system if and only if (E,) is a chain system as well.

Consider a relation between accessibility and the chain property. If ∅ ∈ , then accessibility

follows from the chain property. In general case, there are accessible set systems that do not

satisfy the chain property (for example, consider E = {1, 2, 3} and = {∅, {1}, {2}, {2, 3}, {1, 2,

3}}) and vice versa, it is possible to construct a set system, that satisfies the chain property

and it is not accessible (for example, let now = {{1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}). In fact, if we

have an accessible set system satisfying the chain property, then the same system but

without the empty set (or without all subsets of cardinality less then some k) is not

accessible, but satisfies the chain property. The analogy statements are correct for up-

accessibility.

Examples of chain systems include convex geometries (see proposition 8) and complement

systems called antimatroids, matroids and all independence systems (matchings, cliques,

independent sets of a graph). Consider a less common example.

Example 6 For a graph G = (V,E), the set system (V,) given by

is a chain system. The example is illustrated in Figure 1.

 (a) (b)

Fig. 1. G = (V,E) (a) and a family of connected subgraphs (b).

To show that (V,) is a chain system consider some A,B ∈ such that A ⊂ B. We are to

prove that there exists an b ∈ B − A such that A ∪ b ∈ . Since B is a connected subgraph,

there is an edge e = (a, b), where a ∈ A and b ∈ B − A. Hence, A ∪ b ∈ .

www.intechopen.com

 Advances in Greedy Algorithms

464

For a set X ∈ , let ex(X) = {x ∈ X : X − x ∈ } be the set of extreme points of X. Originally,

this operator was defined for closure systems [9]. An element e ∈ A was called an extreme

point if e ∉  (A − e). Our definition does not demand the existing of a closure operator, but
when the set system (E,) is a convex geometry ex(X) becomes the set of original extreme
points of a convex set X.

Note, that accessibility means that for each non-empty X ∈ , ex(X) ≠ ∅.

Definition 7 The operator ex : → 2E satisfies the heritage property if X ⊆ Y implies ex(Y) ∩ X ⊆

ex(X) for all X, Y ∈ .
We choose the name heritage property following B. Monjardet [26]. This condition is well-
known in the theory of choice functions where one uses also alternative terms like Chernoff

condition [7] or property α [31]. This property is also known in the form X − ex(X) ⊆Y − ex(Y).

The heritage property means that Y − x ∈ implies X − x ∈ for all X, Y ∈ with X ⊆ Y

and for all x ∈ X.
The extreme point operator of a closure system satisfies the heritage property, but the
opposite statement in not correct. Indeed, consider the following example illustrated in
Figure 2 (a): let E = {1, 2, 3, 4} and

It is easy to check that the extreme point operator ex satisfies the heritage property, but the

set system (E,) is not a closure system ({2, 4}∩{3, 4} ∉). It may be mentioned that this set
system does not satisfy the chain property. Another example (Figure 2 (b)) shows that the
chain property is also not enough for a set system to be a closure system. Here

and the constructed set system satisfies the chain property, but is not a closure set ({1, 3} ∩

{3, 4} ∉ F).

 (a) (b)

Fig. 2. Heritage property (a) and chain property (b).

Proposition 8 A set system (E,) is a convex geometry if and only if

(1) ∅ ∈ , E ∈

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

465

(2) the set system (E,) satisfies the chain property
(3) the extreme point operator ex satisfies the heritage property.

Proof. Let a set system (E,) be a convex geometry. Then the first condition automatically
follows from the convex geometry definition. Prove the second condition. Consider X, Y ∈

, and X ⊂ Y. From (4) it follows that there is a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E such that Xi =

Xi−1 ∪ xi and Xi ∈ F for 0 ≤ i ≤ k. Let j be the least integer for which Xj ⊇ Y . Then Xj−1 Y ,
and xj ∈ Y . Thus, Y − xj = Y ∩ Xj−1 ∈ . Since xj ∉ X, the chain property is proved. To prove
that ex(Y) ∩ X ⊆ ex(X), consider p ∈ ex(Y) ∩ X, then Y − p ∈ and X ∩ (Y − p) = X − p ∈ ,
i.e., p ∈ ex(X).
Conversely, let us prove that the set system (E,) is a convex geometry. We are to prove
both up-accessibility and that X, Y ∈ implies X ∩ Y ∈ . Since E ∈ , up-accessibility
follows from the chain property. Consider X, Y ∈ . Since E ∈ , the chain property
implies that there is a chain X = X0 ⊂ X1 ⊂ ... ⊂ Xk = E such that Xi = Xi−1 ∪ xi and Xi ∈ for

0 ≤ i ≤ k. If j is the least integer for which Xj ⊇ Y , then Xj−1 Y , and xj ∈ Y . Since xj ∈ ex(Xj),
we obtain xj ∈ ex(Y). Continuing the process of clearing Y from the elements that are absent
in X, eventually we reach the set X ∩ Y ∈ . ■

3. Monotone linkage functions

Monotone linkage functions were introduced by Joseph Mullat [29].

A function π: E × 2E → R is called a monotone linkage function if

 (5)

For each X ⊆ E define function F : (2E − ∅) → R as follows

(6)

Example 9 Consider a graph G = (V,E), where V is a set of vertices and E is a set of edges. Let

degH(x) denote the degree of vertex x in the induced subgraph H ⊆ G. It is easy to see that function
π(x,H) = degH(x) is monotone linkage function and function F(H) returns the minimal degree of
subgraph H.
Example 10 Consider a proximity graph G = (V,E,W), where wij represents the degree of similarity
of objects i and j. A higher value of wij reflects a higher similarity of objects i and j. Define a monotone

linkage function π(i,H)

that measures proximity between subset H ⊆V and their element

i. Then the function can be interpreted as a measure of density of the set H.

It was shown [23], that for every monotone linkage function π, function F is quasi-concave

on the Boolean 2E. Moreover, each quasi-concave function may be defined by a monotone
linkage function. In this section we investigate this relation on different families of sets.
For any function F defined on a set system (E,), we can construct the corresponding
linkage function

(7)

www.intechopen.com

 Advances in Greedy Algorithms

466

where [x,X] = {A ∈ : x ∈ A and A ⊆ X}.

The function πF is monotone. Indeed, if x ∈ X and [x,X] ≠ ∅, then X ⊆ Y implies [x,X] ≠ ∅
and

If x ∈ X and [x,X] = ∅, then X ⊆ Y implies

It is easy to verify the remaining cases.
In the sequel we will consider various types of set systems. At first, we investigate the set
systems closed under union, i.e., we study quasi-concave functions on join-semilattices.
Theorem 11 A set function F defined on a join-semilattice is a quasi-concave function if and only

if there exists a monotone linkage function π such that for each X ∈ − ∅.

Proof. If a monotone linkage function π is given, then F(X∪Y) = π(x*,X∪Y), where

 1. Without loss of generality, assume that x* ∈ X. Thus,

Conversely, if we have a quasi-concave set function F, we can define the monotone linkage
function πF (x,X) using the definition 7. Let us denote

, and prove

that F = G on − ∅.

Now, for each X ∈ − ∅

where

On the other hand,

where Ax is a set from [x,X] on which the value of the function F is maximal i.e.,

From quasi-concavity of F it follows that

Therefore, G(X) ≤F(X), and, hence, ■

Now, consider set systems that are not closed under union.

1
 argmin f(x) denote the set of arguments that minimize the function f.

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

467

Let (E,) be an accessible set system. Denote + = − ∅. Then, having the monotone

linkage function π , we can construct for all X ∈ + the set function

It is easy to see that

 (8)

Indeed, for each X ∈ +

where

The following theorem finds conditions on the set system (E,) and on the function F

ensuring that the function GF coincides with F.

Theorem 12 [18] Let (E,) be an accessible set system. Then for every quasi-concave set function

F : + → R

if and only if the set system (E,) satisfies the chain property.
Thus, for an accessible set system satisfying the chain property each quasi-concave function

F determines a monotone linkage function πF , and a set function defined as a minimum of

this monotone linkage function πF coincides with the original function F.

As examples of such set systems may be considered greedoids [16] that include matroids

and antimatroids, and antigreedoids including convex geometries. By an antigreedoid we

mean a set system (E,) such that its complement set system (E,) is a greedoid.

Note, that if F is not quasi-concave, the function GF does not necessarily equal F. For

example, let = {∅, {1}, {2}, {1, 2}} and let

The function F is not quasi-concave, since F({1}∪{2}) < min(F({1}), F({2})). It is easy to check

that here GF ≠ F, because πF (1, {1, 2}) = πF (2, {1, 2}) = 1, and so GF ({1, 2}) = 1. Moreover, the

function GF is quasi-concave. To understand this phenomenon, consider the opposite

process.

Let (E,) be an accessible set system. If a monotone linkage function π : E × 2E → R is given,

we can construct the set function Fπ :
+ → R:

(9)

To extend this function to the whole set system (E,) define

www.intechopen.com

 Advances in Greedy Algorithms

468

Theorem 13 [18] Let (E,) be an accessible set system. Then the following statements are equivalent

(i) the extreme point operator ex : → 2E satisfies the heritage property.
(ii) for every monotone linkage function π the function Fπ is quasi-concave.

Thus, if a set system (E,) is accessible and the operator ex satisfies the heritage property,
then for each set function F, defined on (E,), one can build the quasi-concave set function
GF that is an upper bound of the original function F. If, in addition, the set system has the
chain property, the class of set functions defined as the minimum values of monotone
linkage functions coincides with the class of quasi-concave set functions.
Corollary 14 A set function F defined on a convex geometry (E,) is quasi-concave if and only if

there exists a monotone linkage function π such that for each X ∈ −∅.

Another approach to the result of Theorem 13 is in extending the function F to the Boolean

2E by building a new linkage function πex.
Let (E,) be an accessible set system and π be a monotone linkage function. Define

(10)

where

Theorem 15 [25] Let (E,) be an accessible set system and the extreme point operator ex satisfies
the heritage property. If function π is a monotone linkage function, then

(i) function πex is also monotone and
(ii) its function coincides with the function Fπ(X) =

 for each X ∈ −∅.

Now, Theorem 13 immediately follows from the properties of quasi-concave functions on
the Boolean [23].
Remark 16 [25] Any extreme point operator ex satisfying the heritage property may be represented
by some monotone linkage function π in the following way

 (11)

and vice versa, if the linkage function π is monotone, the operator ex defined by (11) satisfies the
heritage property.

4. Maximizers of quasi-concave functions

Consider the following optimization problem: given a monotone linkage function π, and an

accessible set system (E,), find a feasible set A ∈ +, such that Fπ(A) = max{Fπ(B) : B ∈ +},
where the function Fπ is defined by (9). From quasi-concavity of the function Fπ it follows
that the set of optimal solutions is a join-semilattice with a unique maximal element. Our
goal is to find this maximal element, which we call the ∪ − maximizer. For instance, for the
functions defined in Example 9 ∪ − maximizer is the largest subgraph with the maximum
minimum degree. In Example 10 we look for the largest subset with the highest density.
A greedy-type algorithm for finding the ∪ − maximizer on the Boolean was constructed by
Mullat [29] and has been effectively applied in data mining [22], biology [33], and for
computer vision [35].
Here we want to investigate the more general set systems.

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

469

4.1 Chain algorithm on convex geometries

A convex geometry is a closure system, and so closed under intersection. Hence, each set X⊆
E has an unique cover which is a closure of X, i.e.,  (X) and the family of feasible sets F of a

convex geometry (E,) form a join-semilattice L , with the lattice operation: X ∨ Y =  (X

∪Y). Hence, for convex geometries the inequality (2) reads as follows F(X ∨ Y) ≥ min{F(X),

F(Y)} for each X, Y ∈ L .
Consider the special structure that quasi-concave function Fπ determines on a convex
geometry. It has been already noted that the family of feasible sets maximizing function Fπ is
a join-semilattice with a unique maximal element. Denote this family by 0, and let a0 be the
value of function Fπ on the sets from 0. We denote by 1 the family of sets, which

maximize function Fπ over + − 0, and by a1 the value of function Fπ on these sets.

Continuing this process, we have , where t + 1 is a number of different values

of function Fπ. It is easy to see that is a subsemilattice of L , where j = {X ∈
+ : Fπ(X) ≥ a j}. We call these subsemilattices upper level semilattices. Denote by K j

 the

maximal element - 1 of the upper level semilattice j. Since i ⊆ i+1, we obtain K0 ⊆ K1 ⊆ ...

⊆ Kt, where Kt is 1 of the join-semilattice L , i.e., Kt
 = E.

Let K0 = H0 ⊂ H1 ⊂ ... ⊂ Hr = Kt be the subchain of all different 1-s of the chain K0 ⊆ K1 ⊆ ... ⊆

Kt. Thus, to find a ∪ − maximizer, we have to find just H0. In fact, we construct an algorithm

that finds the complete chain H0 ⊂ H1 ⊂ ... ⊂ Hr = E of different 1-s. This chain of ”local
maximizers”2 has a number of interesting applications [24].
For any real number u we define the u-level set of a family as

It is clear that if Fπ is quasi-concave, then the u-level set of a join-semilattice is a join-

semilattice as well. The input of the following algorithm is a threshold u and a set X ∈ ,

while it returns 1 of non-empty (+∩[∅,X])u. The algorithm is motivated by procedures
from [28] and [29].
The Level-Set Algorithm (u,X)

1. Set A = X

3. While A ≠ ∅ do

 3.1 Set Iu(A) = {x ∈ ex(A) : π(x,A) ≤ u}

 3.2 If Iu(A) = ∅ then stop and return A
 3.3 Set A = A − Iu(A)
4. Return A.

Theorem 17 Let (E,) be a convex geometry. Then, for every monotone linkage function π and the
corresponding function the Level-Set Algorithm (u,X) returns 1 of

non-empty semilattice (+ \ [∅,X])u and returns ∅ when this u-level set is empty.
Proof. At first, note that Since any convex geometry is

closed under intersection, then all sets generated by the algorithm belong to the convex
geometry.

2 Indeed, for each A ∈ +, and for each null Hl, if A H
l then F(A) < F(Hl).

www.intechopen.com

 Advances in Greedy Algorithms

470

Consider the case when the algorithm returns A ≠ ∅. Since Iu(A) = ∅, then Fπ(A) > u, i.e. A ∈

(+ ∩ [∅,X])u. It remains to be proven that A is the null of the u-level set, i.e., that B ∈ (+ ∩

[∅,X])u implies A ⊇ B. Suppose the opposite was true, and let X = X0
 ⊃ X1

 ⊃ ... ⊃ Xk = A be a

sequence of sets generated by the algorithm, where Xi+1
 = Xi − Iu(Xi) for 0 ≤ i < k. Since B ∈

(+ ∩ [∅,X])u, then X ⊇ B. On the other hand, since A B, there exists the least integer j for

which Xj B. Then Xj−1
 ⊇ B, and there is xj ∈ Iu(Xj−1) that belongs to B. So, Xj−1

 ⊇ B , xj ∈ B

and xj ∈ ex(Xj−1), then from heritage property it follows that xj ∈ ex(B). Hence, monotonicity

of function π implies F(B) ≤ π(xj ,B) ≤ π (xj ,Xj−
1) ≤ u, a contradiction.

If the algorithm returns A = ∅, then (+ ∩ [∅,X])u = ∅. Assuming the opposite, then there is

a non-empty set B ∈ (+ ∩ [∅,X])u. By analogy, with the first part of the proof, we obtain
that Fπ(B) ≤ u, a contradiction. ■
The following Chain Algorithm finds the chain of all local maximizers for a non-empty join-
semilattice L .
The Chain Algorithm (E, π,)

1. Set Γ0 = E
2. i = 0

3. While Γi ≠ ∅ do
 3.1 u = F(Γi)
 3.2 Γi+1 = Level-Set(u, Γi)
 3.3 i = i + 1

4. Return the chain Γ0 ⊃ Γ1 ⊃ ... ⊃ Γi−1.
Theorem 18 Let (E,) be a convex geometry. Then, for every monotone linkage function π and the

corresponding function the Chain Algorithm returns the chain Γ0 ⊃

Γ1 ⊃ ... ⊃ Γp, which coincides with H0
 ⊂ H1

 ⊂ ... ⊂ Hr
 - the chain of all different 1-s of the upper level

semilattices.
Proof. First, prove that for each l = 0, 1, ..., p, Γl is 1 of some upper level semilattice. It is clear,

that if Fπ(Γl) = aj , then Γl ∈ Lj . To prove that Γl is 1 of Lj , we have to show that for each A ∈
+, A Γl implies Fπ(A) < Fπ(Γl). Suppose that the opposite is true, and let k be the least

integer for which there exists A ∈ +, such that A Γk and Fπ(A) ≥ Fπ(Γk). Note that k > 0,

because Γ0
 = E is 1 of join-semilattice L , and so A Γ0

 never holds. The structure of the

Chain Algorithm implies Fπ(Γk) > Fπ(Γk−1). Hence Fπ(A) > Fπ(Γk−1) and, consequently, A ⊆ Γk−1.

Thus A ∈ (+ ∩ [∅,Γk−1])u, where u = Fπ(Γk−1). On the other hand, from Theorem 17 it follows

that Γk is 1 of (+ ∩ [∅,Γk−1])u, i.e., A ⊆ Γk, a contradiction.

It remains to show that for each Hi
 there exists l ∈ {0, 1, ...p} such that Γl = Hi. Assume the

opposite, and let Hj
 be a maximal 1 for which the statement is not correct. Since Hr

 = Γ0, then

j < r, i.e., there exists l ∈ {0, 1, ...p} such that Hj+1 = Γl. From Fπ(H j) > Fπ(H j+1) = Fπ(Γl) and H j
 ⊂

H j+1 = Γl, it follows that H j
 ∈ (+ ∩ [∅,Γl])u, where u = Fπ(Γl). Thus H j ⊆ Γl+1, where Γl+1

 is 1 of

(+ ∩ [∅,Γl])u. On the other hand, since Γl+1
 is 1 of some upper level semilattice and H j

 is the

closest 1 to H j

+1, then Γl+1

 ⊆ H j
 ⊆ H j

+1 = Γl. Hence H j

 = Γl+1, a contradiction. ■

Corollary 19 Let (E,) be a convex geometry. Then, for every monotone linkage function π, the

Chain Algorithm finds a ∪ − maximizer of the quasi-concave function

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

471

Actually, a convex geometry is the unique structure on which the Chain Algorithm
produces optimal solutions. To prove it we have to show that for each set system that is not
a convex geometry there exists a monotone linkage function for which the Chain Algorithm
does not find the ∪ − maximizer. It is obvious that if a set system is not up-accessible, then
the Chain Algorithm may not reach the optimal solution.
Now, consider an up-accessible set system (E,) that does not satisfy the heritage property,
i.e., there exists A,B ∈ such that A ⊂ B, and there is a ∈ A such that B − a ∈ and A − a ∉ .
Up-accessibility of the set system (E,) implies that there exists a sequence of feasible sets

where Bi = Bi−1 − ai for 1 ≤ i ≤ p, and ap+1 = a. Define a linkage function π on pairs (x,X) where
X ⊆ E, X ≠ ∅ and x ∈ X:

It is easy to verify that function π is monotone. Then the Chain Algorithm generates only
one set E, on which the value of the function Fπ is equal to 1, while Fπ(A) = 2. Thus, the Chain
Algorithm does not find a feasible set that maximizes the function Fπ. So, we have the
following theorem.
Theorem 20 Let (E,) be an accessible and an up-accessible set system. Then the following
statements are equivalent

(1) the set system (E,) is a convex geometry

(2) The Chain Algorithm finds a ∪ − maximizer of the quasi-concave function

for every monotone linkage function π
The Chain Algorithm is of greedy type, since it is based on the best choice principle: it
chooses on each step the extreme elements (with respect to the linkage function) and, in
such a way, approaches the optimal solution. The run-time of the algorithm depends largely
on the efficiency of linkage function computation. For instance, in Example 10 the
complexity of computing the initial linkage function values π(x, V) for all the vertices in V is
O(|E|), where E is a set of edges. For straightforward implementation the time required for
finding the minimum value is O(|V |). After deleting the vertex with minimum value of π,
the time required for updating the linkage function values for all the neighboring vertices of
the deleted vertex is O(|V |), since the update can be carried out in time O(1) by subtracting
the corresponding weight wij. So, the total time required for straightforward implementation

of the Chain Algorithm in Example 10 is O(|E| + |V |2) = O(|V |2).
In general case, the Chain Algorithm finds the ∪ − maximizer of a convex geometry (E,F) in

O(P|E|+U|E|2) time, where P is the maximum complexity of computing the initial linkage
function values π(x,E) over all x ∈ E, and U is the maximum complexity of updating the
linkage function values.
For some special linkage functions the running time can be improved by using more
efficient data structure that will be discussed in the next section.

4.2 Chain algorithm on join-semilattices

Now we have a monotone linkage function π, and a join-semilattice ⊆ 2E, and we are
interested in finding a maximal maximizer of the function Fπ defined as F(X) = minx∈X π(x,X)
according to (6).

www.intechopen.com

 Advances in Greedy Algorithms

472

Since a join-semilattice should not to be up-accessible, we have to find another way to reach

each feasible set.

Consider the following operator:

(12)

If is a join-semilattice, ω(X) is the largest set in contained in X (if such a set exists). In

other words, ω (X) is the 1 of the subsemilattice [∅,X] if the subsemilattice is not empty,

and ∅, otherwise.

Note, that a join-semilattice should not have the minimum element, and we use the

element ∅ only to complete the definition of the operator ω.

The operator ω is called interior (dual to closure) operator:

(i) ω (X) ⊆ X,
(ii) ω (X) = ω (ω (X)),

(iii) X ⊆ Y ⇒ ω (X) ⊆ ω (Y).
ω (X) is an interior of X. The fixed points of ω (X = ω (X)) are called the open sets of ω and

forms the dual closure system [27]. A set system (E,) is a dual closure system if and only if

the complement set system (E,) is a closure system. If is a join-semilattice and the

operator ω is defined by (12), then the family of open sets coincides with , excluding,

possible, the empty set.

We assume that for each X ⊆ E a procedure for finding interior ω (X) is available. Later we

will consider some examples of procedures building interior efficiently.

From quasi-concavity of function Fπ it follows that the set of maximizers is a join-semilattice

with a unique maximal element. It is easy to see that the structure of upper level semilattices

investigated for convex geometries holds for join-semilattice as well. To obtain the chain H0

⊂ H1 ⊂ ... ⊂ H r = E of different 1-s we use the Chain Algorithm with the following

transformation: instead of assigning some set we replace it by its interior.

The Level-Set Algorithm-JS (u,X)
1. Set A = ω (X)

3. While A ≠ ∅ do

 3.1 Set Iu(A) = {x ∈ A : π(x,A) ≤ u}

 3.2 If Iu(A) = ∅ then stop and return A
 3.3 Set A = ω (A − Iu(A))
4. Return A.

The Chain Algorithm-JS (E, π,F)
1. Set Γ0 = ω (E)
2. i = 0

3. While Γ i ≠ ∅ do
 3.1 u = F(Γ i)

 3.2 Γ i+1 = Level-Set(u, Γ i)
 3.3 i = i + 1

4. Return the chain Γ 0 ⊃ Γ 1 ⊃ ... ⊃ Γ i−1.
Similarly with the proof of Theorem 18 we obtain the following result.

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

473

Theorem 21 Let ⊆ 2E
 be a non-empty join-semilattice. Then, for every monotone linkage function

π and the corresponding function the Chain Algorithm-JS returns the chain

Γ0
 ⊃ Γ1

 ⊃ ... ⊃ Γp, which coincides with H0 ⊂ H1 ⊂ ... ⊂ Hr
 - the chain of all different 1-s of the upper

level semilattices.
Consider the complexity of the Chain Algorithm-JS. The run-time of the algorithm depends

largely on the efficiency of interior construction. The Chain Algorithm-JS finds the ∪ −

maximizer of a join-semilattice (E,) in O(|E|(P + T + U|E|)) time, where P is the

maximum complexity of computing the initial linkage function values π(x,E) over all x ∈ E,

U is the maximum complexity of updating the linkage function values, and T is the

maximum complexity of interior construction.

4.2.1 Algorithms for interior construction
The efficiency of the interior construction depends on the representation of a join-

semilattice. Here we consider a join-semilattice specified by a quasi-concave function. In

addition, we consider an antimatroid that is a specific case of a join-semilattice.

1. Quasi-Concave constraints. Assume that the family Ω ⊆ 2E of feasible sets is determined

by the following constraints: for each H ∈ Ω , (H) > α, where is a quasi-concave

function defined by a monotone linkage function . It is easy to see that the set Ω is an α-

level set of 2E, i.e., Ω = {X ⊆ E : (X) > α}. Since is a quasi-concave function, the set Ω is a

join-semilattice. The problem is to find interior ω(X) over Ω for every set X ⊆ E, i.e., to find 1

of the non-empty join-semilattice Ω ∩[∅,X]. Note that the Level-Set Algorithm(α,X) enables

us to find 1 of the non-empty join-semilattice (2E ∩[∅,X])α, i.e., ω(X) over Ω. The modified

Level-Set Algorithm is as follows:

Quasi-Concave Interior Algortihm (α,X)
1. Set A = X

3. While A ≠ ∅ do

 3.1 Set Iα(A) = {x ∈ A : (x,A) ≤ α}

 3.2 If Iα(A) = ∅ then stop and return A

 3.3 Set A = A − Iα(A)
4. Return A.

The Quasi-Concave Interior Algorithm finds the interior ω(X) in O(P|X|+ U|X|2) time,
where P is the maximum complexity of computing the initial linkage function values (x,X)

over all x ∈ X, and U is the maximum complexity of updating the linkage function values.
2. Antimatroids. There are many equivalent axiomatizations of antimatroids, that may be

separated into two categories: antimatroids defined as set systems and antimatroids defined

as languages. An algorithmic characterization of antimatroids based on the language

definition was introduced in [6]. Another algorithmic characterization of antimatroids that

depicted them as set systems was developed in [17]. While classical examples of

antimatroids connect them with posets, chordal graphs, convex geometries, etc., game

theory gives a framework in which antimatroids are interpreted as permission structures for

coalitions [4]. There are also rich connections between antimatroids and cluster analysis [20].

In mathematical psychology, antimatroids are used to describe feasible states of knowledge

of a human learner [12].

www.intechopen.com

 Advances in Greedy Algorithms

474

Definition 22 [16]A non-empty set system (E,) is an antimatroid if
(A1) (E,) is an accessible set system

(A2) for all X, Y ∈ , and X Y, there exist an x ∈ X − Y such that Y ∪ x ∈ .
It is easy to see that the chain property follows from (A2), but these properties are not
equivalent.
Proposition 23 [5][16]For an accessible set system (E,) the following statements are equivalent:
(i) (E,) is an antimatroid

(ii) is closed under union (X, Y ∈) ⇒X ∪ Y ∈).
Therefore an antimatroid is a join-semilattice that includes the empty set. The interior

operator ω defined by (12) returns for each set X ⊆ E the maximal feasible subset called the
basis of X.
Since an antimatroid (E,) satisfies the chain property, to find ω(X), one can build the chain

∅ ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xm = ω(X) belonging to .
Antimatroid Interior Algortihm(X,)

1. A = ∅

2. Find x ∈ X - A, such that A ∪ x ∈ S
 if no such x exists, then stop and return A

3. Set A = A ∪ x and go to 2.

The Antimatroid Interior Algorithm returns the basis ω(X) for each set X ⊆ E that
immediately follows from the chain property.

Let an antimatroid (E,) be given by a membership oracle which for each set A ⊆ E decides

whether A ∈ or not. Then the Antimatroid Interior Algorithm finds the interior of a set in

at most k(k + 1)/2 oracle calls, where k = |X|. Thus the complexity of interior construction is

O(|X|2θ), where θ is the complexity of the membership oracle.

Consider another way to define antimatroids. Let P = {x1 < x2 < ... < xn} be a linear order on E.

Define

It is easy to see that (E,DP) is an antimatroid.
Let (E, 1) and (E, 2) be two antimatroids. Define

Then (E, 1 ∨ 2) is also an antimatroid [16].
Every antimatroid can be represented as a join of a family of its maximal chains. Hence, each

antimatroid may be defined by a set T of linear orders as

(13)

By analogy with convex realizers of convex geometries [10] the set T is called a realizer.

Thus, if {P1, P2, ..., Pk} is a realizer of (E,), then each element of is a join of elements in

. Note, that each

Since each (E,) is an antimatroid , there are k interior operators , where ωP(X) = {y ∈

E : y ≤P min }, i.e., let P = {x1 < x2 < ... < xn} and a minimal element of with respect to the

order P be xi = min , then ωP (X) = {x1, x2, ..., xi−1}.

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

475

Proposition 24

Proof. Let A = ∪P∈T ωP (X). Since for each P ∈ T, ωP (X) ⊆ X and ωP (X) ∈ , then ωP (X) ⊆

ω(X), which implies A ⊆ ω(X). Conversely, from (13) ω(X) = ∪P∈TXP , where XP ∈ DP. Since

ω(X) ⊆X implies XP ⊆ X for all P ∈ T, then XP ⊆ ωP (X) and so ω(X) ⊆ A. ■
Let an antimatroid (E,) be given by a realizer T = {P1, P2, ..., Pk}, then the following
algorithm builds the interior set using Proposition 24.
Ordering Interior Algorithm(X,)

1. For i = 1 to k do
 1.1 build

2. Return

A straightforward implementation of the Ordering Interior Algorithm runs in O(k|E|),
where k is the cardinality of a realizer.

5. Ortholog clustering

This section deals with applications of quasi-concave functions to clustering in
bioinformatics. We concentrate on the one of the problem of comparative genomics.
Comparative genomics is a field of biological research in which the genome sequences of
different species are compared. Although living creatures look and behave in many
different ways, all of their genomes consist of DNA, the chemical chain that includes the
genes that code for thousands of different kinds of proteins. Thus, by comparing the
sequence of the human genome with genomes of other organisms, researchers can identify
regions of similarity and difference. This information can help scientists better understand
the structure and function of human genes and thereby develop new strategies to combat
human disease. Comparative genomics also provides a powerful tool for studying
evolutionary changes among organisms.
A fundamental problem in comparative genomics is the detection of genes from different
organisms that are involved in similar biological functions. This requires identification of
homologous genes that are similar to each other because they originated from a common
ancestor. Such genes are called orthologs [13].
We describe an ortholog clustering method where we require that any sequence in an ortholog
cluster has to be similar to other sequence from other genomes in that ortholog cluster.

5.1 Ortholog detection using multipartite graph clustering
The input for the ortholog clustering problem is a set of genetic sequences along with
information about the organisms they belong to. The goal is to find similar sequences from
different organisms. The ortholog detection problem is complicated due to the presence of
another type of very similar sequences in the same organism. These sequences, called
paralogs, are result of duplication events when a gene in an organism is duplicated to occupy
two different positions in the same genome. Although both types of genes are similar, only
orthologs are likely to be involved in the same biological role. So, for detecting orthologs it is
critical to focus on the similarities between genes from different organisms while ignoring
the similarities between genes within an organism.
The requirement of selectively ignoring gene similarities for paralogous sequences can be
conveniently represented in a multipartite graph. A graph is a multipartite if the set of

www.intechopen.com

 Advances in Greedy Algorithms

476

vertices in the graph may be divided into non-empty disjoint subsets, called parts, such that
no two vertices in the same part have an edge connecting them. We use a multipartite
graph, where different genomes correspond to different parts and the genes in a genome
correspond to vertices in a part.
Another specific problem in finding ortholog clusters is that orthologous genes from closely
related organisms will be much more similar than those from distantly related organisms.
Fortunately, we often have estimates of evolutionary relationships between the organisms
that define a hierarchical graph over the partite sets. Using this evolutionary graph, called a
phylogenetic tree, we can correct the observed gene similarities by scaling up the similarities
between the orthologs from distantly related organisms.
Consider the ortholog clustering problem with k different genomes, where the genome l,
represented by Vl (l = 1, 2, ...k), contains nl genes. Then, the similarity relationships between
genes from different genomes can be represented by an undirected weighted multipartite

graph G = (V,E,W), where , every set Vl contains nl vertices corresponding to nl

genes, and (i, j = 1, 2, ..., k) is a set of weighted edges representing

similarities between genes. The example of a multipartite graph is illustrated in Figure 3 (a).
The relationship between these genomes is given by the phylogenetic tree relating the
species under study (see Figure 3 (b)).

 (a) (b)

Fig. 3. Multipartite graph (a) and phylogenetic tree (b).

We consider an ortholog cluster as a largest subgraph with the highest density. For finding
an ortholog cluster we assign a score F(H) to any subset H of V. A score function F denotes a
measure of proximity among genes in H. Then an ortholog cluster H* is defined as the
subset with the largest score value (a maximizer of F). To build a score function F(H) we use
Definition 6 that is based on using a linkage function π(i,H) which measures the degree of

similarity of the gene i ∈ H to other genes in H.
Our linkage function considers the sequence similarity between genes within the ortholog
cluster, their relationship to genes outside the cluster, and the phylogenetic distance
between the corresponding genomes.

We require that H contains at least two genomes. So, let , where Hl is the
subset of genes from Vl present in H. If mij ≥ 0 is the similarity value between gene i from
genome g(i) and gene j from another genome g(j), and p(g(i), g(j)) represents the distance
between the two genomes, then the linkage function is defined as

(14)

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

477

For each part Vl ≠ g(i) the term aggregates the similarity values between the genes i

and all other genes in the subset Hl, while the second term, mij, estimates the

relationship between gene i and genes from genome l that are not included in Hl. A large
positive difference between two terms ensures that the gene i is highly similar to genes in Hl

and at the same time very dissimilar from the genes not included in Hl. From a clustering
point of view, this ensures large values of intra-cluster homogeneity and inter-cluster
separability for extracted cluster.
The scaling term p(g(i),l) is used for correcting the observed sequence similarities by
magnifying the sequence similarities corresponding to genomes which diverged in ancient
times. Given the phylogenetic tree relating the species under study, the distance p(g(i), g(j))
between genomes g(i) and g(j) is defined as the height, hg(i),g(j), of the subtree rooted at the
last common ancestor of these genomes. When the species are closely related, a function that
depends on hg(i),g(j), but grows slower will better model the distance between the species.
Choosing an appropriately growing function is critical because a faster growing function
will have the undesirable effect of clustering together sequence from distance species but
leaving out the sequence from closely related species. So, in this case the distance p(g(i), g(j))
may be defined as (1 + log2 hg(i),g(j)).
It is easy to verify that function π defined in (14) is monotone. Firstly note that the distance
p(g(i), g(j)) ≥ 0 has no effect on the monotonicity. Consider the case when H is extended by

some gene p. If i ∈ g(p), then π(i,H ∪ p) = π(i,H), otherwise π(i,H ∪ p) − π(i,H) = 2p(g(i),
g(p))mip ≥ 0
So, the function is quasi-concave and we can use the Chain

Algorithm to find the orthogonal cluster.

5.2 Analysis and implementation
The performance of the Chain Algorithm depends on the type of data structure one chooses
to maintain the set of linkage function values. In Example 10 the total time required for

straightforward implementation of the Chain Algorithm is O(|V |2). Here we build the
efficient data structure that enables us to reduce the run-time of the algorithm. There are
three operation that are performed at each iteration of the algorithm.
i. find-min - this operation performs in Step 3.1 of the Chain Algorithm where the value

F(Γi) is determined.
ii. delete-min - this operation performs in Step 3.2 of the Chain Algorithm when the Level-

Set Algorithm finds set Iu(A) of elements with the minimum value of function π and
removes this set from the set A.

iii. decrease-key - this operation performs inside the Level-Set Algorithm. Deleting set Iu(A)
entails updating the linkage function values for all neighbors of elements from this set.

If |V | elements are organized into a Fibonacci heap [14], we can perform a delete-min
operation in O(log V) amortized time and a decrease-key operation in O(1) amortized time,
while a find-min operation can be done in constant time [8].
Proposition 25 [33] With a Fibonacci heap, the Chain Algorithm finds an ortholog cluster in time
O(|E| + |V | log |V |).

Proof. The initialization of the algorithm includes computing π(i, V) for each i ∈ V. The
value π(i, V) depends on the weights on edges incident to i and on the relationship of the

www.intechopen.com

 Advances in Greedy Algorithms

478

genome g(i) with other genomes. We assume that the number of genomes is very small
compared to the number of genes, i.e., k << n. Thus computing the initial linkage function
values for all the vertices takes O(|E|).
We use Fibonacci heap to store vertices according to their linkage function values. So, the
value F(Γi) can be found in O(1) time, and since each deletemin operation takes O(log V)
amortized time, the total time for all calls to delete-min is O(V log V).
Each deleting of an element with minimum value of linkage function π leads to updating the
linkage function values for all neighbours of the element. Due to the additive property of the
linkage function (14), the update can be carried out in time O(1) by subtracting the
corresponding value 2p(g(i), g(p))mip due to the deleted edge (i, p).
Decreasing the value of function π involves an implicit decrease-key operation, which can be
implemented in O(1) amortized time. As each edge is deleted once, all linkage function
updates together require O(|E|) time. Thus, the algorithm runs in O(|E| + |V | log |V |)
time. ■
The proposed ortholog clustering method was applied to the protein sequences from
complete genomes of seven eukaryotes present in the eukaryotic orthologous groups [33].
The analysis of these results shows that clusters obtained using proposed method show a
high degree of correlation with the manually curated ortholog clusters.

6. Conclusions

In this article, we have investigated monotone linkage functions defined on convex
geometries, antimatroids, and semilattices in general. It has been shown that the class of
functions defined as minimum values of monotone linkage functions has close relationship
with the class of quasi-concave set functions. Quasi-concave functions defined on
semilattices, antimatroids and convex geometries determine special substructures of these
set families. This structures allow building efficient algorithms that find minimal sets on
which values of quasi-concave functions are maximum.
The mutual critical step of these algorithms is how to describe the set closure operator. If an
efficient algorithm of the closure construction exists it causes the optimization algorithm to
be efficient as well. On the other hand, we think that the closure construction problem is
interesting enough to be investigated separately. Thus, we suppose that for an arbitrary
semilattice the problem of closure construction has exponential complexity.
An interesting direction for future work is to develop our methods for relational databases,
where a polynomial algorithm for closure construction is known [3].
We have considered some applications of quasi-concave functions to clustering a structured
data set, where together with pair-wise similarities between objects, we are also given
additional information about objects organization.
We focused on a simple structure - a partition model of data where the objects are a priori
partitioned into groups. While clustering such data, we also considered an additional
requirement of being able to differentiate between pairwise similarities across different
partite sets. Existing clustering methods do not solve this problem, since they are limited to
finding clusters in a collection of isolated objects.
The requirement of differentially treating pair-wise relationships across different groups
was modeled by a multipartite graph along with a hierarchical relationship between these
groups. The problem was reduced to finding the cluster (subgraph) of the highest density in
the multipartite graph.

www.intechopen.com

Quasi-Concave Functions and Greedy Algorithms

479

This problem is usually formulated as finding the maximum weight multipartite clique.
However, no efficient procedure exists for solving this problem. Due to this, clusters are
often modeled as quasi-cliques or dense graphs.
Traditionally, quasi-cliques are defined, using a threshold, as a relaxation of a complete
subgraph - the relaxation can be on the degree of a vertex or on the total number of edges in
the quasi-clique. In contrast to traditional quasi-clique definition, our definition does not use
any threshold parameters.
The proposed multipartite graph clustering method was successfully applied to the ortholog
clustering problem. It may be also adapted to other clustering problem both in comparative
genomics and in computer vision [35].

7. References

[1] Bagotskaya, N.V.; Levit, V.E. & Losev, I.S. (1988). On one generalization of matroids
insuring applicability of dynamic programming method, In: Information
Transmission and Processing Systems, Vol. 2, IPIT USSR Academy of Sciences,
Moscow, (33–36). (in Russian)

[2] Bagotskaya, N.V.; Levit, V.E. & Losev, I.S. (1990). A combinatorial structure insuring
applicability of dynamic programming method, Automation and Remote Control 50,
(1414-1420).

[3] Beeri,C. & Bernstein, P.A. (1979). Computational problems related to the design of
normal form relational schemes, ACM Transactions on Database Systems 4, No.1, (30-
59).

[4] Bilbao, J.M. (2003). Cooperative games under augmenting systems, SIAM Journal of
Discrete Mathematics 17, (122-133).

[5] Björner, A. & Ziegler, G.M. (1992). Introduction to greedoids, In: Matroid applications, ed.
N. White, Cambridge Univ.Press, Cambridge, UK.

[6] Boyd, E.A. & Faigle, U. (1990). An algorithmic characterization of antimatroids, Discrete
Applied Mathematics 28, (197-205).

[7] Chernoff, H. (1954). Rational selection of decision functions, Economica 22, (422-443).
[8] Cormen, T.H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2001). Introduction to Algorithms,

second ed. MIT Press and McGraw-Hill, (476-497).
[9] Edelman, P.H. & Jamison, R.E. (1985). The theory of convex geometries, Geom. Dedicata

19, (247-270).
[10] Edelman, P.H. & Saks, M.E. (1988). Combinatorial representation and convex dimension

of convex geometries, Order 5, No.1, (23-32).
[11] Edmonds, J. (1971). Matroid and the greedy algorithm, Mathematical Programming 1,

(127-136).
[12] Eppstein, D. (2008). Upright-Quad Drawing of st-planar learning spaces, Journal of

Graph Algorithms and Applications 12, No. 1, (51-72).
[13] Fitch, W.M. (1970). Distinguishing homologous from analogous proteins, Systematic

Zoology 19, (99-113).
[14] Fredman, M.L. & Tarjan, R.E. (1987). Fibonacci heaps and their uses in improved

network optimization algorithms, Journal of the ACM 34, No.3, (596-615).
[15] Goecke, O. (1988). A greedy algorithm for hereditary set systems and a generalization of

the Rado-Edmonds characterization of matroids, Discrete Applied mathematics 20,
(39-49).

www.intechopen.com

 Advances in Greedy Algorithms

480

[16] Korte, B.; Lovász, L. & Schrader, R. (1991). Greedoids, Springer-Verlag, New
York/Berlin.

[17] Kempner, Y. & Levit, V.E. (2003). Correspondence between two antimatroid algorithmic
characterizations, The Electronic Journal of Combinatorics 10, R44.

[18] Kempner, Y. & Levit, V.E. (2008). Duality between quasi-concave functions and
monotone linkage functions, arXiv:0808.3244 [math.CO].

[19] Kempner, Y.; Mirkin, B. & Muchnik, I. (1997). Monotone linkage clustering and quasi-
concave functions, Appl.Math.Lett. 10, No.4 (19-24).

[20] Kempner, Y. & Muchnik, I. (2003). Clustering on antimatroids and convex geometries,
WSEAS Transactions on Mathematics 2, Issue 1, (54-59).

[21] Kempner, Y. & Muchnik, I. (2008). Quasi-concave functions on meet-semilattices,
Discrete Applied Mathematics 156, No. 4, (492-499).

[22] Kuusik, R. & Lind, G. (2004). Generator of Hypotheses - An approach of data mining
based on monotone system theory, International Journal of Computational Intellegence
1, No. 1, (43-47).

[23] Malishevski, A. (1998). Properties of ordinal set functions, In: A.Malishevski, Qualitative
Models in the Theory of Complex Systems, Nauka, Moscow, (169-173) (in Russian).

[24] Mirkin, B. & Muchnik, I. (2002). Layered clusters of tightness set functions, Appl. Math.
Lett. 15, (147-151).

[25] Mirkin, B. & Muchnik, I. (2002). Induced layered clusters, Hereditary Mappings, and
Convex Geometry, Appl. Math. Lett. 15, (293-298).

[26] Monjardet, B. & Raderanirina, V. (2001). The duality between the antiexchange closure
operators and the path independent choice operators on a finite set, Mathematical
Social Sciences 41, (131-150).

[27] Monjardet, B. (2003). The presence of lattice theory in discrete problems of mathematical
social sciences. Why. Mathematical Social Sciences 46, (103-144).

[28] Muchnik, I. & Shvartser, L.V. (1989). Kernels of Monotonic Systems on a Semi-lattice of
Sets, Automation and Remote Control 50, No. 8, part 2, (1095-1102).

[29] Mullat, J. (1976). Extremal subsystems of monotone systems: I, II, Automation and Remote
Control 37, (758-766); (1286-1294).

[30] Mullat, J. (1995). A fast algorithm for finding matching responses in survey data table,
Mathematical Social Sciences 30, (195-205).

[31] Sen, A.K. (1971). Choice functions and revealed preference, Review of Economic Studies
38, (307-317).

[32] Serganova, V.V.; Bagotskaya, N.V.; Levit, V.E. & Losev, I.S. (1988). Greedoids and the
greedy algorithm, In: Information Transmission and Processing Systems, Vol. 2, IPIT
USSR Academy of Sciences, Moscow, (49-52). (in Russian)

[33] Vashist, A.; Kulikowski, C.A. & Muchnik, I. (2007). Ortholog clustering on a
multipartite graph, IEEE/ACM Transactions on Computational Biology and
Bioinformatics 4, No. 1 (17-27).

[34] Zaks (Kempner), Y. & Muchnik, I. (1989). Incomplete classifications of a finite set of
objects using monotone systems, Automation and Remote Control 50, (553-560).

[35] Zhang, R.; Vashist, A.; Muchnik, I.; Kulikowski, C. A. & Metaxas, D. N. (2005). A new
combinatorial approach to supervised learning : Application to gait recognition,
LNCS 3723 (55-69).

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yulia Kempner, Vadim E. Levit and Ilya Muchnik (2008). Quasi-Concave Functions and Greedy Algorithms,

Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/quasi-concave_functions_and_greedy_algorithms

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

