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Abstract

Among the neuroactive steroids, dehydroepiandrosterone (3b-hydroxyandrost-5-ene-
17-one, [DHEA]) and its sulfated metabolite DHEA sulfate (DHEAS) have been shown 
to be potent modulators of neural function, including neurogenesis, neuronal growth 
and differentiation, and neuroprotection. Highlighting the potential health significance 
of DHEA and DHEAS in humans, serum concentrations decrease steadily with age, 
with lowest concentrations present at the time many diseases of aging and neurode-
generation become apparent. This temporal association has led to the suggestion that 
pathology associated with cognitive decline, age-related neurological disorders such 
as Alzheimer’s disease, dementia, amyotrophic lateral sclerosis (ALS), and adult onset 
schizophrenia may, in part at least, be attributed to decreased secretion of DHEA. Animal 
studies suggest neuroprotective functions for DHEA and DHEAS through reduction of 
glutamate-induced excitotoxicity. Reduced myelin loss and reactive gliosis after spinal 
cord injury by DHEA treatment also suggest a role for DHEA in the treatment of white 
matter pathologies such as multiple sclerosis. In this chapter, we discuss the physiologi-
cal roles of DHEA and DHEAS in the central nervous system (CNS), their potential as 
neuroprotective hormones with reference to documented effects on excitotoxicity and 
oxidative stress, and their anti-glucocorticoid actions during chronic stress. The potential 
for metabolic derivatives of DHEA, such as estrogens and testosterone on brain function, 
and their contribution to neurodevelopment and neurodegenerative conditions are also 
discussed.

Keywords: adrenal zona reticularis, adrenarche, adrenopause, aging, Alzheimer’s 
disease, amyotrophic lateral sclerosis, androgens, C19 steroids, glucocorticoids, 
neurocognitive decline, neurogenesis, neuroprotection, estrogens, schizophrenia, 
steroid biosynthesis
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1. Introduction

Dehydroepiandrosterone (DHEA) is the principal carbon (C)-19 steroid produced by the adre-

nal gland in humans and mammals [1]. DHEA and its sulfated derivative DHEAS are multi-
functional steroids with actions in a wide variety of physiological systems, with effects on the 
brain [2], immune systems [3], and somatic growth and development [4, 5]. Although DHEA 
and DHEAS were identified more than 50 years ago, there remains some uncertainty as to their 
physiological significance, full mechanisms of action [6–9], and their roles in human disease.

In humans, DHEA is a crucial precursor of sex steroid biosynthesis and exerts indirect endocrine 
and intracrine actions following conversion to androgens and estrogens. In addition, DHEA 
acts as a neurosteroid via its effects on neurotransmitter receptors in the brain. The potential 
health significance of DHEA in humans is highlighted by the observation that serum concentra-

tions decrease steadily with age, approaching lowest concentrations around the time at which 

many diseases of aging, particularly neurocognitive decline, become apparent. The age-related 
decline in DHEA levels [10] has led to the suggestion that this is associated with a decrease 

in cognitive function as well as the increased rates of neuronal degeneration and dysfunction 

that occur during aging [11, 12]. Other studies have reported altered DHEA serum concentra-

tions in patients with conditions such as schizophrenia [13], dementia [14], and Alzheimer’s 

disease (AD) [13, 15–18]. Due to these associations, DHEAS has been widely publicized both 
in the lay press [19, 20] and in the scientific literature [21, 22] for their putative anti-aging and 

neuroprotective effects. This has sparked controversial speculation that DHEA treatment might 
be a remedy for neuropsychiatric and neurodegenerative disorders [7, 23–27] and, even more 

optimistically, that it is a hormone with the potential to increase the life span [28].

As promising as these speculations may seem, there are many contradictions about the roles 

of DHEA in normal and degenerative brain function. This is especially evident when compar-

ing preclinical and clinical data. For example, studies in animals show a myriad of neuropro-

tective and trophic effects of DHEAS in development and disease, while clinical studies show 
inconsistent, and sometimes highly conflicting, results. Clinical studies of neurodegenerative 
diseases have variously reported increased or decreased DHEAS concentrations in serum, 

cerebrospinal fluid, and brain tissue, leading to doubt as to the role of DHEA in the neuropa-

thology of aging. It has been suggested that the incongruity in measured DHEAS concentra-

tions may lie in the methodological differences used to sample DHEAS; however, it is possible 
that these changes are indicative of a more nuanced and multifaceted role. There is consistent 
evidence that DHEA is neuroprotective with respect to oxidative stress, neuroinflammation, 
and excitotoxicity, and thus it is possible that DHEA assists the defense of the brain and has a 

beneficial effect on cognition in healthy brains. Therefore, it is the aim of this review to briefly 
discuss the physiology of DHEA and its synthesis and secretion during development and 

aging and to discuss the relationship between alterations in DHEA concentrations and cogni-

tion. We further discuss the possible role of DHEAS in a variety of disease states, including 
AD, and acute illnesses such as schizophrenia, with focus on the fact that these conditions are 

characterized by imbalances in oxidative stress, neuroinflammation, and excitotoxicity.
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2. The physiology of DHEA

In humans, DHEA is one of the most abundant hormones synthesized and secreted by the 
adrenal cortex. This C19 steroid displays an episodic and diurnal rhythm of synthesis and 
release that parallels that of cortisol [29, 30]. The major synthetic pathways for DHEA and 
DHEAS are shown in Figure 1. The de novo synthesis of DHEA from cholesterol depends on 

the presence and activity of the mitochondrial enzyme steroidogenic acute regulatory pro-

tein (StAR), the microsomal enzyme cytochrome P450 enzyme 17α-hydroxylase /17,20 lyase 
(P450c17), and the accessory hemoprotein cytochrome b5 (Cytb5) [32]. Importantly, P450c17 
and Cytb5 need to be colocalized, because the function of Cytb5 is to selectively enhance the 

17,20-lyase activity of P450c17 [33–35].

DHEAS is the precursor of approximately 50% of androgens in adult men, 75% of active 
estrogens in premenopausal women, and almost 100% of active estrogens after menopause 
[36]. DHEA has a 3- to 10-fold predominance of androgenic over estrogenic activity [37], and 

although a small portion of the circulating pool of DHEA is of gonadal origin in men and 

women, the majority of DHEA, and virtually all DHEAS, is produced by the adrenal cortex 

[1]. However, DHEA is also synthesized in the brain, from cholesterol and other hormonal 
precursors, primarily by astrocytes and oligodendrocytes; indeed, much higher concentra-

tions of DHEAS are found in the brain than in the serum, suggesting that the DHEAS is pri-

marily synthesized in situ, rather than being transported across the blood-brain barrier [38].

Figure 1. The complete steroid pathway showing the formation of DHEA from pregnenolone and 17OH-pregnenolone, 
and its reversible sulfation, and disposition via androstenes to estradiol and 5α-dihydroxytestosterone. Steroid 
metabolites identified in serum and urines are shown in  light gray boxes and dark gray boxes, respectively. From 
Greaves et al. [31].
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The specific receptors that bind DHEA as a ligand have been of great interest for over 20 years. 
The biological actions of DHEA and its metabolites are mediated through androgen receptors 
or estrogen receptors, which belong to the nuclear receptor steroid-receptor subfamily [39]. 
DHEA has been found to exert both agonistic and antagonistic effects on the androgen recep-

tor, and it acts as an agonist at both the estrogen receptor-α and estrogen receptor-β sites, 
with a binding preference for estrogen receptor-β [40, 41]. In the brain, DHEA is thought to 
affect neuronal excitability by modulating the N-methyl-D-aspartate (NMDA) [42–44] and 

sigma receptors [45], and as a positive allosteric modulator of the Gamma-aminobutyric acid 

type A (GABA
A)

 receptor [46–49]. In addition to this, DHEA has been shown to be a selective 
antagonist of the glucocorticoid receptor (GR) [50].

2.1. DHEA and DHEAS synthesis during development and aging

In humans, the patterns of DHEA synthesis and secretion change markedly throughout life. 
In the last months of gestation, the fetal adrenal can synthesize and release considerable 
amounts of DHEA and DHEAS, which together with estrogen and progesterone produced by 

the placenta play pivotal roles in the maintenance and endocrine control of pregnancy [51]. 
Although the plasma concentrations of DHEAS remain high in the newborn, they decrease 

quickly as the fetal zone of the adrenal gland involutes after birth. From 1 to 6 years of age, 
the adrenal gland secretes very low concentrations of DHEAS and androstenedione [52]. 
However at approximately 7–8 years of age, the adrenal zona reticularis increases the produc-

tion of DHEAS and androstenedione, all of which are C
19

 steroids that exert androgenic activ-

ity in several tissues by converting into potent androgens [36]. This pre-pubertal phenomenon 
is known as adrenarche, a biochemical, endocrine, and morphological event hypothesized 
to have evolved only in humans and higher primates. From an evolutionary point of view, 
adrenarche may be related to the highly coordinated events associated with human growth 

and organ maturation, particularly of the brain [53–55].

Following the onset of adrenarche, plasma concentrations of DHEAS differ between the sexes, 
with levels of DHEAS being about 2-fold higher in males than in females (Figure 2). This dif-
ference may reflect secretion of these androgens by the testes [10, 57], but it has also been pro-

posed that the higher concentration of DHEAS in men may be attributable to steroid sulfatase, 
which degrades androgens. The gene for steroid sulfatase is located on the X chromosome, 
and in having only one copy of the gene, men may have less steroid sulfatase and conse-

quently higher DHEAS concentrations [58].

Maximal plasma concentrations of DHEAS normally occur at 20–30 years of age (Figure 2), fol-

lowed by a progressive decline in adrenal production in both males and females, until serum con-

centrations of DHEAS return to pre-adrenarche levels in persons over 80 years of age [59, 60]. The 
magnitude of this decline is such that serum levels of DHEAS in elderly adults are only around 

10–20% of those in young adults [1, 61]. The diminution in adrenal androgens with aging is often 
termed ‘adrenopause.’ It has been suggested that adrenopause is associated with a generalized 
reduction in the 17,20 lyase activity of P450c17 in the zona reticularis of the adrenal gland [62]. 
Interestingly, it has been shown that the zona reticularis of older men is reduced in size when 
compared to the adrenals of young men [63], suggesting that at least part of the age-associated 
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decrease in adrenal androgens might relate to a reduction in the number of DHEA-secreting cells 

in the zona reticularis itself. Although the underlying mechanisms regarding this change must be 
further elucidated, the temporal association between falling DHEA concentrations and the onset 

of age-related diseases has led many investigators to suggest that some age-related neurological 

disorders such as AD and dementia may be partly attributable to the decrease in systemic DHEA 
concentrations [11].

2.2. DHEA and cognition

The gradual decline in serum concentrations from the peak at 20–30 years of age has led to 
speculations that low DHEA concentrations could have a negative effect on cognitive func-

tion in later life. It has been hypothesized that rise in DHEA concentrations from 6 to 8 years 
until 20–30 years of age might be associated with the extended period of cortical maturation 
in humans [55]. While numerous animal studies have shown that DHEA can modulate cog-

nitive performance, the outcomes of such studies in humans are less clear. For example, one 
study reported that DHEA supplementation improves cognitive performance in young men 

[64], whereas other studies detected no benefit in an older group who were predominantly 
male and were HIV-1 seropositive [65]. DHEA supplementation does not appear to improve 
cognition in the elderly [66].

A study evaluating the cognitive domains of working memory, executive function, and word 
processing speed in men and women aged between 60 and 88 years with low serum DHEAS 
concentrations found a positive association between serum DHEAS and working memory 
[67]. However, the relationship was sex-specific, with a trend toward a better executive func-

tion in men only. Other studies in males have shown that increased endogenous androgen 
concentrations (following cessation of chemical castration in males) resulted in improved 

performance on the Cambridge Cognitive Examination (part of the Cambridge Examination 

Figure 2. Concentrations of serum DHEAS as a function of age in females and males. Values are high in cord blood 
and immediately after birth, fall in the first months of life as the fetal adrenal zone involutes, and remain low until 
the onset of adrenarche at about age 8 years in girls and age 9 years in boys. Peak DHEAS concentrations are usually 
higher in males than in females. In both sexes, the concentrations of DHEAS decline slowly during the adult years. 
From Miller [56].
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for Mental Disorders of the Elderly, a global measure of cognition and memory) and verbal 

recall tests [68]. A study in a population of older healthy women (aged 21–77 years) further 
indicated that women with high serum concentrations of DHEAS had increased performance 

on a variety of cognitive tests, including better verbal, visual, and spatial abilities; working 
memory; attention; concentration; and accuracy [69]. In older men and women in an Italian 
cohort, low DHEAS levels were significant predictors of accelerated decline in Mini-Mental 
State Examination score during the 3-year follow-up period [70]. Despite these associations, 
Mazat et al. [71] reported no significant role for serum DHEAS concentrations as a predictor 
of cognitive decline in an elderly population, while other studies conducted in frail elderly 

patients and nursing home residents found an inverse relationship between DHEAS levels 

and cognitive abilities [72, 73].

While the reasons for the conflicting data on DHEAS and cognition require further inves-

tigation, the changes in cognition are likely to be reflective of interactions with both the 
GABAergic and glutamatergic pathways, and possibly through the mediator brain-derived 

neurotrophic factor (BDNF). Neurosteroids have contrasting effects on GABA
A
 receptors, 

which when activated result in chloride entry into the cell, hyperpolarization, and reduced 

membrane excitability [48]. Reduced metabolites of progesterone and deoxycorticosterone 
have an agonistic effect on GABA

A
 receptors, resulting in chloride ion movement into the 

cell. In contrast, DHEAS is a GABA
A
 antagonist and thus increases the likelihood of mem-

brane depolarization [48, 74]. Animal studies have shown that acute exposure to DHEAS may 
facilitate basal synaptic transmission in the CA1 region of the hippocampus through the non-

competitive potentiation of GABA
A
 receptors [75–77]. In terms of learning and memory, stud-

ies have shown that acute administration of DHEAS facilitates primed-burst potentiation, but 

not the induction of long-term potentiation [78], whereas long-term potentiation is stimulated 

by the chronic administration of DHEAS [79].

In addition to GABA
A
 receptor modulation, neurosteroids have been found to interact in a 

structure-specific manner with glutamatergic NMDA receptors. DHEAS potentiates the neu-

ronal response to NMDA in the rat hippocampus [80]. These steroids also act as non-selective 
sigma-1 receptor antagonists [81], thus suppressing the activity of NMDA receptors, which 

are central to the process of excitotoxicity [82]. In addition, DHEAS may reduce the cytoplas-

mic Ca2+-induced loss of mitochondrial membrane potential by preventing Ca2+ influx into 
the mitochondrial matrix [83]. The neuroprotective effect of DHEA against NMDA-induced 
excitotoxicity may also involve the calcium/nitric oxide signaling pathway, since DHEA has 
been shown to inhibit NMDA-induced nitric oxide synthase activity and the production of 

nitric oxide in primary cultures of hippocampal neurons [84].

The potential of DHEAS to modulate the activity of NMDA receptors through a variety of 
mechanisms is likely to underpin their capacity to protect neurons from excitotoxicity when 
high levels of extracellular glutamate are present. Of note, glutamate excitotoxicity has been 
implicated in AD [85] (discussed further below), where a reduction in neurosteroid produc-

tion may compromise the intrinsic defense mechanisms of the central nervous system (CNS). 
Another possible mechanism by which DHEAS could promote neurogenesis and neuronal 

survival in the CNS is through the mediation of the neurotrophin BDNF [86, 87].
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BDNF is expressed in several areas of the CNS and is necessary for cell proliferation and 
differentiation [88, 89]. In addition, BDNF plays a vital role in neural plasticity, enhances 
long-term potentiation, and promotes learning and memory [90, 91]. As such, a mutation 
or deletion of the BDNF gene in mice results in learning deficits and long-term potentiation 
impairment [92, 93], as well as decreased learning and memory in behavioral paradigms [90]. 
In humans, low plasma BDNF is associated with impairments in memory and general cogni-
tive function in aging women [94].

A recent study investigated the effect of DHEA on cognition and learning in a rat model of 
vascular dementia [86] and found that DHEA treatment significantly preserved working and 
reference memory, which was accompanied by a significant increase in the levels of acetylcho-

line, norepinephrine, and dopamine in the brain. Of note was a significant increase in the hip-

pocampal expression of BDNF after DHEA treatment [86]. In a rodent model, Naert et al., [95] 

showed that DHEAS treatment can lead to biphasic increases in BDNF in the hippocampus 
and amygdala, but decreased BDNF concentrations in the hypothalamus. It is interesting to 
note that glucocorticoids are also involved in BDNF regulation [27, 96], where stress has been 

found to decrease the expression of BDNF, leading to neuronal atrophy and degeneration in 
the hippocampus and the cortex, a process that may be common to both development and 

aging [97, 98]. These findings are important, considering, that BDNF expression is also altered 
in acute psychiatric disorders such as major depression [99, 100] and schizophrenia [101], as 

well as in neurodegenerative diseases such as AD [102].

2.3. DHEA and AD

AD is a chronic neurodegenerative disorder characterized by progressive memory loss and 

cognitive deterioration. It is the most common form of dementia, affecting about 50 million 
people worldwide [103], with the majority of cases in the elderly population, which pres-

ents global health and economic challenges [104]. Currently, there are no disease-modifying 
therapies available to treat AD [105], and it represents a major unmet need in neurological 

research and patient management. The neuropathological hallmarks of AD include neurofi-

brillary tangles, which are formed when the neuronal cytoskeletal protein tau becomes hyper-

phosphorylated and precipitates, and also amyloid plaques, which are abnormal deposits 

of extracellular protein that accumulate after cleavage of the β-amyloid precursor protein 
[106]. Other degenerative changes include cerebral amyloid angiopathy, glial inflammatory 
responses, and synaptic loss. These processes ultimately lead to neuronal atrophy, white mat-
ter loss, and a reduction in the volumes of the entorhinal, temporal, and frontal cortices as 

well as the hippocampus [107], followed by devastating clinical sequelae and resultant mor-

bidity and mortality [108].

Sporadic AD is the predominant form of the disease, present in more than 95% of patients, 
and it usually occurs after 65 years of age [109]. The etiology of sporadic AD is multifacto-

rial and may be associated with a number of risk factors including advancing age [110, 111], 

increased oxidative stress [112, 113], autoimmunity [114], and excess glucocorticoids [115–117]. 
Although serum DHEA levels decrease with age, the majority of studies have reported that 

serum DHEAS levels in AD patients are even lower than in age-matched healthy controls. For 
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instance, Yanase et al. [18] found that patients with AD or cerebrovascular dementia had lower 

concentrations of serum DHEAS and a lower DHEAS/DHEA ratio when compared to controls. 
Several other clinical studies have reported lower serum concentrations of DHEAS in patients 

with AD [14, 118–120], a reduction paralleled by decreases in the brain and cerebral spinal fluid 
[121, 122]. For instance, Weill-Engerer and colleagues [108] reported that not only are brain lev-

els of DHEAS significantly lower in AD, but also the lower levels are inversely correlated with 
the presence of phosphorylated tau and β-amyloid. A few studies have not detected differences 
in serum DHEAS concentrations between AD patients and controls [120, 123], and there is one 

report that serum DHEAS levels are increased in mild-moderate AD [124]. The reasons for 
these differences between studies have not yet been elucidated.

In contrast to the majority of studies, Naylor and colleagues [125] reported that cerebral spinal 

fluid levels of DHEA are significantly elevated in AD, as are tissue levels in the temporal cortex, 
with the extent of elevation being correlated with disease severity, as assessed by the burden of 

β-amyloid plaques. Similarly, Brown and colleagues [126] reported increased DHEA concentra-

tions in the brains and cerebral spinal fluid of patients with AD when compared with controls, 
even though mean serum concentrations of DHEA did not differ. Interestingly, in this study, 
DHEA concentrations were highest in the hippocampus of AD patients, a region that does not 

express P450c17. Brown and colleagues speculated that the higher concentrations of DHEA in 
the hippocampus may have been produced by an as-yet-unknown pathway that involved the 
oxidation of an unknown precursor. This speculation has been given support by the finding 
that the addition of redox-active ferrous iron to serum samples causes a significant increase in 
the amount of detectable DHEA [127]. It is also supported by the demonstration that oxidative 
stress associated with the presence of β-amyloid treatment induces DHEA synthesis in human 
and rodent cells in vitro [126–129]. In this context, it is interesting that the brain regions contain-

ing the higher concentrations of DHEA [126] also have higher burdens of neuritic plaques and 

β-amyloid immunoreactivity, features that are generally associated with AD progression [130]. 
It may be significant that DHEA protects HT-22 cells (an immortalized mouse hippocampal 
cell line) against amyloid β protein toxicity in a dose-dependent manner [131].

Another link to the pathogenesis and progression of AD comes from the anti-inflammatory 
properties of DHEA [132]. Hence, the local production of DHEA in the AD brain may func-

tion, at least in part, to reduce the level of inflammation that would otherwise be injurious to 
neurons if left unchecked. Serum levels of DHEAS have been shown to negatively correlate 
with serum interleukin-6 (IL-6), to inhibit IL-6 secretion from human mononuclear cells [133], 

and to inhibit cytokine-stimulated, NF-κB–mediated transcription, partly through an anti-
oxidant property [134]. Interestingly, elevated levels of IL-6 are consistently detected in the 
brains of AD patients, but not in the brains of non-demented elderly persons [135]. Several 
studies have suggested that an increase of circulating IL-6 in AD patients indicates immune 
activation and may be related to the pathophysiology of AD [136–138].

Perhaps the most intriguing link between DHEA and AD comes from its association with 
systemic stress and glucocorticoid production, which has lead to the hypothesis that chronic 

stress is an important factor in AD pathogenesis [139]. Epidemiological evidence supports 
a role for stress in AD because elderly individuals prone to psychological distress are more 
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likely to develop the disorder than age-matched, nonstressed individuals [117]. Cortisol is 
the most prominent stress-related glucocorticoid in human serum. Serum cortisol levels are 
elevated in patients with AD [140], as are the levels of urinary cortisol [141]. It is pertinent 
that the overactivation of GABA

A
 receptors plays a central role in anxiety disorders and con-

sequently these receptors are the principal targets of anxiolytic drugs for the treatment of 

affective disorders [142]. Since DHEAS antagonizes GABA
A
 receptors, they are thought to act 

as endogenous anxiolytics, and hence a reduction in the availability of DHEAS in aging or AD 

could contribute to increased anxiety and stimulate the chronic production of cortisol.

Animal experiments have shown that excess concentrations of glucocorticoids during pro-

longed periods of stress can have deleterious effects on the brain, especially in aged animals, 
and particularly affecting the hippocampus [143]. Glucocorticoids exert several actions on the 
brain, including the stimulation of glutamatergic neurotransmission via the stimulation of glu-

cocorticoid receptors (GR), which if left unchecked can lead to excitotoxicity. Several studies 
have shown that DHEA can protect against the effects of glucocorticoid-mediated neurotox-

icity [144, 145]. The neuroprotective effects of DHEA have been modeled in vivo where the 

toxic effects of corticosterone in the dentate gyrus of male rats were suppressed by low con-

centrations of DHEA [146]. The protection conferred by DHEA may be via downregulating 
the expression of glucocorticoid receptors [147]. In cultured HT-22 cells, DHEA augmentation 
suppresses the nuclear localization of the GR in response to glutamate toxicity, as assessed by 
immunohistochemistry [131]. Thus, inhibition of GR translocation into the nucleus is a possible 
mechanism of DHEA’s anti-glucocorticoid effects. DHEA administration reduces GR expres-

sion in hippocampal cells in the mouse [131] and reduces glucocorticoid receptors by 50% 
in the rat liver [145]. Furthermore, DHEA may act as a GR antagonist and can attenuate the 
translocation of stress-activated protein kinase-3 in rat hippocampal primary cultures [148].

DHEA may also attenuate the neurotoxic effects of cortisol by reducing the regeneration 
of active glucocorticoids. The 7α-hydroxylated metabolite of DHEA (7α-hydroxy-DHEA) 
has antiglucocorticoid effects in target tissues by competition with 11-keto glucocorticoids 
for access to 11β-hydroxysteroid dehydrogenase-1 [149]. Enzyme kinetic data from yeast-
expressed human 11β- hydroxysteroid dehydrogenase imply that 7α-hydroxysteroid sub-

strates are preferred to cortisone by this enzyme [150]. Therefore, in tissues such as the brain, 
7α-hydroxy-DHEA may act as an endogenous inhibitor of 11β- hydroxysteroid dehydroge-

nase, thereby reducing the regeneration of active glucocorticoids [151]. 7α-hydroxy-DHEA 
may have more potent bioactivity and stronger neuroprotective and antiglucocorticoid effects 
than DHEA itself [152]. Interestingly, some investigators have hypothesized that the degree of 
metabolism of DHEA to 7α-hydroxy-DHEA is related to the pathology of AD [122, 151, 153, 

154]. This is evident in the study by Yau et al. [151], which found that gene expression for cyto-

chrome P4507b (which converts DHEA into 7α-hydroxy-DHEA) was significantly decreased 
in hippocampal dentate neurons from patients with AD when compared to controls [151]. 
Another study found lower plasma 7α-hydroxy-DHEA concentrations in patients with AD 
when compared to controls [154].

Taken together, the preceding observations are generally supportive of the view that DHEAS 
levels in serum are reduced in AD when compared to those in healthy age-matched controls. 
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Given that DHEAS reduces oxidative stress and neuroinflammation, protects against gluta-

mate excitotoxicity, and minimizes the negative effects of cortisol on the brain, the reduced 
levels of serum DHEAS are likely to increase the vulnerability of the brain to these factors. 
While limited evidence suggests that the brain may compensate by increasing the local pro-

duction of DHEAS, this may not be sufficient to slow the pathogenesis of the disease.

2.4. DHEA in schizophrenia

In addition to neurodegenerative diseases, there is evidence that low levels of circulating 
DHEA with normal levels of glucocorticoids (cortisol) place the developing brain at risk for 
a range of acute neuropsychiatric disorders, including major depressive disorder, bipolar 

disorder, and anxiety [155–158]. It is further hypothesized that abnormalities of the hypo-

thalamic-pituitary-adrenal (HPA) axis play a central role in the pathogenesis and etiology 
of schizophrenia [159–161]. Low ratios of DHEA to cortisol have been noted in patients with 
schizophrenia and are positively associated with the severity of depression, state and trait 

anxiety, anger, and hostility [155]. DHEA augmentation in affected patients has been seen to 
attenuate the severity of some negative symptoms associated with this mental illness, includ-

ing lack of volition and drive, and social withdrawal [16, 162].

Previous studies have found evidence of abnormal dopaminergic activity [163] and deficits 
in GABAergic and glutamatergic activity [164] in the brain tissue of patients with schizo-

phrenia. Neuroactive steroids such as DHEA modulate the activity of these neurotransmitter 
systems, both directly and indirectly, and therefore may contribute to the pathophysiology 

of the illness [82, 165–168]. A number of studies [169] have reported elevated plasma levels 

of DHEA and DHEAS in severely psychotic male subjects [170, 171], medicated patients with 

chronic schizophrenia [172], and nonmedicated first-episode patients [170, 173] compared 

with controls. Elevated DHEA levels have been detected in the post-mortem brain tissue of 

schizophrenic patients in both the posterior cingulate and parietal cortex [171]. In addition to 
this, the levels of allopregnanolone are significantly lower in the schizophrenic parietal cortex 
when compared with healthy controls, whereas pregnenolone levels are significantly higher 
[49]. Since both of these neurosteroids are downstream metabolites of DHEA, these data 
suggest that DHEA is preferentially metabolized to pregnenolone in patients with schizo-

phrenia [49]. As DHEA is a positive modulator of excitatory NMDA receptors, and allopreg-

nanolone is a positive modulator of the inhibitory GABA
A
 receptors, the shift in the ratio of 

DHEA:allopregnanolone could favor a net increase in neuronal excitation [49], similar to the 

alterations in brain neurotransmitter systems seen in schizophrenia patients.

As a result of the positive modulatory effects of DHEA on NMDA receptors [49], in addition 

to its capacity to enhance learning and memory in rodent models [174], it may be speculated 

that an elevation of DHEA levels reflects a compensatory process in the schizophrenic brain. It 
is possible that subjects with schizophrenia may be physiologically resistant to DHEA action 

in some manner (potentially resulting in the increased synthesis of this neurosteroid) or that 

there is dysregulation in a feedback system involving the HPA axis [175]. Specifically, DHEA 
increases following cortisol-releasing hormone [49] and adrenocorticotropic hormone [176] 

administration in humans, and persistent DHEA elevations may reflect a prolonged upregu-

lation of this axis [177].
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As noted earlier, DHEA can protect neurons from glutamate excitotoxicity, β-amyloid tox-

icity, and oxidative stress [49, 131], and furthermore, oxidative stress can lead to increased 

DHEA formation [84, 178]. Oxidative stressors may therefore stimulate DHEA levels in 
schizophrenic patients [126], in an adaptive change to other precipitating disease factors.

However, other studies have found no difference in DHEA levels between schizophrenic and 
control subjects [49], and some studies have reported significantly reduced plasma DHEA con-

centrations [179–181], particularly in the morning [180, 182, 183], as well as abnormal DHEA 

diurnal rhythms [184] in schizophrenics compared with matched controls. Furthermore, 
DHEA augmentation has been found to be effective in the management of depressive and 
anxiety symptoms of patients with schizophrenia [185], suggesting that higher levels of cir-

culating DHEA in schizophrenic populations may be associated with superior functioning 

[16]. The inconsistency between studies is understandable in view of the wide clinical poly-

morphism, variability of psychometric properties (distress and anxiety), drug treatment, and 

clinical responsiveness of schizophrenia patients to their antipsychotic treatment [169].

It may be difficult to interpret the significance of elevated or decreased DHEA levels in 
the absence of concentrations of other HPA axis hormones. Dysregulation of the HPA axis 
described in schizophrenia [13] includes increased basal cortisol levels [186], cortisol non-

suppression on the dexamethasone suppression test [187], increased adrenocorticotropic hor-

mone and cortisol response to the dexamethasone/cortisol releasing hormone challenge test 
[188], and increases in glucocorticoid receptor mRNA as observed post-mortem [189]. DHEA 
and cortisol are both cleaved from 17-hydroxypregnenolone and are adrenocorticotropic hor-

mone regulated [190]. It is not clear, therefore, if an elevated DHEA concentration is specific 
to a particular disease state or due to a generalized overactivation of the HPA axis. This differ-

ence is of functional significance as DHEA possesses antiglucocorticoid properties and may 
protect against some of the deleterious effects of persistently elevated cortisol levels [145]. 
This can be clarified by determining the cortisol/DHEA ratio, which may be a more appro-

priate measurement than DHEA alone [191]. If the biological response to stress is impaired 
among schizophrenia patients, it is possible that the cortisol/DHEA ratio would be elevated 
as a result of stress associated with the illness [192].

There is also evidence for oligodendrocyte and myelin dysfunction in neuropathologies such 
as schizophrenia and bipolar affective disorder, where alterations in the cortisol/DHEA ratio 
have been observed [16, 17, 155]. Some key oligodendrocyte and myelination genes (such as 
proteolipid protein 1 and myelin-associated glycoprotein), and transcription factors that reg-

ulate the expression of these genes, are downregulated in brains of schizophrenia and bipolar 

subjects [193]. Together, these studies indicate that common pathophysiological pathways 
may govern the disease phenotypes of schizophrenia, as well as other neurodegenerative 

diseases that specifically involve oligodendrocytes.

3. Conclusion

A significant body of preclinical research investigating the biological actions of DHEA have 
shown that this steroid, and its sulfated congener DHEAS, has a multifunctional role in a 
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variety of physiological systems, including in the developing and aging brain. A summary 
of the actions of DHEA relevant to the discussion above is shown in Table 1. The pres-

ent review has highlighted the involvement of DHEAS in glutamatergic and GABAergic 

DHEA Effects/function

Receptor interactions: Agonistic and antagonistic effects on AR, agonist at ERα and ERβ [40, 41]

Modulates the NMDA receptor [42–44]

Positive allosteric modulator of the GABA-A receptor [46–49]

Nonselective sigma-1 receptor antagonist [81]

Selective antagonist of the GR [50]

Development & 

regeneration:

Maintenance and endocrine control of pregnancy [51]

Associated with human growth and organ maturation, particularly of the brain, during 

adrenarche [53–55]

Promotes neurogenesis and neuronal survival in the CNS through the mediation of BDNF 
[86, 87]

Memory and learning: DHEAS may facilitate basal synaptic transmission in the CA1 region of the hippocampus 

[75–77]

Acute DHEAS administration facilitates primed-burst potentiation [78] and chronic 

administration of DHEAS stimulates LTP [79]

DHEA treatment significantly preserves working and reference memories and increases 
acetylcholine, norepinephrine, and dopamine concentrations in the rat brain [86]

Neuroprotection:

Anti-excitatory actions

Reduces the cytoplasmic Ca2+-induced loss of mitochondrial membrane potential by 

preventing Ca2+ influx into the mitochondrial matrix [83]

Inhibits NMDA-induced nitric oxide synthase activity and the production of nitric oxide in 
primary cultures of hippocampal neurons [84]

Protect neurons from glutamate excitotoxicity, β-amyloid toxicity, and oxidative stress 
[49, 131]

Anti-inflammatory 
actions

Inhibits IL-6 secretion from human mononuclear cells [133]

Inhibits cytokine-stimulated, NF-κB–mediated transcription, partly through an antioxidant 
property [134]

Antiglucocorticoid 

actions

GR antagonist and can attenuate the translocation of stress-activated protein kinase-3 in rat 
hippocampal primary cultures [148]

Suppresses the nuclear localization of the GR in response to glutamate toxicity and 
inhibition of GR translocation into the nucleus [131]

Downregulation of the expression of glucocorticoid receptors [147]

Reduces the regeneration of active glucocorticoids [149]

Abbreviations: AR, androgen receptor; BDNF, brain-derived neurotrophic factor; CNS, central nervous system; 
DHEA, dehydroepiandrosterone; DHEAS, dehydroepiandrosterone sulfate; ER, estrogen receptor; GABA-A, Gamma-
aminobutyric acid receptor A; GR, glucocorticoid receptor; IL-6, interleukin 6; LTP, long-term potentiation; NMDA, 
N-methyl-D-aspartate.

Table 1. Summary of functions of DHEA related to development and aging.
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neurotransmission, where this neurohormone acts as an important modulator of neuronal 

excitability. Consequently, perturbations in the level of DHEA can affect cognition and 
mood. DHEAS has also been shown to respond to stress and to modulate the effects of 
cortisol on the brain. Reductions in the availability of DHEAS can increase the likelihood 
of glutamate excitotoxicity as well as exacerbate the deleterious effects of cortisol. Evidence 
indicates that the brain is not dependent on serum levels of DHEA as it is able to synthesis 

DHEAS in situ. Indeed, there appears to be a capacity to produce DHEA in direct response 
to oxidative stress. We have shown that in AD, the levels of DHEA are depleted, and the 
subsequent loss of protection from glutamate, cortisol, and oxidative stress may contrib-

ute to the pathogenesis of the disease. Conversely, in schizophrenia, there appears to be 
an elevation in the availability of DHEA, and this may act to decrease the influence of 
the GABAergic inhibitory pathways in favor of excitatory neurotransmission. While these 
emerging roles for DHEA are exciting, the present review also highlighted the discordant 

findings in the clinical literature, and it is clear that much remains to be learned about the 
contribution of DHEAS to brain function in both health and disease.
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