
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



5 

A Partition-Based Suffix Tree Construction  
and Its Applications 

Hongwei Huo1 and Vojislav Stojkovic2 
1 School of Computer Science and Technology, Xidian University, Xi’an  

2 Computer Science Department, Morgan State University, Baltimore 
1China 

2USA 

1. Introduction 

A suffix tree (also called suffix trie, PAT tree or, position tree) is a powerful data structure 
that presents the suffixes of a given string in a way that allows a fast implementation of 
important string operations. The idea behind suffix trees is to assign to each symbol of a 
string an index corresponding to its position in the string. The first symbol in the string will 
have the index 1, the last symbol in the string will have the index n, where n = number of 
symbols in the string. These indexes instead of actual objects are used for the suffix tree 
construction. Suffix trees provide efficient access to all substrings of a string. They are used 
in string processing (such as string search, the longest repeated substring, the longest 
common substring, the longest palindrome, etc), text processing (such as editing, free-text 
search, etc), data compression, data clustering in search machines, etc. 
Suffix trees are important and popular data structures for processing long DNA sequences. 
Suffix trees are often used for efficient solving a variety computational biology and/or 
bioinformatics problems (such as searching for patterns in DNA or protein sequences, exact 
and approximate sequence matching, repeat finding, anchor finding in genome alignment, 
etc).  
A suffix tree displays the internal structure of a string in a deeper way. It can be constructed 
and represented in time and space proportional to the length of a sequence. A suffix tree 
requires affordable amount of memory. It can be fitted completely in the main memory of 
the present desktop computers. The linear construction time and space and the short search 
time are good features of suffix trees. They increase the importance of suffix trees. A suffix 
tree construction process is space demanding and may be a fatal in the case of a suffix tree to 
handle a huge number of long DNA sequences. Increasing the number of sequences to be 
handled, due to random access, causes degrades of the suffix tree construction process 
performance that uses suffix links. Thus, some approaches completely abandon the use of 
suffix link and give up the theoretically superior linear construction time for a quadratic 
time algorithm with better locality of reference.  

2. Previous work 

Weiner [1] gave the first linear time algorithm for suffix tree construction. McCreight [2] 
built a more space efficient algorithm for suffix tree construction in linear time. It has a O

pe
n 

A
cc

es
s 

D
at

ab
as

e 
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,  
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Advances in Greedy Algorithms 

 

70 

readable account for suffix tree construction while processing a string from right to left. 
Ukkonon [3] developed a conceptually different linear-time algorithm for suffix tree 
construction that includes all advantages of McCreight’s algorithm but also allows a much 
simpler explanation. It is a left-to-right on-line algorithm. Ukkonon’s algorithm maintains at 
each step a suffix tree for a string S, where S is c1 ... ci ... cn, as the index i is increasing from 1 
to n. Many improvements in suffix tree construction have been done during the last 
decades. The early algorithms for suffix tree construction have been focused on developing 
algorithms in linear space. These algorithms are adapted to a small input size and the entire-
complete suffix tree can be constructed in the memory. Unfortunately, these algorithms are 
less space efficient, because they suffer from a poor locality of memory reference. Cache 
processor architectures have a hard job to store memory references in the secondary 
memory. One moment there are too many data to be loaded into the memory that causes the 
missing a lot of cache and more disk swapping. Thus, how to develop a practical algorithm 
for suffix tree construction is still an important problem.  
Suffix trees are not only used in the substring processing problems. They are used also in the 

complex genome-scale computational problems. For example, MUMmer [4, 5] is a system 

for the genome alignment, which uses as its main structure suffix trees to align two closely 

relative genomes. Due to the advantages of suffix trees, MUMmer provides the faster, 

simpler, and more systematic way to solve the hard genome alignment problem. REPuter [6, 

7] is another popular software tool for the efficient computing of exact repeats and 

palindromes in the entire genome. It uses an efficient and compact suffix tree to locate exact 

repeats in linear time and space. 

Although suffix trees have these superior features, they are not widely used in the real 

string processing software. The main reason for that is that the space consumption of a 

suffix tree is still quite large despite the asymptotically linear space [3]. Therefore, several 

researchers/scientists have developed the alternative index structures, which store less 

information than suffix trees, but they are more space efficient [8]. The most known index 

structures are suffix arrays, level compressed tries, suffix binary search trees, [4]. Index 

structures have to be tailed for some string matching problems and cannot be adapted to 

other kinds of problems without loss of performance. Also, the traditional string methods 

cannot be directly used in the DNA sequences because they are too complex to be treated. 

The reducing the space requirement of suffix trees is still an important problem in the 

genome processing.  

In order to overcome these disadvantages, we propose a new algorithm for suffix tree 
construction for DNA sequences based on the partitioning strategies and use of the common 
prefixes to construct the independent subtrees [9]. The experiments show that the proposed 
algorithm is more memory-efficient and it has a better performance on the average running 
time. 

3. Suffix tree 

3.1 Definition 

Definition 1. A suffix tree for a string S of n-characters, where n>=1, is a tree with n leaves 
numbered from 0 to n-1. Each internal node, other than the root, has at least two children. 
Each edge has an edge-label that is a nonempty substring of the string S. All edges exit from 
a same node have edge-labels beginning with different characters.  
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The most important characteristic of a suffix tree for a string S is that for each leaf i, where 0 

<= i <= n-1, the concatenation of edge-labels on the path from the root to the leaf i is the ith 

suffix of the string S. The ith suffix of a string S is the suffix of the string S that starts at the 

position i.  

Suffix trees can be constructed in linear time and space [1~3]. Some suffix tree construction 
algorithms that use suffix links require O(n) construction time, where n is the length of a 
string. A suffix link is a link from one internal node to another internal node. Often, leaves 
of a suffix tree are labeled by leaf-labels. A leaf-label is the starting position of the suffix that 
ends at this leaf. 
The Fig. 1 shows the suffix tree for the string S = ATTAGTACA$. The $ character represents 

the end of the string S and it is count as the part of the string S. Dashed lines represent suffix 

links. 

 

 

Fig. 1. The suffix tree for the string S = ATTAGTACA$ 

3.2 Space requirements 

The important characteristic of the suffix tree T for a string S, T(S), is that T(S) can be stored 

in O(n) space, where n is the length of the string S. 

The idea is the following:  

• T(S) has exactly n leaves, where n is the length of the string S.   
• Since each internal node of T(S) is a branching node, T(S) has at most n internal nodes. 
• Since in/at each node, except the root, enters/ends exactly one edge, T(S) has at most 

2n edges.  

• Since each edge-label is a substring of S$, it can be represented in constant space by a 
pair (start, end) points into S$. 

4. Partition-based suffix tree construction 

4.1 Analysis 

If a memory access mechanism has temporal and/or spatial locality features then the 
processor may use one or more caches to speed up access to the memory. Linear time, suffix 
tree construction algorithms, such as McCreight’s algorithm [2] and Ukkonen’s algorithm 
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[3], require many random accesses to the memory for suffix trees and links. In Ukkonen’s 
algorithm, cache misses happen, when the algorithm makes a traversal via suffix links to 
reach another new subtree to check its children nodes. Such traversals cause random 
memory accesses at the very distant memory locations. In addition, each memory access 
visits memory with the higher probability because the address space span is too large to fit 
into the memory. 
Kurtz’s algorithm [8, 14], optimizes the space requirements for the McCreight’s algorithm. 
Kurtz’s algorithm divides the internal nodes into large nodes and small nodes to store the 
suffix tree information based on the relation of head position values. During the 
construction of internal nodes, there are many short or long small-large chains, which are 
sequences of small nodes followed by one large node. In a small-large chain, values of head 
position, the depth and suffix link of all small nodes can be derived from the large node at 
the end of chain. Therefore, with the bit optimization technique, Kurtz’s algorithm uses four 
integers for one large node, two integers for one small node and one integer for each leaf 
node. Therefore, what a small-large chain is longer than more space is saved.  
After analyzing, we find that a small-large chain is formed only if all nodes in the chain are 
series of new nodes created consecutively while series of suffixes are added into the suffix 
one by one. 
DNA sequences are not only well known for their repetitive structures but also they are well 
known for their small-sized alphabet sequences that have high possibility of repetition. 
Therefore, applying Kurtz’s algorithm on DNA sequences may not get advantage on small 
nodes but produces more large nodes. 

4.2 Algorithm 

Based on the properties of suffix trees, we can: 
- in advance put together some suffixes of a branching node 
- during the top-down suffix tree construction merge step by step the common prefixes 

of suffixes  
- generate the internal branching nodes with the common prefix such as an edge-label 

and the responding leaf nodes 
- finish the construction of the various branching nodes under the branch. 
We propose the new ST-PTD (Suffix Tree Partition and Top-Down) algorithm for 
construction of a suffix tree for a DNA sequence. The ST-PTD algorithm uses partition and 
top-down techniques. Due to partition, a large input to the suffix tree construction is 
allowable. The construction of each subtree in the memory is independent. 
The ST-PTD algorithm consists of two phases: partition suffixes and subtree construction. 
The algorithm is shown in Fig. 2. 
Algorithm ST-PTD (S, prefixlen)  
// Phase 1: Preprocessing 
1. Scan the string S and partition suffixes based on the first prefixlen symbols of each suffix 
// Phase 2. Construct suffix tree 
2.       for each partition Pi do 

3. R ← sorting(Pi) 
4. do 
5.       if |R| = 1 then 
6.  create a leaf l 
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7.  STi ← STi ∪ {l} 
8.             else 
9.  lcp = finding-LCP(R) 
10.  create a branch node in the STi 
11.            add the X to R, X being the set of remaining suffixes from R after splitting 
                               off the longest common prefix 
12.            sorting(R) 
13. while (!empty(R)) 
14.  Merge{STi} 

Fig. 2. The ST-PTD algorithm 

In the preprocessing step, the suffixes of the input string S is partitioned into |∑|prefixlen 
parts, where ∑ is an alphabet and |∑| is the size of the alphabet ∑. In the case of DNA 
sequences ∑ = {A, C, G, T} and |∑| = 4. prefixlen is the depth of partitioning. The partition 
procedure is as follows. First, we scan the input string from left to right. At each index 
position i, the prefixlen subsequent characters are used to determine one of the |∑|prefixlen 
partitions and the index i is then recorded to the calculated partition. At the end of the scan, 
each partition will contain the suffix pointers for suffixes that all have the same prefix of size 
prefixlen. In the case of DNA sequences, we can assume that the internal nodes close to the 
root are highly repetitive and have the small alphabet - we can take value of prefixlen to be 
the log4 (Seqlen–1). However, when the value of prefixlen is large than 7, the running time for 
partition phase for large dataset, such as genome, is costly and can not bring the obvious 
advantages to the algorithm, thus we take the value of prefixlen to be the (log4(Seqlen–1))/2. 
In the suffix tree construction step, for each partition, the algorithm performs an 
independent construction of the respective suffix tree branch. The algorithm does not need 
to start at the root of the suffix tree but directly in the node that is found at some depth. 

4.3 Space requirements 

The space requirement measures how many bytes one character uses on average.  
We use the DNA sequences from the NCBI web site to compare the space requirement of the 
Kurtz’s algorithm [8] with the space requirement of the ST-PTD algorithm. The numbers 
given in the Table 1 refer to the space required for the construction. They do not include the 
n bytes used to store the input string. 
 

Name Length Kurtz’s algorithm The ST-PTD algorithm Saving 

AC008583 122493 12.62 11.79 0.0658 
AC135393 38480 12.39 11.85 0.0436 
BC044746 4897 12.61 11.72 0.0706 

J03071 11427 12.32 13.68 -0.1104 
M13438 2657 12.50 11.59 0.0728 
M26434 56737 12.52 12.03 0.0391 
M64239 94647 12.62 11.72 0.0713 
V00662 16569 12.69 11.74 0.0749 
X14112 152261 12.58 11.87 0.0564 

ecoli 4668239 12.56 11.72 0.0669 
[Average] 516841 12.541 11.971 0.0451 

Table 1. The space requirements of Kurtz’s algorithm and the ST-PTD algorithm 
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Table 1 shows the space requirement for each sequence.  
- The first column of the Table 1 contains the names of DNA sequences.  
- The second column of the Table 1 contains the lengths of DNA sequences.  
- The third column of the Table 1 contains the space requirement of Kurtz’ algorithm. 
- The fourth column of the Table 1 contains the space requirement of the ST-PTD 

algorithm. 
- The fifth column of the Table 1 contains the savings. 
The ST-PTD algorithm compared with Kurtz’s algorithm saves about 4.55% in space.  
There is no relationship between space needs and the length of sequence. However, the 
DNA sequence, such as J03071, has a great effect on the space demand. 

4.4 Running time 

Kurtz’s algorithm and the ST-PTD algorithm have been implemented in the C programming 

language and compiled with the GCC compiler. To learn and show the impact of the 

memory on the algorithms, we ran/executed the programs on two different platforms 

config1 and config2. Config1 consisted of the Intel Pentium 4.3 GHZ processor, 512M RAM, 

and the Red Hat Linux 9 operating system. Config2 consisted of the Intel Pentium III 1.3 

GHHZ processor, 128 RAM, and the Fedora 4 operating system.  

The experimental results are shown in Table 2. The running time is in seconds and 
throughout is the ratio of time multiplied by 106 and sequence length. The dark shaded 
areas show the better throughout. ‘-‘ shows the running time more than 1 hour. 
We used in both algorithms arrays as the main data structures to get the higher efficiency in 
time. Unfortunately, arrays limit the size of data they deal with. However, we still used 
arrays, because Kurtz’s algorithm in which we used linked lists to implement DNA 
sequences takes 1176.02 seconds (about 20 minutes) for the sequence B_anthracis_Mslice of 
317k length and over four hours for the sequence ecoil of 4.6M length. 
Although Kurtz’s algorithm requires O(n) time in the worst case and the ST-PTD algorithm 

requires O(n2) time, the ST-PTD algorithm is a little faster than Kurtz’s algorithm on the 

average running time. This shows that the locality of memory reference has the great 

influence on the running time of both algorithms. The partition strategies and the sequence 

structure also had the impact on the performance of both algorithms. For example, the 

difference induced by the unbalanced partitions on the sequence influenza slice is obvious.  

The ST-PTD algorithm has greater advantages on Kurtz’s algorithm for the lower 
configuration due to its partition phase. The partition phase decreases the size of the set of 
problems we are processing so that we can deal with the larger size of data.  
Comparing the running time of both algorithms in different configurations, we can see that 

memory is still one of the bottlenecks affecting the performances of both algorithms. Suffix 

trees are indeed very space greedy. In addition, compared with Kurtz’s algorithm, the ST-

PTD algorithm is easier to understand and implement. Also, the ST-PTD algorithm is easier 

to be parallelized because the construction of each subtree is independent. 

5. Some applications of suffix trees 

5.1 Exact string matching 

The exact string matching problem is: Given a string/sequence S and a pattern string P. Find 
all positions of the pattern P in the string S. 
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Config 1 Config 2 
 Kurtz’s 

algorithm 
The ST-PTD 

algorithm 
Kurtz’s 

algorithm 
The ST-PTD 

algorithm 

Sequence Length time tput time tput time tput time tput 

J03071 11427 0.06 5.25 0.10 8.75 0.06 5.25 0.12 10.50 

V00662 16569 0.01 0.60 0.02 1.21 0.01 0.60 0.02 1.21 

AC135393 38480 0.2 5.20 0.94 24.43 0.26 6.76 1.54 40.02 

M26434 56737 0.04 0.71 0.05 0.88 0.06 1.06 0.07 1.23 

M64239 94647 0.07 0.74 0.08 0.85 0.11 1.16 0.12 1.27 

AC008583 122493 0.09 0.73 0.11 0.90 0.14 1.14 0.15 1.22 

X14112 152261 0.11 0.72 0.14 0.92 0.20 1.31 0.21 1.38 

B_anthracis_Mslice 317829 0.34 1.07 0.31 0.98 0.46 1.45 0.45 1.42 

H.sapiens chr.10 
slice1 

1119913 1.28 1.14 1.27 1.13 1.59 1.42 2.70 2.41 

H.sapiens chr.10 
slice2 

2099930 2.62 1.25 2.53 1.20 3.41 1.62 5.32 2.53 

H.sapiens chr.10 
slice3 

3149930 3.98 1.26 3.98 1.26 23.31 7.40 8.45 2.68 

H.sapiens chr.10 
slice4 

4199930 5.56 1.32 5.13 1.22 - - 11.74 2.80 

ecoli 4668239 7.19 1.54 5.79 1.24 - - 13.69 2.93 

H.sapiens chr.10 
slice5 

4899930 6.25 1.28 6.08 1.24 - - 14.08 2.87 

H.sapiens chr.10 
slice6 

5250000 6.62 1.26 7.74 1.47 - - 15.39 2.93 

H.sapiens chr.10 
slice7 

5600000 7.03 1.26 7.04 1.26 - - 16.61 2.97 

influenza slice 5918744 5.16 0.87 46.07 7.78 - - 71.15 12.02 

H.sapiens chr.10 
slice8 

6019975 7.66 1.27 21.94 3.64 - - 38.44 6.39 

H.sapiens chr.10 
slice9 

6300000 8.2 1.30 7.92 1.26 - - 18.78 2.98 

H.sapiens chr.10 
slice10 

6999930 9.67 1.38 9.04 1.29 - - 21.30 3.04 

H.sapiens chr.10 
slice11 

8400000 10.71 1.28 11.52 1.37 - - 26.55 3.16 

H.sapiens chr.10 
slice12 

9100000 12.92 1.42 13.53 1.49 - - 28.65 3.15 

Arabidopsis thaliana 
chr. 4 

9835812 44.01 4.47 30.33 3.08 - - - - 

H. sapiens chr. 10 
slice13 

10500000 79.13 7.54 25.89 2.47 - - - - 

[Average]  8.42 2.13 7.98 2.02     

Table 2. The running time and throughout of Kurtz’s algorithm and ST-PTD 
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The exact string matching problem can be solved using the suffix tree on the following 
elegant way: 
- Construct the suffix tree for the string S, T(S).  
- Traverse – top-down pass through T(S) from the root further into T(S), guided by the 

characters of P, as long as there is a continuation in T(S) that corresponds to the letters 
of P.  

- If this search stops before the end of P is reached, P does not occur in S.  
- If P can be spelled out completely, then P occurs in S. Moreover, the numbers at the 

leaves below the end point of this search tell all the positions in S where P occurs.  
Suppose that S = ATTAGTACA$ is a string. The suffix tree for the string S, T(S), is shown in 
Fig. 1.  
Suppose that P = TAA is a pattern. After reading the first two characters of P, T and A, we 
will arrive to the branching node TA. Because, the edge A is not outgoing from the branch 
node TA, we cannot continue with the matching P against T(S). In other words, P does not 
occur in T(S). Therefore, P is not the substring of S. 
Suppose that P = ATA is a pattern. Follow the first edge from the root to the node A. The 
node A has the edge TTAGTACA$ leading to the leaf 0. The next character to be read in P is 
the last character in P - A. A does not match the next character T of the edge TTAGTACA$. 
Therefore, P does not occur in T(S) that is P is not the substring of S.  
If we can find that P occurs in T(S), then we can also find the positions in S where P occurs. 
Suppose that P = TA is a pattern and assume T(S) of Fig. 1. Following the second edge from 
the root, we will reach to the branching node TA. Therefore, P is the substring of S. The leaf 
numbers in the subtree below the branching node TA are 2 and 5. Therefore, TA starts in S at 
positions 2 and 5.  
The time complexity of this algorithm is as follows. The construction of T(S) takes O(n) time, 
where n is the length of S. The search for occurrences of P takes O(m + z) time, where m is 
the length of P and z is the number of occurrences of P in S. (Note that z can be larger than 
m, but not larger than n.) Hence, the asymptotic time for the complete search is the same as 
for the optimal on-line string matching algorithms such as Boyer-Moore or Knuth-Morris-
Pratt, O(n + m).  

5.2 Exact set matching 

The exact set matching problem is: Given an array of strings/sequences (Sk) = S1, S2, … , Sk and 
a pattern string P. Find all positions of the pattern P in the sequence (Sk). 
The exact set matching problem can be solved using the suffix trees on the following 
straightforward way: 
- Concatenate the strings S1, S2, … , Sk separated by the unique separator symbols $i, 

where i =1, ..., k-1, into the string S, S = S1$1S2$2 … $k-1Sk. 
        The string S is called the generalized string of the strings S1, S2, … , Sk. 
- Construct the suffix tree for the generalized string S, T(S).  
The suffix tree for the generalized string S, T(S), is called the generalized suffix tree for the 
generalized string S. Leaves of the generalized suffix tree are labeled with pairs of the form 
(sequence number, start position). Often, the labels of leaf-edges are cut of after the first 
separator symbol. The pattern search is performed as in the standard suffix tree. Again, the 
pattern search takes O(m + z) time to find all z occurrences of a pattern P of the length m. 
Suppose that S = BABAB$1AAB$2 is a generalized string. The corresponding generalized 
suffix tree is shown in Fig. 2. 
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Fig. 2. The generalized suffix tree for the string S1=BABAB$1 and the string S2=AAB$2. 

The advantage of constructing an index becomes clear when several searches are performed 
on the same string, as the following table shows (z denotes the output size). 
 

-  
- search for one pattern 

of length m 

- search for k 
patterns of length 

m 

- on-line algorithms - O(n + m) - O(k(n + m)) 

- suffix-tree algorithm - O(n + m) - O(n + km + z) 

5.3 Minimal unique substrings 

The minimal unique substrings problem is: Given a string S and a constant (a positive integer) l. 

Find - enumerate all substrings u of the string S that satisfy the following properties: 

- u occurs exactly once in S (uniqueness) 
- all proper prefixes of u occur at least twice in S (minimality) 
- the length of u is greater or equal than l.  
Suppose that S = ATTAGTACA$ is a string and l = 2 is a constant. The minimal unique 

substrings of S are TAG and AT (see Fig. 1). The substring ATT, for example, is not the 

minimal unique substring of S, since the proper prefix AT of ATT is already unique, that is 

the minimality condition is not satisfied.  

To solve the minimal unique substrings problem, exploit the following two properties of the 

suffix tree for the string S: 

- if a string w occurs at least twice in the string S, there are at least two suffixes in S for 
which w is a proper prefix. Therefore, in the suffix tree T(S), w corresponds to a path 
ending with an edge to a branching node; 

- if a string w occurs only once in the string S, there is only one suffix in S for which w is a 
prefix. Therefore, in the suffix tree T(S), w corresponds to a path ending with an edge to 
a leaf. 

According to the second property, we can find the unique strings by looking at the paths 

ending on edges to a leaf. So, if we have reached a branching node, say w, then we only have 

to enumerate the leaf edges outgoing from w. Suppose w->y is the edge from the branching 

S = B A B A B $1A A B $2 

   0 1 2 3 4 5 0 1 2 3  $2 B 
$1 

$2 $1 

$2 $1 

$1 

A 

B AB 

AB$1 

AB$2 

AB$1 

(1, 0) (1, 2) 

(1, 4) (2, 2) 

(1, 1) (1, 3) (2, 1) 

(2, 0) 

(1, 5) 
(2, 3) 
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node w leading to the leaf y, labeled av where a is the first character on that edge. Then wa 

occurs only once in S, i.e. it is unique. Moreover, w corresponds to the path leading to w and 

by the second property, w occurs at least twice. Finally, we only have to check if the length 

of wa is larger or equal than l.  

The suffix tree based algorithm to solve the minimal unique substrings problem is very 

simple.  

Let us apply the algorithm to the suffix tree of Fig. 1. Assume that l = 2. We can skip the 

root, since it would result in strings, which are too short. Let us consider the branching node 

reached by the edge from the root labeled TA. Then w = TA and with the first character G of 

the label of the second edge we obtain the minimal unique substring TAG. The other 

solution AT can be found by looking at the other branching node reached by the label A 

from the root together with its zero-numbered edge.  

The running time of the minimal unique substrings algorithm is linear in the number of 

nodes and edges in the suffix tree, since we have to visit each of these only once and for each 

we do a constant amount of work. The algorithm runs in linear time since the suffix tree can 

be constructed in linear time and there are O(n) nodes and edges in the suffix tree. This is 

optimal, since the running time is linear in the size of its input.  

The minimal unique substrings problem has applications in primer design. 

5.4 Maximal unique match 

The standard dynamic programming algorithm to compute the optimal alignment of two 

sequences of the length m and the length n requires O(mn) steps. This is too slow for the 

cases when sequences have hundreds of thousands or millions characters.  

There are algorithms that allow aligning of two genomes under the assumption that 

genomes are similar. Genomes are similar if they have long identical subsequences. Identical 

subsequences, called MUMs (Maximal Unique Matches), are almost certainly part of high 

quality and efficient alignment of two genomes. The first step of the maximal unique match 

algorithm is to find MUMs. MUMs are taken as the fixed part of alignment. The remaining 

parts of genomes (the parts not included in MUMs) are aligned with traditional dynamic 

programming methods.  

In this section, we will show how to compute MUMs in linear time. This is very important 

for the applicability of the maximal unique match algorithm, the MUM algorithm. We do 

not consider how to compute the final alignment. 

The maximal unique match problem, the MUM problem, is: Given two sequences S, S’ ∈ ∑∗ (the 

genomes) and a constant (a positive integer) l. Find all subsequences u with the following 

properties: 

- |u| ≥ l. 
- u occurs exactly once in S and exactly once in S’ (uniqueness). 
- for any character a neither ua nor au occurs both in S and in S’ (maximality). 
Suppose that S = CCTTCGT is a string, S’ = CTGTCGT is another string, and l = 2 is a constant. 

There are two maximal unique matches CT and TCGT. Consider an optimal alignment of 

these two sequences (assuming the same costs for insertions, deletions, and replacements): 

CCT-TCGT 
-CTGTCGT 
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Clearly, two MUMs CT and TCGT are parts of this alignment.  
To compute MUMs, we first have to construct the suffix tree for the concatenation of the two 

sequences S and S’. To prevent any match that occurs on the borderline between S and S’, 

we put the unique symbol # between S and S’, i.e. we construct the suffix tree for the string 

X, where X = S#S’. A MUM, say u, must occur exactly twice in X, once in S and once in S’. 

Therefore, u corresponds to the path in the suffix tree T(X) ending with an edge to a 

branching node. Since u is the right-maximal by definition (i.e. for any symbol a, ua does not 

occur both in S and in S’), u must even correspond to the branching node. In other words, 

for each MUM u there is the branching node u in the suffix tree for the string X. 

Since u occurs twice in X, there are exactly two leaves in the subtree below u. The subtree 

can contain no branching node, hence there are two leaf edges outgoing from u. One edge 

must lead to the leaf, say v, that corresponds to a suffix starting in S and the other edge must 

lead to the leaf, say w, that corresponds to a suffix starting in S’. For the given branching 

node u, the existence of exactly two such leaf edges can be checked easily. What remains is 

to verify left-maximality, i.e. to check if there is the character a such that au occurs both in S 

and in S’. Suppose that the leaf v has the leaf number i and the leaf w has the leaf number j. 

Then u is left maximal, if and only if i = 0 or Xi-1 ≠ Xj-1. In other words, we only have to look 

at the two positions immediately to the left of two positions in X where u starts. 

 
 

 
 

 

Fig. 3. The suffix tree for CCTTCG#CTGTCG$ without the leaf edges from the root 

Suppose that S = CCTTCG is a string, S’ = CTGTCG is another string, and l = 2 is a constant. 

Consider the suffix tree for the string S#S’. This is shown in Fig. 3. Obviously, the string 

TCG occurs once in S and S’, since there are two corresponding edges from the branching 

node TCG. Comparing the character G and the character T immediately to the left of the 

occurrences of TCG in S and S’ verifies the left maximality. The string CT also occurs once in 

S and once in S’, as verified by the two leaf edges from CT. The left-maximality is obvious, 

since the character C and the character # to the left of the occurrences are different. 

5.5 Maximal repeat 

If a sequence S may be represented by the array S0…Sn-1, then the sequence S is indexed 

from 0 to n-1. If a sequence S is indexed, then a subsequence Si…Sj of the string S may be 

represented by the pair (i, j). A pair (l, r), where l = (i, j) and r = (i’, j’), is a repeat, if i < i’ and 

Si…Sj = Si ’…Sj ’. l is the left instance of the repeat and r is the right instance of the repeat. 

TC
G

TG
CTTCG#CTGTCG$ 

#CTGTCG$ $ TCG#CTGTCG$ 
GTCG$ 

#CTGTCG$ TCG$ $ TCG#CTGTCG$ CG 

GTCG$ 

#CTGTCG$ $ 
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Note that the left instance of the repeat and the right instance of the repeat may overlap.  

Suppose that S = GAGCTCGAGC is a string. The string S contains the following repeats of 

the length l ≥ 2: 
 

- ((0, 3), (6, 9)) - GAGC 
- ((0, 2), (6, 8)) - GAG 
- ((0, 1), (6, 7)) - GA 
- ((1, 3), (7, 9)) - AGC 
- ((2, 3), (8, 9)) - GC 

 

The example shows that shorter repeats are often contained in longer repeats. To remove 

redundancy, we restrict to maximal repeats. A repeat is the maximal if it is the left maximal 

and the right maximal. These notions are formally defined as follows: The repeat ((i, j), (i’, 

j’)) is the left maximal if and only if i-1 < 0 or Si-1 ≠ Si’-1. The repeat ((i, j), (i’, j’)) is the right 

maximal if and only if j’+1 > n-1 or Sj+1 ≠ Sj’+1.  

From now, we will restrict ourselves to the maximal repeats. All repeats, which are not the 

maximal repeats, can be obtained from the maximal repeats. In the example above, the last 

four repeats can be extended to the left or to the right. Hence, only the first repeat is 

maximal. 

In the following, we will present an algorithm to compute all maximal repeats of a given 

sequence. It works in two phases. In the first phase, the leaves of the suffix tree are 

annotated. In the second phase, the repeats are output while simultaneously the branching 

nodes are annotated.  

We will show how the algorithm to compute all maximal repeats works for the string 

$1GCGC$2GGCG$3. The corresponding suffix tree (with some unimportant edges left out) is 

shown in Fig. 4.  

Suppose that: 

- a string S of the length n over the alphabet ∑ such that the first and the last character of 
S both occur exactly once and  

- the suffix tree for a string S is given (as in Fig. 4).  
 

 
 

Fig. 4. The suffix tree for the string $1GCGC$2GGCG$3. 

C G 

G $3 

C GCG$3 

$2GGCG$3 G 

$3 C$2GGCG$3 

$3 C$2GGCG$3 

$2GGCG$3 

S = $1 G C G C $2 G G C G $3 

   0  1 2 3 4 5 6 7 8 9 0 
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We can ignore leaf edges from the root, since the root corresponds to the repeats of the 

length zero, and we are not interested in these.  

In the first phase, the algorithm annotates each leaf of the suffix tree: if v = Si…Sn, then the 

leaf v is annotated by the pair (a, i), where i is the starting position of the suffix v and a = Si-1 

is the character to the immediate left to the position i. (a, i) is the leaf annotation of v and it is 

denoted A(v, Si-1) = {i}. We assume that A(v, c) = φ (the empty set) for all characters c ∈ ∑ 

different from Si-1. This assumption holds in general (also for branching nodes), whenever 

there is no annotation (c, j) for some j. 

The leaf annotation of the suffix tree for the string S in Fig. 4, is shown in Fig. 5.  

Leaf edges from the root are not shown. These edges are not important for the algorithm. 
 
 
 

 
 

Fig. 5. The suffix tree for the string $1GCGC$2GGCG$3 with leaf annotation. 

The leaf annotation gives the character upon which we decide the left-maximality of a 

repeat, plus the position where the repeated string occurs. We have only to combine this 

information at the branching nodes appropriately. This is done in the second phase of the 

algorithm: In a bottom-up traversal, the repeats are output and simultaneously the 

annotation for the branching nodes is computed. A bottom-up traversal means that a 

branching node is visited only after all nodes in the subtree below that node have been 

visited. Each edge, say w → v with a label au, is processed as follows: At first repeats (for w) 

are output by combining the annotation already computed for the node w with the complete 

annotation stored for v (this was already computed due to the bottom-up strategy). In 

particular, we output all pairs ((i, i + q-1), (j, j + q-1)), where 

- q is the depth of node w, i.e. q = |w|, 
- i ∈ A(w, c) and j ∈ A(v, c’) for some characters c ≠ c’, 
- A(w, c) is the annotation already computed for w w.r.t. character c and A(v, c’) is the 

annotation stored for node v w.r.t. character c’. 
The second condition means that only those positions are combined which have different 

characters to the left. It guarantees the left-maximality of repeats. Recall that we consider 

C G 

G $3 

C GCG$3 

$2GGCG$3 G 

$3 C$2GGCG$3 

$3 C$2GGCG$3 

$2GGCG$3 

S = $1 G C G C $2 G G C G $3 

   0  1 2 3 4 5 6 7 8 9 0 

($1, 1) (G, 7) 

(C, 3) 

($2, 6) 

(C, 9) 

(G, 8) (G, 2) 

(G, 4) 
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processing the edge w → v with the label au. The annotation already computed for w was 

inherited along edges outgoing from w, which are different from w → v with the label au. 

The first character of the label of an edge, say c, is different from a. Now since w is the 

repeated substring, c and a are characters to the right of w. Consequently only those 

positions are combined which have different characters to the right. In other words, the 

algorithm also guarantees the right maximality of repeats. 

As soon as for the current edge the repeats are output, the algorithm computes the union 

A(w, c) ∪ A(v, c) of all characters c, i.e. the annotation is inherited from the node v to the 

node w. In this way, after processing all edges outgoing from w, this node is annotated by 

the set of positions where w occurs, and this set is divided into (possibly empty) disjoint 

subsets A(w, c1),…, A(w, cr), where ∑ ={c1,…,cr}. 

Fig. 6 shows the annotation for a large part of the previous suffix tree and some repeats. The 

bottom up traversal of the suffix tree for the string $1GCGC$2GGCG$3 begins with the node 

GCG of depth 4, before it visits the node GC of depth 2. The maximal repeats for the string 

GC are computed as follows: The algorithm starts by processing the first edge outgoing from 

GC. Since initially, there is no annotation for GC, no repeat is output, and GC is annotated by 

(C, 3). Then the second edge is processed. This means that the annotation ($1, 1) and (G, 7) 

for GCG is combined with the annotation (C, 3). This give repeats ((1, 2), (3, 4)) and ((3, 4), (7, 

8)). The final annotation for GC becomes (C, 3), (G, 7), ($1, 1) which also can be read as A(GC, 

C) = {3}, A(GC, G) = {7}, and A(GC, $1) = {1}.  

 

 

 
 

Fig. 6. The annotation for a large part of the suffix tree of Fig. 5 and some repeats. 

Let us now consider the running time of the maximal repeats algorithm. Traversing the 

suffix tree bottom-up can be done in time linear in the number of nodes. Follow the paths in 

the suffix tree, each node is visited only once. Two operations are performed during the 

traversal: the output of repeats and the combination of annotations. If the annotation for 

each node is stored in linked lists, then the output operation can be implemented such it 

runs in time linear in the number of repeats. Combining annotations only involves linking 

($1, 1) (G, 7) 

(C, 3) 

($2, 6) 

(C, 9) 

S = $1 G C G C $2 G G C G $3 

   0  1 2 3 4 5 6 7 8 9 0 

G 

$3 

C GCG$3 

$2GGCG$3 G 

$3 C$2GGCG$3 $1 

G

1 

7

$1 
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G 

1 

3 

7 

((1,3), (7,9)) 

((1,2), (3,4)) ((3, 4), (7, 8)) 
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3, 9 
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7 
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lists together. This can be done in time linear in the number of nodes visited during the 

traversal. Recall, that the suffix tree can be constructed in O(n) time. Therefore, the 

algorithm requires O(n + z) time, where n is the length of the input string and z is the 

number of repeats.  

To analyze the space consumption of the maximal repeats algorithm, the annotations for all 

nodes do not have to be stored all at once. As soon as a node and its father have been 

processed, the annotations are no longer needed. The consequence is - the annotation only 

requires O(n) space. Therefore, the space consumption of the algorithm is O(n).  

The maximal repeats algorithm is optimal, since its space and time requirement are linear in 
the size of the input plus the output. 
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