
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

5

A Partition-Based Suffix Tree Construction
and Its Applications

Hongwei Huo1 and Vojislav Stojkovic2
1 School of Computer Science and Technology, Xidian University, Xi’an

2 Computer Science Department, Morgan State University, Baltimore
1China

2USA

1. Introduction

A suffix tree (also called suffix trie, PAT tree or, position tree) is a powerful data structure
that presents the suffixes of a given string in a way that allows a fast implementation of
important string operations. The idea behind suffix trees is to assign to each symbol of a
string an index corresponding to its position in the string. The first symbol in the string will
have the index 1, the last symbol in the string will have the index n, where n = number of
symbols in the string. These indexes instead of actual objects are used for the suffix tree
construction. Suffix trees provide efficient access to all substrings of a string. They are used
in string processing (such as string search, the longest repeated substring, the longest
common substring, the longest palindrome, etc), text processing (such as editing, free-text
search, etc), data compression, data clustering in search machines, etc.
Suffix trees are important and popular data structures for processing long DNA sequences.
Suffix trees are often used for efficient solving a variety computational biology and/or
bioinformatics problems (such as searching for patterns in DNA or protein sequences, exact
and approximate sequence matching, repeat finding, anchor finding in genome alignment,
etc).
A suffix tree displays the internal structure of a string in a deeper way. It can be constructed
and represented in time and space proportional to the length of a sequence. A suffix tree
requires affordable amount of memory. It can be fitted completely in the main memory of
the present desktop computers. The linear construction time and space and the short search
time are good features of suffix trees. They increase the importance of suffix trees. A suffix
tree construction process is space demanding and may be a fatal in the case of a suffix tree to
handle a huge number of long DNA sequences. Increasing the number of sequences to be
handled, due to random access, causes degrades of the suffix tree construction process
performance that uses suffix links. Thus, some approaches completely abandon the use of
suffix link and give up the theoretically superior linear construction time for a quadratic
time algorithm with better locality of reference.

2. Previous work

Weiner [1] gave the first linear time algorithm for suffix tree construction. McCreight [2]
built a more space efficient algorithm for suffix tree construction in linear time. It has a O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

70

readable account for suffix tree construction while processing a string from right to left.
Ukkonon [3] developed a conceptually different linear-time algorithm for suffix tree
construction that includes all advantages of McCreight’s algorithm but also allows a much
simpler explanation. It is a left-to-right on-line algorithm. Ukkonon’s algorithm maintains at
each step a suffix tree for a string S, where S is c1 ... ci ... cn, as the index i is increasing from 1
to n. Many improvements in suffix tree construction have been done during the last
decades. The early algorithms for suffix tree construction have been focused on developing
algorithms in linear space. These algorithms are adapted to a small input size and the entire-
complete suffix tree can be constructed in the memory. Unfortunately, these algorithms are
less space efficient, because they suffer from a poor locality of memory reference. Cache
processor architectures have a hard job to store memory references in the secondary
memory. One moment there are too many data to be loaded into the memory that causes the
missing a lot of cache and more disk swapping. Thus, how to develop a practical algorithm
for suffix tree construction is still an important problem.
Suffix trees are not only used in the substring processing problems. They are used also in the

complex genome-scale computational problems. For example, MUMmer [4, 5] is a system

for the genome alignment, which uses as its main structure suffix trees to align two closely

relative genomes. Due to the advantages of suffix trees, MUMmer provides the faster,

simpler, and more systematic way to solve the hard genome alignment problem. REPuter [6,

7] is another popular software tool for the efficient computing of exact repeats and

palindromes in the entire genome. It uses an efficient and compact suffix tree to locate exact

repeats in linear time and space.

Although suffix trees have these superior features, they are not widely used in the real

string processing software. The main reason for that is that the space consumption of a

suffix tree is still quite large despite the asymptotically linear space [3]. Therefore, several

researchers/scientists have developed the alternative index structures, which store less

information than suffix trees, but they are more space efficient [8]. The most known index

structures are suffix arrays, level compressed tries, suffix binary search trees, [4]. Index

structures have to be tailed for some string matching problems and cannot be adapted to

other kinds of problems without loss of performance. Also, the traditional string methods

cannot be directly used in the DNA sequences because they are too complex to be treated.

The reducing the space requirement of suffix trees is still an important problem in the

genome processing.

In order to overcome these disadvantages, we propose a new algorithm for suffix tree
construction for DNA sequences based on the partitioning strategies and use of the common
prefixes to construct the independent subtrees [9]. The experiments show that the proposed
algorithm is more memory-efficient and it has a better performance on the average running
time.

3. Suffix tree

3.1 Definition

Definition 1. A suffix tree for a string S of n-characters, where n>=1, is a tree with n leaves
numbered from 0 to n-1. Each internal node, other than the root, has at least two children.
Each edge has an edge-label that is a nonempty substring of the string S. All edges exit from
a same node have edge-labels beginning with different characters.

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

71

The most important characteristic of a suffix tree for a string S is that for each leaf i, where 0

<= i <= n-1, the concatenation of edge-labels on the path from the root to the leaf i is the ith

suffix of the string S. The ith suffix of a string S is the suffix of the string S that starts at the

position i.

Suffix trees can be constructed in linear time and space [1~3]. Some suffix tree construction
algorithms that use suffix links require O(n) construction time, where n is the length of a
string. A suffix link is a link from one internal node to another internal node. Often, leaves
of a suffix tree are labeled by leaf-labels. A leaf-label is the starting position of the suffix that
ends at this leaf.
The Fig. 1 shows the suffix tree for the string S = ATTAGTACA$. The $ character represents

the end of the string S and it is count as the part of the string S. Dashed lines represent suffix

links.

Fig. 1. The suffix tree for the string S = ATTAGTACA$

3.2 Space requirements

The important characteristic of the suffix tree T for a string S, T(S), is that T(S) can be stored

in O(n) space, where n is the length of the string S.

The idea is the following:

• T(S) has exactly n leaves, where n is the length of the string S.
• Since each internal node of T(S) is a branching node, T(S) has at most n internal nodes.
• Since in/at each node, except the root, enters/ends exactly one edge, T(S) has at most

2n edges.

• Since each edge-label is a substring of S$, it can be represented in constant space by a
pair (start, end) points into S$.

4. Partition-based suffix tree construction

4.1 Analysis

If a memory access mechanism has temporal and/or spatial locality features then the
processor may use one or more caches to speed up access to the memory. Linear time, suffix
tree construction algorithms, such as McCreight’s algorithm [2] and Ukkonen’s algorithm

A T T A G T A C A $

0 1 2 3 4 5 6 7 8 9

GTACA$

$

CA$
T

A

A

$ CA$ GTACA$ TTAGTACA$

CA$

TAGTACA$

GTACA$

6 0 3 8

2 5

1
4

7

9

www.intechopen.com

 Advances in Greedy Algorithms

72

[3], require many random accesses to the memory for suffix trees and links. In Ukkonen’s
algorithm, cache misses happen, when the algorithm makes a traversal via suffix links to
reach another new subtree to check its children nodes. Such traversals cause random
memory accesses at the very distant memory locations. In addition, each memory access
visits memory with the higher probability because the address space span is too large to fit
into the memory.
Kurtz’s algorithm [8, 14], optimizes the space requirements for the McCreight’s algorithm.
Kurtz’s algorithm divides the internal nodes into large nodes and small nodes to store the
suffix tree information based on the relation of head position values. During the
construction of internal nodes, there are many short or long small-large chains, which are
sequences of small nodes followed by one large node. In a small-large chain, values of head
position, the depth and suffix link of all small nodes can be derived from the large node at
the end of chain. Therefore, with the bit optimization technique, Kurtz’s algorithm uses four
integers for one large node, two integers for one small node and one integer for each leaf
node. Therefore, what a small-large chain is longer than more space is saved.
After analyzing, we find that a small-large chain is formed only if all nodes in the chain are
series of new nodes created consecutively while series of suffixes are added into the suffix
one by one.
DNA sequences are not only well known for their repetitive structures but also they are well
known for their small-sized alphabet sequences that have high possibility of repetition.
Therefore, applying Kurtz’s algorithm on DNA sequences may not get advantage on small
nodes but produces more large nodes.

4.2 Algorithm

Based on the properties of suffix trees, we can:
- in advance put together some suffixes of a branching node
- during the top-down suffix tree construction merge step by step the common prefixes

of suffixes
- generate the internal branching nodes with the common prefix such as an edge-label

and the responding leaf nodes
- finish the construction of the various branching nodes under the branch.
We propose the new ST-PTD (Suffix Tree Partition and Top-Down) algorithm for
construction of a suffix tree for a DNA sequence. The ST-PTD algorithm uses partition and
top-down techniques. Due to partition, a large input to the suffix tree construction is
allowable. The construction of each subtree in the memory is independent.
The ST-PTD algorithm consists of two phases: partition suffixes and subtree construction.
The algorithm is shown in Fig. 2.
Algorithm ST-PTD (S, prefixlen)
// Phase 1: Preprocessing
1. Scan the string S and partition suffixes based on the first prefixlen symbols of each suffix
// Phase 2. Construct suffix tree
2. for each partition Pi do

3. R ← sorting(Pi)
4. do
5. if |R| = 1 then
6. create a leaf l

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

73

7. STi ← STi ∪ {l}
8. else
9. lcp = finding-LCP(R)
10. create a branch node in the STi
11. add the X to R, X being the set of remaining suffixes from R after splitting
 off the longest common prefix
12. sorting(R)
13. while (!empty(R))
14. Merge{STi}

Fig. 2. The ST-PTD algorithm

In the preprocessing step, the suffixes of the input string S is partitioned into |∑|prefixlen
parts, where ∑ is an alphabet and |∑| is the size of the alphabet ∑. In the case of DNA
sequences ∑ = {A, C, G, T} and |∑| = 4. prefixlen is the depth of partitioning. The partition
procedure is as follows. First, we scan the input string from left to right. At each index
position i, the prefixlen subsequent characters are used to determine one of the |∑|prefixlen
partitions and the index i is then recorded to the calculated partition. At the end of the scan,
each partition will contain the suffix pointers for suffixes that all have the same prefix of size
prefixlen. In the case of DNA sequences, we can assume that the internal nodes close to the
root are highly repetitive and have the small alphabet - we can take value of prefixlen to be
the log4 (Seqlen–1). However, when the value of prefixlen is large than 7, the running time for
partition phase for large dataset, such as genome, is costly and can not bring the obvious
advantages to the algorithm, thus we take the value of prefixlen to be the (log4(Seqlen–1))/2.
In the suffix tree construction step, for each partition, the algorithm performs an
independent construction of the respective suffix tree branch. The algorithm does not need
to start at the root of the suffix tree but directly in the node that is found at some depth.

4.3 Space requirements

The space requirement measures how many bytes one character uses on average.
We use the DNA sequences from the NCBI web site to compare the space requirement of the
Kurtz’s algorithm [8] with the space requirement of the ST-PTD algorithm. The numbers
given in the Table 1 refer to the space required for the construction. They do not include the
n bytes used to store the input string.

Name Length Kurtz’s algorithm The ST-PTD algorithm Saving

AC008583 122493 12.62 11.79 0.0658
AC135393 38480 12.39 11.85 0.0436
BC044746 4897 12.61 11.72 0.0706

J03071 11427 12.32 13.68 -0.1104
M13438 2657 12.50 11.59 0.0728
M26434 56737 12.52 12.03 0.0391
M64239 94647 12.62 11.72 0.0713
V00662 16569 12.69 11.74 0.0749
X14112 152261 12.58 11.87 0.0564

ecoli 4668239 12.56 11.72 0.0669
[Average] 516841 12.541 11.971 0.0451

Table 1. The space requirements of Kurtz’s algorithm and the ST-PTD algorithm

www.intechopen.com

 Advances in Greedy Algorithms

74

Table 1 shows the space requirement for each sequence.
- The first column of the Table 1 contains the names of DNA sequences.
- The second column of the Table 1 contains the lengths of DNA sequences.
- The third column of the Table 1 contains the space requirement of Kurtz’ algorithm.
- The fourth column of the Table 1 contains the space requirement of the ST-PTD

algorithm.
- The fifth column of the Table 1 contains the savings.
The ST-PTD algorithm compared with Kurtz’s algorithm saves about 4.55% in space.
There is no relationship between space needs and the length of sequence. However, the
DNA sequence, such as J03071, has a great effect on the space demand.

4.4 Running time

Kurtz’s algorithm and the ST-PTD algorithm have been implemented in the C programming

language and compiled with the GCC compiler. To learn and show the impact of the

memory on the algorithms, we ran/executed the programs on two different platforms

config1 and config2. Config1 consisted of the Intel Pentium 4.3 GHZ processor, 512M RAM,

and the Red Hat Linux 9 operating system. Config2 consisted of the Intel Pentium III 1.3

GHHZ processor, 128 RAM, and the Fedora 4 operating system.

The experimental results are shown in Table 2. The running time is in seconds and
throughout is the ratio of time multiplied by 106 and sequence length. The dark shaded
areas show the better throughout. ‘-‘ shows the running time more than 1 hour.
We used in both algorithms arrays as the main data structures to get the higher efficiency in
time. Unfortunately, arrays limit the size of data they deal with. However, we still used
arrays, because Kurtz’s algorithm in which we used linked lists to implement DNA
sequences takes 1176.02 seconds (about 20 minutes) for the sequence B_anthracis_Mslice of
317k length and over four hours for the sequence ecoil of 4.6M length.
Although Kurtz’s algorithm requires O(n) time in the worst case and the ST-PTD algorithm

requires O(n2) time, the ST-PTD algorithm is a little faster than Kurtz’s algorithm on the

average running time. This shows that the locality of memory reference has the great

influence on the running time of both algorithms. The partition strategies and the sequence

structure also had the impact on the performance of both algorithms. For example, the

difference induced by the unbalanced partitions on the sequence influenza slice is obvious.

The ST-PTD algorithm has greater advantages on Kurtz’s algorithm for the lower
configuration due to its partition phase. The partition phase decreases the size of the set of
problems we are processing so that we can deal with the larger size of data.
Comparing the running time of both algorithms in different configurations, we can see that

memory is still one of the bottlenecks affecting the performances of both algorithms. Suffix

trees are indeed very space greedy. In addition, compared with Kurtz’s algorithm, the ST-

PTD algorithm is easier to understand and implement. Also, the ST-PTD algorithm is easier

to be parallelized because the construction of each subtree is independent.

5. Some applications of suffix trees

5.1 Exact string matching

The exact string matching problem is: Given a string/sequence S and a pattern string P. Find
all positions of the pattern P in the string S.

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

75

Config 1 Config 2
 Kurtz’s

algorithm
The ST-PTD

algorithm
Kurtz’s

algorithm
The ST-PTD

algorithm

Sequence Length time tput time tput time tput time tput

J03071 11427 0.06 5.25 0.10 8.75 0.06 5.25 0.12 10.50

V00662 16569 0.01 0.60 0.02 1.21 0.01 0.60 0.02 1.21

AC135393 38480 0.2 5.20 0.94 24.43 0.26 6.76 1.54 40.02

M26434 56737 0.04 0.71 0.05 0.88 0.06 1.06 0.07 1.23

M64239 94647 0.07 0.74 0.08 0.85 0.11 1.16 0.12 1.27

AC008583 122493 0.09 0.73 0.11 0.90 0.14 1.14 0.15 1.22

X14112 152261 0.11 0.72 0.14 0.92 0.20 1.31 0.21 1.38

B_anthracis_Mslice 317829 0.34 1.07 0.31 0.98 0.46 1.45 0.45 1.42

H.sapiens chr.10
slice1

1119913 1.28 1.14 1.27 1.13 1.59 1.42 2.70 2.41

H.sapiens chr.10
slice2

2099930 2.62 1.25 2.53 1.20 3.41 1.62 5.32 2.53

H.sapiens chr.10
slice3

3149930 3.98 1.26 3.98 1.26 23.31 7.40 8.45 2.68

H.sapiens chr.10
slice4

4199930 5.56 1.32 5.13 1.22 - - 11.74 2.80

ecoli 4668239 7.19 1.54 5.79 1.24 - - 13.69 2.93

H.sapiens chr.10
slice5

4899930 6.25 1.28 6.08 1.24 - - 14.08 2.87

H.sapiens chr.10
slice6

5250000 6.62 1.26 7.74 1.47 - - 15.39 2.93

H.sapiens chr.10
slice7

5600000 7.03 1.26 7.04 1.26 - - 16.61 2.97

influenza slice 5918744 5.16 0.87 46.07 7.78 - - 71.15 12.02

H.sapiens chr.10
slice8

6019975 7.66 1.27 21.94 3.64 - - 38.44 6.39

H.sapiens chr.10
slice9

6300000 8.2 1.30 7.92 1.26 - - 18.78 2.98

H.sapiens chr.10
slice10

6999930 9.67 1.38 9.04 1.29 - - 21.30 3.04

H.sapiens chr.10
slice11

8400000 10.71 1.28 11.52 1.37 - - 26.55 3.16

H.sapiens chr.10
slice12

9100000 12.92 1.42 13.53 1.49 - - 28.65 3.15

Arabidopsis thaliana
chr. 4

9835812 44.01 4.47 30.33 3.08 - - - -

H. sapiens chr. 10
slice13

10500000 79.13 7.54 25.89 2.47 - - - -

[Average] 8.42 2.13 7.98 2.02

Table 2. The running time and throughout of Kurtz’s algorithm and ST-PTD

www.intechopen.com

 Advances in Greedy Algorithms

76

The exact string matching problem can be solved using the suffix tree on the following
elegant way:
- Construct the suffix tree for the string S, T(S).
- Traverse – top-down pass through T(S) from the root further into T(S), guided by the

characters of P, as long as there is a continuation in T(S) that corresponds to the letters
of P.

- If this search stops before the end of P is reached, P does not occur in S.
- If P can be spelled out completely, then P occurs in S. Moreover, the numbers at the

leaves below the end point of this search tell all the positions in S where P occurs.
Suppose that S = ATTAGTACA$ is a string. The suffix tree for the string S, T(S), is shown in
Fig. 1.
Suppose that P = TAA is a pattern. After reading the first two characters of P, T and A, we
will arrive to the branching node TA. Because, the edge A is not outgoing from the branch
node TA, we cannot continue with the matching P against T(S). In other words, P does not
occur in T(S). Therefore, P is not the substring of S.
Suppose that P = ATA is a pattern. Follow the first edge from the root to the node A. The
node A has the edge TTAGTACA$ leading to the leaf 0. The next character to be read in P is
the last character in P - A. A does not match the next character T of the edge TTAGTACA$.
Therefore, P does not occur in T(S) that is P is not the substring of S.
If we can find that P occurs in T(S), then we can also find the positions in S where P occurs.
Suppose that P = TA is a pattern and assume T(S) of Fig. 1. Following the second edge from
the root, we will reach to the branching node TA. Therefore, P is the substring of S. The leaf
numbers in the subtree below the branching node TA are 2 and 5. Therefore, TA starts in S at
positions 2 and 5.
The time complexity of this algorithm is as follows. The construction of T(S) takes O(n) time,
where n is the length of S. The search for occurrences of P takes O(m + z) time, where m is
the length of P and z is the number of occurrences of P in S. (Note that z can be larger than
m, but not larger than n.) Hence, the asymptotic time for the complete search is the same as
for the optimal on-line string matching algorithms such as Boyer-Moore or Knuth-Morris-
Pratt, O(n + m).

5.2 Exact set matching

The exact set matching problem is: Given an array of strings/sequences (Sk) = S1, S2, … , Sk and
a pattern string P. Find all positions of the pattern P in the sequence (Sk).
The exact set matching problem can be solved using the suffix trees on the following
straightforward way:
- Concatenate the strings S1, S2, … , Sk separated by the unique separator symbols $i,

where i =1, ..., k-1, into the string S, S = S1$1S2$2 … $k-1Sk.
 The string S is called the generalized string of the strings S1, S2, … , Sk.
- Construct the suffix tree for the generalized string S, T(S).
The suffix tree for the generalized string S, T(S), is called the generalized suffix tree for the
generalized string S. Leaves of the generalized suffix tree are labeled with pairs of the form
(sequence number, start position). Often, the labels of leaf-edges are cut of after the first
separator symbol. The pattern search is performed as in the standard suffix tree. Again, the
pattern search takes O(m + z) time to find all z occurrences of a pattern P of the length m.
Suppose that S = BABAB$1AAB$2 is a generalized string. The corresponding generalized
suffix tree is shown in Fig. 2.

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

77

Fig. 2. The generalized suffix tree for the string S1=BABAB$1 and the string S2=AAB$2.

The advantage of constructing an index becomes clear when several searches are performed
on the same string, as the following table shows (z denotes the output size).

-
- search for one pattern

of length m

- search for k
patterns of length

m

- on-line algorithms - O(n + m) - O(k(n + m))

- suffix-tree algorithm - O(n + m) - O(n + km + z)

5.3 Minimal unique substrings

The minimal unique substrings problem is: Given a string S and a constant (a positive integer) l.

Find - enumerate all substrings u of the string S that satisfy the following properties:

- u occurs exactly once in S (uniqueness)
- all proper prefixes of u occur at least twice in S (minimality)
- the length of u is greater or equal than l.
Suppose that S = ATTAGTACA$ is a string and l = 2 is a constant. The minimal unique

substrings of S are TAG and AT (see Fig. 1). The substring ATT, for example, is not the

minimal unique substring of S, since the proper prefix AT of ATT is already unique, that is

the minimality condition is not satisfied.

To solve the minimal unique substrings problem, exploit the following two properties of the

suffix tree for the string S:

- if a string w occurs at least twice in the string S, there are at least two suffixes in S for
which w is a proper prefix. Therefore, in the suffix tree T(S), w corresponds to a path
ending with an edge to a branching node;

- if a string w occurs only once in the string S, there is only one suffix in S for which w is a
prefix. Therefore, in the suffix tree T(S), w corresponds to a path ending with an edge to
a leaf.

According to the second property, we can find the unique strings by looking at the paths

ending on edges to a leaf. So, if we have reached a branching node, say w, then we only have

to enumerate the leaf edges outgoing from w. Suppose w->y is the edge from the branching

S = B A B A B $1A A B $2

 0 1 2 3 4 5 0 1 2 3 $2 B
$1

$2 $1

$2 $1

$1

A

B AB

AB$1

AB$2

AB$1

(1, 0) (1, 2)

(1, 4) (2, 2)

(1, 1) (1, 3) (2, 1)

(2, 0)

(1, 5)
(2, 3)

www.intechopen.com

 Advances in Greedy Algorithms

78

node w leading to the leaf y, labeled av where a is the first character on that edge. Then wa

occurs only once in S, i.e. it is unique. Moreover, w corresponds to the path leading to w and

by the second property, w occurs at least twice. Finally, we only have to check if the length

of wa is larger or equal than l.

The suffix tree based algorithm to solve the minimal unique substrings problem is very

simple.

Let us apply the algorithm to the suffix tree of Fig. 1. Assume that l = 2. We can skip the

root, since it would result in strings, which are too short. Let us consider the branching node

reached by the edge from the root labeled TA. Then w = TA and with the first character G of

the label of the second edge we obtain the minimal unique substring TAG. The other

solution AT can be found by looking at the other branching node reached by the label A

from the root together with its zero-numbered edge.

The running time of the minimal unique substrings algorithm is linear in the number of

nodes and edges in the suffix tree, since we have to visit each of these only once and for each

we do a constant amount of work. The algorithm runs in linear time since the suffix tree can

be constructed in linear time and there are O(n) nodes and edges in the suffix tree. This is

optimal, since the running time is linear in the size of its input.

The minimal unique substrings problem has applications in primer design.

5.4 Maximal unique match

The standard dynamic programming algorithm to compute the optimal alignment of two

sequences of the length m and the length n requires O(mn) steps. This is too slow for the

cases when sequences have hundreds of thousands or millions characters.

There are algorithms that allow aligning of two genomes under the assumption that

genomes are similar. Genomes are similar if they have long identical subsequences. Identical

subsequences, called MUMs (Maximal Unique Matches), are almost certainly part of high

quality and efficient alignment of two genomes. The first step of the maximal unique match

algorithm is to find MUMs. MUMs are taken as the fixed part of alignment. The remaining

parts of genomes (the parts not included in MUMs) are aligned with traditional dynamic

programming methods.

In this section, we will show how to compute MUMs in linear time. This is very important

for the applicability of the maximal unique match algorithm, the MUM algorithm. We do

not consider how to compute the final alignment.

The maximal unique match problem, the MUM problem, is: Given two sequences S, S’ ∈ ∑∗ (the

genomes) and a constant (a positive integer) l. Find all subsequences u with the following

properties:

- |u| ≥ l.
- u occurs exactly once in S and exactly once in S’ (uniqueness).
- for any character a neither ua nor au occurs both in S and in S’ (maximality).
Suppose that S = CCTTCGT is a string, S’ = CTGTCGT is another string, and l = 2 is a constant.

There are two maximal unique matches CT and TCGT. Consider an optimal alignment of

these two sequences (assuming the same costs for insertions, deletions, and replacements):

CCT-TCGT
-CTGTCGT

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

79

Clearly, two MUMs CT and TCGT are parts of this alignment.
To compute MUMs, we first have to construct the suffix tree for the concatenation of the two

sequences S and S’. To prevent any match that occurs on the borderline between S and S’,

we put the unique symbol # between S and S’, i.e. we construct the suffix tree for the string

X, where X = S#S’. A MUM, say u, must occur exactly twice in X, once in S and once in S’.

Therefore, u corresponds to the path in the suffix tree T(X) ending with an edge to a

branching node. Since u is the right-maximal by definition (i.e. for any symbol a, ua does not

occur both in S and in S’), u must even correspond to the branching node. In other words,

for each MUM u there is the branching node u in the suffix tree for the string X.

Since u occurs twice in X, there are exactly two leaves in the subtree below u. The subtree

can contain no branching node, hence there are two leaf edges outgoing from u. One edge

must lead to the leaf, say v, that corresponds to a suffix starting in S and the other edge must

lead to the leaf, say w, that corresponds to a suffix starting in S’. For the given branching

node u, the existence of exactly two such leaf edges can be checked easily. What remains is

to verify left-maximality, i.e. to check if there is the character a such that au occurs both in S

and in S’. Suppose that the leaf v has the leaf number i and the leaf w has the leaf number j.

Then u is left maximal, if and only if i = 0 or Xi-1 ≠ Xj-1. In other words, we only have to look

at the two positions immediately to the left of two positions in X where u starts.

Fig. 3. The suffix tree for CCTTCG#CTGTCG$ without the leaf edges from the root

Suppose that S = CCTTCG is a string, S’ = CTGTCG is another string, and l = 2 is a constant.

Consider the suffix tree for the string S#S’. This is shown in Fig. 3. Obviously, the string

TCG occurs once in S and S’, since there are two corresponding edges from the branching

node TCG. Comparing the character G and the character T immediately to the left of the

occurrences of TCG in S and S’ verifies the left maximality. The string CT also occurs once in

S and once in S’, as verified by the two leaf edges from CT. The left-maximality is obvious,

since the character C and the character # to the left of the occurrences are different.

5.5 Maximal repeat

If a sequence S may be represented by the array S0…Sn-1, then the sequence S is indexed

from 0 to n-1. If a sequence S is indexed, then a subsequence Si…Sj of the string S may be

represented by the pair (i, j). A pair (l, r), where l = (i, j) and r = (i’, j’), is a repeat, if i < i’ and

Si…Sj = Si ’…Sj ’. l is the left instance of the repeat and r is the right instance of the repeat.

TC
G

TG
CTTCG#CTGTCG$

#CTGTCG$ $ TCG#CTGTCG$
GTCG$

#CTGTCG$ TCG$ $ TCG#CTGTCG$ CG

GTCG$

#CTGTCG$ $

www.intechopen.com

 Advances in Greedy Algorithms

80

Note that the left instance of the repeat and the right instance of the repeat may overlap.

Suppose that S = GAGCTCGAGC is a string. The string S contains the following repeats of

the length l ≥ 2:

- ((0, 3), (6, 9)) - GAGC
- ((0, 2), (6, 8)) - GAG
- ((0, 1), (6, 7)) - GA
- ((1, 3), (7, 9)) - AGC
- ((2, 3), (8, 9)) - GC

The example shows that shorter repeats are often contained in longer repeats. To remove

redundancy, we restrict to maximal repeats. A repeat is the maximal if it is the left maximal

and the right maximal. These notions are formally defined as follows: The repeat ((i, j), (i’,

j’)) is the left maximal if and only if i-1 < 0 or Si-1 ≠ Si’-1. The repeat ((i, j), (i’, j’)) is the right

maximal if and only if j’+1 > n-1 or Sj+1 ≠ Sj’+1.

From now, we will restrict ourselves to the maximal repeats. All repeats, which are not the

maximal repeats, can be obtained from the maximal repeats. In the example above, the last

four repeats can be extended to the left or to the right. Hence, only the first repeat is

maximal.

In the following, we will present an algorithm to compute all maximal repeats of a given

sequence. It works in two phases. In the first phase, the leaves of the suffix tree are

annotated. In the second phase, the repeats are output while simultaneously the branching

nodes are annotated.

We will show how the algorithm to compute all maximal repeats works for the string

$1GCGC$2GGCG$3. The corresponding suffix tree (with some unimportant edges left out) is

shown in Fig. 4.

Suppose that:

- a string S of the length n over the alphabet ∑ such that the first and the last character of
S both occur exactly once and

- the suffix tree for a string S is given (as in Fig. 4).

Fig. 4. The suffix tree for the string $1GCGC$2GGCG$3.

C G

G $3

C GCG$3

$2GGCG$3 G

$3 C$2GGCG$3

$3 C$2GGCG$3

$2GGCG$3

S = $1 G C G C $2 G G C G $3

 0 1 2 3 4 5 6 7 8 9 0

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

81

We can ignore leaf edges from the root, since the root corresponds to the repeats of the

length zero, and we are not interested in these.

In the first phase, the algorithm annotates each leaf of the suffix tree: if v = Si…Sn, then the

leaf v is annotated by the pair (a, i), where i is the starting position of the suffix v and a = Si-1

is the character to the immediate left to the position i. (a, i) is the leaf annotation of v and it is

denoted A(v, Si-1) = {i}. We assume that A(v, c) = φ (the empty set) for all characters c ∈ ∑

different from Si-1. This assumption holds in general (also for branching nodes), whenever

there is no annotation (c, j) for some j.

The leaf annotation of the suffix tree for the string S in Fig. 4, is shown in Fig. 5.

Leaf edges from the root are not shown. These edges are not important for the algorithm.

Fig. 5. The suffix tree for the string $1GCGC$2GGCG$3 with leaf annotation.

The leaf annotation gives the character upon which we decide the left-maximality of a

repeat, plus the position where the repeated string occurs. We have only to combine this

information at the branching nodes appropriately. This is done in the second phase of the

algorithm: In a bottom-up traversal, the repeats are output and simultaneously the

annotation for the branching nodes is computed. A bottom-up traversal means that a

branching node is visited only after all nodes in the subtree below that node have been

visited. Each edge, say w → v with a label au, is processed as follows: At first repeats (for w)

are output by combining the annotation already computed for the node w with the complete

annotation stored for v (this was already computed due to the bottom-up strategy). In

particular, we output all pairs ((i, i + q-1), (j, j + q-1)), where

- q is the depth of node w, i.e. q = |w|,
- i ∈ A(w, c) and j ∈ A(v, c’) for some characters c ≠ c’,
- A(w, c) is the annotation already computed for w w.r.t. character c and A(v, c’) is the

annotation stored for node v w.r.t. character c’.
The second condition means that only those positions are combined which have different

characters to the left. It guarantees the left-maximality of repeats. Recall that we consider

C G

G $3

C GCG$3

$2GGCG$3 G

$3 C$2GGCG$3

$3 C$2GGCG$3

$2GGCG$3

S = $1 G C G C $2 G G C G $3

 0 1 2 3 4 5 6 7 8 9 0

($1, 1) (G, 7)

(C, 3)

($2, 6)

(C, 9)

(G, 8) (G, 2)

(G, 4)

www.intechopen.com

 Advances in Greedy Algorithms

82

processing the edge w → v with the label au. The annotation already computed for w was

inherited along edges outgoing from w, which are different from w → v with the label au.

The first character of the label of an edge, say c, is different from a. Now since w is the

repeated substring, c and a are characters to the right of w. Consequently only those

positions are combined which have different characters to the right. In other words, the

algorithm also guarantees the right maximality of repeats.

As soon as for the current edge the repeats are output, the algorithm computes the union

A(w, c) ∪ A(v, c) of all characters c, i.e. the annotation is inherited from the node v to the

node w. In this way, after processing all edges outgoing from w, this node is annotated by

the set of positions where w occurs, and this set is divided into (possibly empty) disjoint

subsets A(w, c1),…, A(w, cr), where ∑ ={c1,…,cr}.

Fig. 6 shows the annotation for a large part of the previous suffix tree and some repeats. The

bottom up traversal of the suffix tree for the string $1GCGC$2GGCG$3 begins with the node

GCG of depth 4, before it visits the node GC of depth 2. The maximal repeats for the string

GC are computed as follows: The algorithm starts by processing the first edge outgoing from

GC. Since initially, there is no annotation for GC, no repeat is output, and GC is annotated by

(C, 3). Then the second edge is processed. This means that the annotation ($1, 1) and (G, 7)

for GCG is combined with the annotation (C, 3). This give repeats ((1, 2), (3, 4)) and ((3, 4), (7,

8)). The final annotation for GC becomes (C, 3), (G, 7), ($1, 1) which also can be read as A(GC,

C) = {3}, A(GC, G) = {7}, and A(GC, $1) = {1}.

Fig. 6. The annotation for a large part of the suffix tree of Fig. 5 and some repeats.

Let us now consider the running time of the maximal repeats algorithm. Traversing the

suffix tree bottom-up can be done in time linear in the number of nodes. Follow the paths in

the suffix tree, each node is visited only once. Two operations are performed during the

traversal: the output of repeats and the combination of annotations. If the annotation for

each node is stored in linked lists, then the output operation can be implemented such it

runs in time linear in the number of repeats. Combining annotations only involves linking

($1, 1) (G, 7)

(C, 3)

($2, 6)

(C, 9)

S = $1 G C G C $2 G G C G $3

 0 1 2 3 4 5 6 7 8 9 0

G

$3

C GCG$3

$2GGCG$3 G

$3 C$2GGCG$3 $1

G

1

7

$1

C

G

1

3

7

((1,3), (7,9))

((1,2), (3,4)) ((3, 4), (7, 8))

$1

C

$2

G

1

3, 9

6

7

www.intechopen.com

A Partition-Based Suffix Tree Construction and Its Applications

83

lists together. This can be done in time linear in the number of nodes visited during the

traversal. Recall, that the suffix tree can be constructed in O(n) time. Therefore, the

algorithm requires O(n + z) time, where n is the length of the input string and z is the

number of repeats.

To analyze the space consumption of the maximal repeats algorithm, the annotations for all

nodes do not have to be stored all at once. As soon as a node and its father have been

processed, the annotations are no longer needed. The consequence is - the annotation only

requires O(n) space. Therefore, the space consumption of the algorithm is O(n).

The maximal repeats algorithm is optimal, since its space and time requirement are linear in
the size of the input plus the output.

6. References

[1] P. Weiner, “Linear Pattern Matching Algorithms,” Proc. 14th IEEE Annual Symp. on

Switching and Automata Theory, pp1-11, 1973

[2] E. M. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” Journal of

Algorithms, Vol. 23, No. 2, pp262-272, 1976

[3] E. Ukkonen, “On-line Construction of Suffix Trees,” Algorithmica, Vol. 14, No. 3, pp249-

260, 1995

[4] Arthur L. Delcher, Simon Kasif, Robert D. Fleischmann, Jeremy Peterson, Owen White

and Steven L. Salzberg, “Alignment of whole genomes,” Nucleic Acids Research, Vol.

27, pp. 2369–2376, 1999

[5] Aurthur L. Delcher, Adam Phillippy, Jane Carlton and Steven L. Salzberg, “Fast

algorithms for large-scale genome alignment and comparison,” Nucleic Acids

Research, Vol. 30, pp. 2478–2483, 2002

[6] S. Kurtz and Chris Schleiermacher, “REPuter fast computation of maximal repeats in

complete genomes,” Bioinformatics, Vol. 15, No. 5, pp.426-427, 1999

[7] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch, Chris Schleiermacher, Jens Stoye

and Robert Giegerich, “REPuter the manifold applications of repeat analysis on a

genomic,” Nucleic Acids Research, Vol. 29, No.22, pp. 4633–4642, 2002

[8] Stefan Kurtz, “Reducing the space requirement of suffix trees,” Software Pract. Experience,

Vol. 29, pp. 1149-1171, 1999

[9] Hongwei Huo and Vojislav Stojkovic, “A Suffix Tree Construction Algorithm for DNA

Sequences,” IEEE 7th International Symposium on BioInformatics &

BioEngineering. Harvard School of Medicine, Boston, MA, October 14-17, Vol. II,

pp. 1178-1182, 2007.

[10] Stefan Kurtz, “Foundations of sequence analysis,” lecture notes for a course in the

winter semester, 2001

[11] D. E. Knuth, J. H. Morris, and V. B. Pratt, “Fast pattern matching in strings,” SIAM

Journal on Computing, 1977, Vol. 6, pp. 323-350, 1997

[12] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of the

ACM, 1977,Vol. 20, pp. 762-772, 1997

[13] Yun-Ching Chen & Suh-Yin Lee, "Parsimony-spaced suffix trees for DNA sequences,"

ISMSE’03, Nov, pp.250-256, 2003.

www.intechopen.com

 Advances in Greedy Algorithms

84

[14] Giegerich, R., Kurtz, S., Stoye, J.,“Efficient implementation of lazy suffix trees,” Soft.

Pract. Exp. Vol. 33,1035–1049, 2003

[15] Schurmann, K.-B., Stoye, J.,“Suffix-tree construction and storage with limited main

memory,” Technical Report 2003-06, 2003, University of Bielefeld, Germany.

[16] Dan Gusfield, “Algorithms on strings, trees, and sequences,” Cambridge University

Press, 1997

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Hongwei Huo and Vojislav Stojkovic (2008). A Partition-Based Suffix Tree Construction and Its Applications,

Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/a_partition-

based_suffix_tree_construction_and_its_applications

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

