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Abstract

Retinal tissue hypoxia is a key mediator in the pathogenesis of many leading causes of irre-
versible vision loss, including diabetic retinopathy. Retinal hypoxia in diabetic retinopathy 
has been shown to drive the production of pro-inflammatory cytokines and pro-angiogenic 
growth factors. Together, these factors contribute to disease progression by causing unregu-
lated growth of new blood vessels, increased vascular permeability and cell death within the 
retina. Studies have shown that retinal hypoxia precedes many of the pathologic events that 
occur during the progression of diabetic retinopathy such as angiopathy, microaneurysms, 
and capillary dropout. Therefore, early detection of hypoxia in the retinas of diabetic patients 
could help clinicians identify problems in patients before irreversible damage has occurred. 
Currently, oxygen sensitive electrodes remain the gold standard for direct measurement of 
oxygen tension within the retinal tissue; however the procedure is highly invasive and is 
therefore limited in its applicability towards preclinical models. Less invasive techniques 
such as retinal oximetry, phosphorescence-lifetime imaging, and hypoxia-sensitive fluores-
cent probes have shown promising diagnostic value in facilitating detection of oxygen imbal-
ance correlated with neurovascular dysfunction in DR patients. This review highlights the 
current progress and potential of these minimally invasive hypoxia-imaging techniques in 
diabetic retinopathy.

Keywords: diabetic retinopathy, hypoxia, angiogenesis, neovascularization, imaging 
techniques

1. Introduction

1.1. Oxygen supply and consumption in the healthy retina

The retina is one of the most metabolically active sites of the entire body and is therefore depen-

dent on a consistent supply of oxygen and other nutrients. In order to meet these metabolic 
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demands, the retina requires two distinct blood supplies, the inner retinal circulation and 

choroidal circulation. The inner retinal circulation stems from the central retinal artery which 

enters the retina near the optic disc. From there, it branches to form the deep and superficial 
retinal capillary plexuses. In a healthy individual, these blood vessels are found only in the 

peripheral retina and do not enter into the avascular fovea. The central retinal artery is respon-

sible for supplying the inner retina with oxygen and nutrients and receives about 20–30% of 

the blood flow to the retina [1]. The second blood supply is the choroidal circulation. The cho-

roidal circulation is a dense network of capillaries located just posterior to the retinal pigment 

epithelium (RPE) cell layer and is responsible for supplying the outer retina (RPE and photo-

receptors) with oxygen. Due to the high metabolic demand of the photoreceptors the choroid 

receives the majority (65–85%) of the blood that is supplied to the retina [1].

Studies in cats have used oxygen sensitive microelectrodes to measure oxygen tension (PO
2
) in 

the various layers of the healthy retina. These studies have shown that oxygen levels are highest 

(≈60 mmHg) in the rod outer segment layer due to their close proximity to the oxygen saturated 
choroid (Figure 1) [2]. Oxygen tension drops to nearly 0 mmHg in the outer nuclear layer, 
indicating that the oxygen that is perfused from the choroidal circulation is consumed almost 

entirely by the photoreceptors during visual phototransduction [2]. Moving inward, PO
2
 climbs 

gradually in the inner retina due to the inner retinal circulation, with two small spikes in PO
2
 

occurring in the deep (≈20 mmHg) and superficial (≈25 mmHg) retinal capillary plexuses [2]. 

Therefore, any vascular changes, especially in the inner retinal circulation can lead to tissue 

hypoxia since the choroidal circulation cannot adequately supply oxygen to the inner retina. 

Because of this, perturbations in oxygen supply play a significant role in many of the most 
common vision threating diseases including age-related macular degeneration (AMD) [3–6], 

glaucoma [7, 8], retinopathy of prematurity [9–11], and diabetic retinopathy (DR) [2, 12–15].

1.2. Hypoxia in diabetic retinopathy

Hypoxia has been implicated as a potential key contributor to the pathogenesis of many 
retinal diseases, including diabetic retinopathy (DR). The cellular hypoxia response is tran-

scriptionally regulated by hypoxia inducible factors (HIFs) [16, 17], heterodimeric complexes 

comprising oxygen-sensing HIF1/2/3α subunits and HIFβ. The HIF alpha subunits share 
common features, although HIF3α has a distinct structure and is found in multiple variants 
which exert different transcriptional outcomes [18, 19]. Under normoxic conditions, proline 

residues in the oxygen-dependent degradation domain of HIFα are modified by oxygen-
dependent prolyl hydroxylases (PHD) [20], creating a binding site for the von Hippel-Lindau 
(VHL) E3 ubiquitin ligase complex [21, 22]. HIFα bound by VHL is targeted for proteasomal 
destruction [23, 24], thus preventing transcriptional activity. However, during hypoxia HIFα 
proline hydroxylation is abrogated, stabilizing the protein. Transcriptional activity of HIF1α 
and HIF2α is also promoted during hypoxia, as hydroxylation of a key asparagine residue 
located in the transactivation domain is prevented, promoting interaction between HIF and 
the p300/ CBP transcriptional co-activator complex [25]. HIF3α, which lacks the key aspara-

gine residue, is not subject to this regulatory mechanism [18]. The HIFα-HIFβ complex can 
activate transcription of genes with promoters featuring hypoxia response elements (HRE) 
including VEGF and erythropoietin (EPO).
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Although regulatory mechanisms are similar between HIF1α and HIF2α, expression of the pro-

teins has been suggested to be confined to distinct cellular populations in the ischemic inner retina 
[26]. Expression of both HIF1α and HIF2α is temporally correlated with VEGF expression during 
retina ischemia [26, 27], and HIF2α haploinsufficiency has been shown to reduce pro-angiogenic 
factor expression and neovascularization in the oxygen-induced retinopathy (OIR) model [28]. 

Interestingly, PHD-dependent HIF1α degradation is also regulated by citric acid cycle intermedi-
ates such as succinate [29], which accumulate during hypoxia as oxygen tension is insufficient to 
support oxidative phosphorylation, leading to feedback inhibition of citric acid cycle enzymes 

[30]. Succinate inhibits PHD activity, further stabilizing HIF1α when cellular oxidative metabo-

lism is compromised [29]. Succinate is also thought to have an addition role in the hypoxic retina, 

binding and signaling through the G protein coupled receptor 91 (GPR91) [31]. GPR91 regulates 

VEGF production in retinal ganglion cells via mitogen-activated protein kinase and prostaglan-

din signaling [32, 33] which contributes to the neovascular response following hypoxia [34].

Some of the hallmarks of DR progression which include the formation of acellular capillaries, 

capillary occlusion and associated nonperfusion could lead to this cellular hypoxia response 

Figure 1. PO2 gradient across the retinal layers in a healthy (60 W2) and diabetic (all other tracings) cat. The tracing of 

the healthy cat shows normal oxygen perfusion in the choriocapillaris and inner retina. The diabetic cats show evidence 

of decreased oxygen perfusion in the inner retina and inadequate compensation by the choriocapillaris. Disclaimer: This 

figure has been reproduced with permission from original article by Linsenmeier et al. [2].
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in the diabetic retina [35–40]. Studies point toward an increase in the number of leukocytes 

and increased leukocyte adhesion as a source of capillary occlusion and tissue nonperfusion 

[36, 41, 42]. Furthermore, it has been shown that there is tissue hypoxia in the diabetic retina 

since the choriocapillaris cannot adequately provide the inner retina with oxygen. Linsenmeier 

et al. used oxygen-sensitive microelectrodes to directly measure PO
2
 in the retinas of long term 

diabetic and non-diabetic cats (> 6 years) and showed that mean PO
2
 was significantly lower 

in inner retina of diabetic (7.66 mmHg) compared to normal cats (16.42 mmHg) (Figure 1) [2]. 

These studies showed that hypoxia was evident early in disease progression, prior to obser-

vation of angiopathy, microaneurysms, hemorrhages and capillary dropout. Studies using 

magnetic resonance imaging (MRI) have also shown that there is a decrease in oxygen levels 

in galactosemic rats before retinal lesions appear [43]. These studies support the hypothesis 

that hypoxia may be a driving force in DR progression, rather than an outcome of other fac-

tors. Consistent with this hypothesis, hypoxia itself has been shown to stimulate production 

of a number of proangiogenic factors such as vascular endothelial growth factor (VEGF), one 

of the predominant targets of many therapeutic interventions in DR [44–48]. Steffanson et al. 
provided further evidence that oxygen delivery plays a crucial role in DR progression when 

they observed increased oxygen tension in the areas of the retina that had undergone pan-

retinal photocoagulation compared to untreated areas [15]. This finding supports therapeutic 
strategies in DR which aim to restore normal oxygen supply in order to normalize disease.

Interestingly, although hypoxia has long been hypothesized as a potential driver of DR, it must 

be noted that there are a number of studies that were unable to detect the presence of hypoxia in 

the diabetic retina. Some studies in diabetic mice show that there is an initial decrease in retinal 

blood flow between three to 4 weeks due to arteriolar constriction, however arteriolar diameter 
and blood flow return to normal measurements at later time points of diabetes (12 weeks) [49–52]. 

Despite the initial decrease in blood flow these studies did not find any evidence of hypoxia in 
these animals at either 3 or 12 weeks of diabetes [53–55]. This may indeed be accounted for by 

compensatory vascular mechanisms in the rodent retina, such as autoregulation which may coun-

teract early hypoxia in these species, and that onset of hypoxia may only occur at very late time 

points (>1.5 years) that are beyond typical published experimental endpoints in these models.

We are therefore in concurrence with a number of investigators in the ophthalmic and clinical 

research who identify retinal hypoxia as a significant mediator of initiation and progression 
of DR. Along with other researchers, we have sought to develop and translate strategies for 

optical detection of early retinal oxygen imbalance in patients to facilitate earlier clinical inter-

ventions and improved outcomes to reduce risk of future vision loss.

2. In vivo imaging of hypoxia in diabetic retinopathy

2.1. Overview of hypoxia sensing and imaging technologies

Oxygen-sensitive microelectrodes have long been considered the gold standard for measure-

ment of PO
2
 in tissues including the retina [2, 56–60]. While this technique gives an accurate 

and direct measurement of retinal tissue PO
2
, there are many drawbacks, most importantly the 

highly invasive nature of the measurement, as it requires a direct puncture of the retinal tissue 

which prevents its use in clinics. Furthermore, oxygen imbalances in retinal vascular diseases 
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such as DR originate largely from capillary occlusion and local changes in the retinal vascula-

ture. These occlusions are likely to create small areas of regional hypoxia rather than an entirely 

hypoxic retinal tissue. Since oxygen sensitive microelectrodes provide point measurements that 

depend on the placement of the electrode this method will likely miss areas of focal hypoxia 

that are surrounded by large areas of normoxic tissue unless multiple measurements are made.

Other methods such as MRI have been used to provide insight into oxygen distribution within 

the retina and are less invasive than oxygen-sensitive microelectrodes. The advantages of MRI 

are that it is minimally invasive, offers a large field of view, and has no depth limitation. These 
MRI techniques are often based on the blood oxygenation level-dependent (BOLD) contrast 

that was first described by Ogawa et al. which rely on natural differences in MR signal between 
deoxygenated hemoglobin versus oxygenated hemoglobin [61–63], but can also utilize exog-

enous contrast agents for increased sensitivity as seen in Dynamic Contrast-Enhanced MRI 

(DCE-MRI) [64]. The use of MRI to detect changes in oxygen levels was first used in the brain but 
has since been adapted to visualize oxygen fluctuations in the diabetic retina. Berkowitz et al. 
have used MRI to show increases in blood retinal barrier permeability in rats after 8 months 

of diabetes [64] and changes in retinal oxygenation in galactosemia-induced diabetic-like reti-

nopathy [43]. The primary limitation of MRI is that the information is typically displayed as 

either a cross section of the eye or single slice heat maps which are then pieced together to give 

an overview of the retina [43, 64–67]. This severely limits the techniques ability to provide the 

adequate resolution required to identify small regions of focal hypoxia in the diabetic retina.

Laser Doppler is another method that has been established to determine blood flow within 
the retinal vasculature but does not provide information on oxygen PO

2
 within the retinal 

vasculature or tissue [68–70]. More recently however, a number of minimally invasive tech-

niques have been established and adapted to measure oxygen tension optically and identify 

areas of regional hypoxia in the retina. These techniques take full advantage of the unique 

anatomy of the eye, which unlike other organs is readily accessible and easy to image due to 

the naturally transparent front of the eye. Methods such as dual wavelength and full spectral 

retinal oximetry, and also phosphorescence lifetime imaging all provide information on oxy-

gen levels in the retinal vasculature. Other techniques such as hypoxia sensitive fluorescent 
probes can help to image hypoxic regions within the retinal tissue itself. These techniques are 

prime candidates for use in a clinical setting due to their minimally invasive nature and their 
ability to detect areas of focal hypoxia in the diseased retina.

This review will examine the advantages and disadvantages of the imaging techniques that 

have emerged as potential diagnostic tools for early detection of DR.

2.2. Dual wavelength retinal oximetry

Retinal oximetry is a non-invasive technique used to measure the percent of hemoglobin 

oxygen saturation (SO
2
) in the retinal vasculature. Oximetry is based on the principle that 

oxygenated (HbO
2
) and deoxygenated hemoglobin (Hb) have a different light absorption 

spectra. The use of spectrophotometric measurements to determine oxygen levels in large 

retinal vessels was first described by Hickam et al. in 1963, however their method required an 
independent arteriolar SO

2
 measurement for external calibration [71]. Since this initial work, 

Delori [72], Beach [73], and Hardason et al. [74] have expanded the field by developing new 
techniques that decrease the invasiveness of retinal oximetry by eliminating the need for an 
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external calibration measurement, while at the same time increasing sensitivity, accuracy, and 

reproducibility. More recently investigators have advanced this technology to develop new 

systems such as the Flow Oximetry System (FOS) that are able to measure oxygen saturation 

and blood flow within the retinal vasculature [75, 76].

Most studies have measured SO
2
 by using dual wavelength oximetry. Here, two images at dis-

tinct wavelengths are taken simultaneously. A traditional fundus camera is attached to a beam 
splitter and digital camera in order to obtain digital images at multiple distinct wavelengths. 
One image is taken at an isobestic wavelength that is insensitive to differences in hemoglobin 
oxygen saturation. This is required for compensation against variables such as hematocrit, path 

length and light intensity that will not differ between the two images. In the image obtained 
from the isobestic wavelength there is no visual difference between oxygen saturated arteries 
compared to oxygen depleted veins. Simultaneously, a second image is taken at a wavelength 

that is sensitive to hemoglobin oxygenation. In this image there are clear differences between 
the oxygen saturated arteries and oxygen depleted veins. Software has now been developed 

to automatically detect blood vessels in order to help minimize other factors that contribute to 

optical density. This has led to highly reproducible measurements of SO
2
 in large retinal ves-

sels that can be depicted numerically or as a color map on the fundus image [74].

Since diabetes has been linked to abnormal oxygen distribution in the diabetic retina, retinal 

oximetry serves as a useful tool to examine changes in oxygen saturation in the retinal vascu-

lature of diabetic patients. A number of studies have measured changes in venous (S
v
O

2
) and 

arterial (S
a
O

2
) oxygen saturation in patients with mild, moderate, or severe non-proliferative 

DR, and also proliferative DR. These studies consistently report increased S
v
O

2
 values as the 

severity of DR increases [77–83]. Interestingly, the results on whether arterial oxygen satura-

tion changes during DR progression differ between studies. A number of studies have found 
that S

a
O

2
 increases with increased disease severity and these changes may not be present until 

the patient develops proliferative diabetic retinopathy [78–83], while others saw no difference 
in arterial oxygen saturation between DR patients in any stage compared to healthy individu-

als [77]. Studies using FOS saw no significant difference in either S
a
O

2
 or S

v
O

2
 between healthy 

individuals and DR patients, however identified significant changes in arteriovenous differ-

ence [75]. Together, these data indicate that there is increased venous oxygen saturation in DR 

patients; however due to the conflicting reports on S
a
O

2
 levels in DR patients, the cause of this 

S
v
O

2
 increase remains to be confirmed. This increase in venous oxygen saturation could be a 

result of decreased oxygen perfusion into the tissue which could lead to tissue hypoxia, but 

could also be a result of increased arterial oxygen saturation as observed in some reports, which 

could lead to subsequent increases in venous oxygen saturation with the same level of perfusion.

The advantages of retinal oximetry are that it is a non-invasive procedure that easily be per-

formed in patients. This technique gives accurate and reliable measurements of SO
2
 in the 

retinal vasculature to help provide insight into the dynamics of oxygen perfusion and con-

sumption in these patients. Furthermore, retinal oximetry has shown that laser photocoagula-

tion helps to improve oxygen delivery to the retina, and has therefore proven to be a useful 

tool in identifying the mechanisms of current DR treatments [15]. Another advantage of retinal 

oximetry is that systems are commercially available. However, since the use of retinal oxim-

etry is restricted to the large retinal vessels, this technique might not adequately detect many 

of the changes seen in DR progression such as microaneurysms and acellular capillaries that 
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occur in the small capillary beds of the retinal microvasculature. Furthermore, retinal oxim-

etry provides a measurement of SO
2
 levels within the vasculature, but does not give a direct 

measurement of what is happening within the retinal tissue itself. Whether the changes in 

vascular SO
2
 observed in diabetic patients actually correlates to regions of hypoxia within the 

retina itself cannot be confirmed with retinal oximetry alone. This has been shown in studies 
examining the correlation between regional differences in oxygen saturation versus lesion for-

mation in patients with proliferative diabetic retinopathy and diabetic maculopathy [84]. The 

study found that total SO
2
 was increased in diabetic patients compared to healthy individuals 

indicating that there was decreased oxygen perfusion from the retinal vasculature, however 

the regional differences in SO
2
 in the large retinal vessels did not correlate with the areas of 

retinal lesions [84]. This implies that other factors such as local changes in the microcircula-

tion and within the tissue itself play a significant role in lesion formation and DR progression.

2.3. Full spectral imaging

In addition to dual wavelength oximetry, full spectral methods have also taken advantage 

of the differences between Hb and HbO
2
 absorption spectra. Here, rather than using distinct 

isobestic and non-isobestic wavelengths to measure SO
2
, a continuous range of wavelengths 

between visible and near-infrared spectrum are transmitted for measurement. Schweitzer et al. 
first described the technique by illuminating the retina with a narrow slit (1.5 × 40 mm) of 
light and capturing the image using an imaging ophthalmospectrometer, which consisted of a 

fundus camera adapted with a spectrograph coupled to an intensified CCD camera for detec-

tion [85, 86]. This allowed for collection of the full spectral data in a narrow band in a single 

dimension. Since then, full spectral imaging has developed into hyperspectral imaging (HSI) 
with algorithms used to construct a two dimensional image in order to visualize the data as an 

oxygen map [87–89]. Whereas this process originally took several seconds due to sequential 

acquisition of many single-dimension images, new technology allows for enough images to 

be taken to cover a 15 degree field with good spatial resolution in only a few milliseconds [90]. 

Today, HSI has been further developed into hyperspectral computed tomographic imaging 
spectroscopy (HCTIS), which in addition to giving detailed oxygen saturation maps, can give 
information about changes in the retina such as lesions, perfusion, and pigment density [90, 91].

Full spectral imaging has been used to examine oxygen imbalances in a number of vascular 

diseases including age-related macular degeneration [85], arteriovenous occlusion [88], and 

glaucoma [87, 89]. A limited number of studies have utilized full spectral imaging to examine 

changes in oxygen saturation in diabetic retinopathy. Kashani et al. used HCTIS to examine 
changes in S

a
O

2
 and S

v
O

2
 between healthy individuals and patients with DR and determined 

that S
a
O

2
 was significantly lower, while S

v
O

2
 was significantly higher in patients with prolif-

erative DR [91]. This was confirmed by a significant difference in the arteriovenous difference 
between the two groups [91].

2.4. Phosphorescence-lifetime imaging

Phosphorescence-lifetime imaging is another minimally invasive technique that can be used 

to image PO
2
 within the retina. The use of oxygen-dependent quenching of phosphorescence 

as a method of optical measurement of O
2
 concentration was first described by Vanderkooi 
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et al. [92, 93]. At the time, a similar method using oxygen-dependent quenching of fluores-

cence, rather than phosphorescence, had already been established [94]. The use of fluores-

cence however, was limited by low sensitivity to oxygen and by the fact that the decay in 

fluorescence brightness is rapid, which meant that only fluorescence intensity and not lifetime 
could be measured. Intensity measurements are complicated by variables such as solution 

composition and absorption in the tissue. By using phosphorescence, Vanderkooi et al. were 

able to measure lifetime, rather than intensity, due to the much slower decay in brightness of 

phosphorescence compared to fluorescence [92, 93]. It was observed that phosphorescence-

lifetimes were directly dependent on oxygen concentration, with an increase in phospho-

rescence signal as PO
2
 decreased, as described by a Stern-Volmer relationship [92, 93]. This 

technique was modified for use in vivo to measure PO
2
 in the retinal and choroidal vascu-

lature of large animals such as cats and pigs [95–97], and later for smaller animals such as 

mice and rats [98–104]. More recently Shahidi et al. have made significant advances by using 
phosphorescence-lifetime to image oxygen tension within the retinal tissue itself [105, 106]. 

This minimally invasive technique requires an intravenous injection of a phosphor that can 

be imaged using an intensified CCD camera to provide a clear image of retinal arteries, veins 
and even some capillaries with good spatial resolution.

To date, many of the studies utilizing phosphorescence-lifetime have sought to establish the 

technique and examine changes in oxygen tension during normal physiologic processes such 

as retinal response to light stimulation [68, 104]. A limited number of studies have utilized 

phosphorescence-lifetime to study oxygen imbalances in ischemic retinal diseases. Studies in 

a mouse model of oxygen-induced retinopathy (OIR) have shown that although there was no 

significant difference in arterial or venous PO2 between control and OIR mice, the arteriove-

nous difference was significantly higher in OIR mice [107]. This was attributed to a decreased 
vascular network in these OIR mice resulting in greater oxygen extraction from the larger 

vessels [107]. Other investigators have examined whether phosphorescence-lifetime imaging 

can be used to detect regions of local hypoxia created by laser photocoagulation. In these 

studies, a laser was used to create small (75 μm) focal lesions within the capillary network of 

the mouse retina [100]. Upon imaging and analysis using an oxygen map of the laser burn and 

surrounding area they observed a circular lesion with a central area of hypoxia (< 7 mmHg) 
that extended approximately 150–200 μm outward from the initial laser injury [100]. After 

imaging the lesion again 1 hour later there was no evidence of leakage of the phosphor into 

the tissue [100]. This study indicates that phosphorescence-lifetime imaging is a useful tool 

for identifying focal areas of regional hypoxia. Further experiments are needed to confirm 
whether these results translate into animal models of diabetic retinopathy.

The primary advantage of phosphorescence-lifetime imaging is that it is minimally invasive, 

requiring only an intravenous injection of a phosphor. These phosphors are readily available 

as nontoxic, water soluble forms so they can be easily dissolved in blood, providing further 

potential for use in a clinic. Furthermore, studies have shown that this technique is capable 

of identifying small areas of regional hypoxia created by focal lesions similar to those seen in 

DR [100]. This can be combined with traditional fundus photographs and fluorescein angiog-

raphy to determine whether the areas of regional hypoxia correlate with the location of retinal 

lesions or leakage during the progression of DR. Finally, the information gathered can be dis-

played as an easy to read oxygen map showing retinal vascular function. The disadvantage of 

phosphorescence-lifetime imaging is similar to retinal oximetry in that it is a measurement of 
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oxygen levels within the retinal vasculature rather than the retinal tissue itself. It must be noted 

however, that a number of studies have compared PO
2
 measurements between the vasculature 

(using phosphorescence-lifetime) and a variety of tissues including the retina (using O
2
 micro-

electrodes) and found comparable results, with only slight decreases in PO2 within the tissue 

[95, 108]. The second disadvantage to phosphorescence-lifetime imaging is primarily due to 

the lack of evidence in animal models of DR. Although it has been proven useful in a num-

ber of vascular ischemic diseases that share commonalities with DR it would be necessary to 

confirm the applicability of phosphorescence-lifetime imaging in animal models of DR before 
proposing the technique as a potentially useful tool for determining PO

2
 levels in DR patients.

2.5. Hypoxia-sensitive fluorescent probes

Another technique for imaging oxygen imbalances in the diabetic retina is the use of hypoxia-

sensitive fluorescent probes. Hypoxia-sensitive compounds such as 2-nitroimidazoles are 
bioreduced by nitroreductases in hypoxic tissues (PO

2
 < 10 mmHg) which leads to the for-

mation of adducts with thiol containing proteins [109–113]. These compounds were origi-

nally discovered and used for detecting hypoxic areas within tumors and were imaged by 

autoradiography [112, 114]. Shortly after, immunohistochemical analysis was made possible 

by the production of antibodies that recognized the adducts formed by the reduced 2-nitro-

imidazoles and showed that the fluorescence intensity correlated with the severity of hypoxia 
[110, 111, 115]. More recently, 2-nitroimidazoles, such as pimonidazole, have been used to 

detect areas of hypoxia in a number of retinal vascular diseases, including extensive studies 

in diabetic retinopathy. Ex-vivo studies in non-diabetic and diabetic mice and rats have found 

significantly increased pimonidazole labeling in the retinas of even short-term diabetic mice 
and rats compared to their non-diabetic counterparts [53, 116–119]. Furthermore, the pimoni-

dazole labeling was confirmed by increased staining of hypoxia inducible factor-1α (HIF-1α) 
and decreased ganglion cell function measured by electroretinogram (ERG) [53, 116].

Work by our group has sought to develop clinically useful hypoxia sensitive imaging agents by 

conjugating FDA-approved fluorescein dyes to adduct forming 2-nitroimidazoles. In prelimi-
nary studies, fluorescein isothiocyanate (FITC) was conjugated to a 2-nitroimidazole contain-

ing reagent to create the HYPOX-1 probe, and also to pimonidazole to create HYPOX-2. Both 
HYPOX-1 and HYPOX-2 formed adducts leading to accumulation in a variety of hypoxic retinal 
cells and allowed for imaging with excellent signal-to-noise ratio in vitro [120]. Furthermore, these 

imaging agents were capable of detecting hypoxic areas ex vivo in the retinas oxygen induced ret-

inopathy (OIR) mice with no apparent toxicity [120]. Following the success of these fluorescent 
imaging agents, a new probe, HYPOX-3, was developed in order to create an “on-off” imaging 
agent for hypoxia [121]. Here, a near-infrared (NIR) imaging agent was coupled to Black Hole 
Quencher 3 (BHQ3), which had been shown to quench NIR dyes by Fӧrster resonance energy 

transfer (FRET) [122]. Interestingly, BHQ3 features a hypoxia-sensitive azo-bond that is cleav-

able by azoreductases under hypoxic conditions [122, 123]. HYPOX-3 displayed high sensitivity 
and specificity in forming adducts in a variety of hypoxic retinal cells in vitro with no detectable 

toxicity [121]. The ability to detect hypoxia in retinal vascular disease animal models was exam-

ined using a laser-induced choroidal neovascularization (LCNV) mouse model. In RPE-choroid 
flatmounts, HYPOX-3 clearly identified hypoxic regions in LCNV mice and showed increased 
fluorescence around the lesion, with minimal fluorescence in control animals [121].

Imaging of Hypoxia in Retinal Vascular Disease
http://dx.doi.org/10.5772/intechopen.72252

55



Figure 2. Imaging of HYPOX-4 in a mouse model of oxygen-induced retinopathy (OIR). Fundus and fluorescein channel 
in vivo images in OIR mice at P13 indicate accumulation of imaging probe in central, avascular hypoxic regions (A, B), 

which was not reflected by imaging in room air-reared age-matched controls (C, D). Findings in the OIR model correlated 
with microscopic imaging of retinal flatmounts (E, F, merged in G). Likewise, ex vivo analysis of room air control retinal 

flatmounts confirmed lack of HYPOX-4 accumulation in healthy, fully vascularized retinas (H). Disclaimer: This figure has 
been adapted from the original article by Uddin et al. [124] under Creative Commons Attribution 4.0 International License.

Due to the pharmacokinetics of HYPOX-1, -2, and -3, a new probe was designed with goal of 
creating an imaging agent for use in vivo with a potential for clinical application. This new 

probe, HYPOX-4, was characterized for in vitro and in vivo use and compared to immunos-

taining of pimonidazole-adducts [124, 125]. In vitro, HYPOX-4 displayed increasing fluores-

cence with decreasing oxygen concentration in a variety of different retinal cell lines [124]. Ex 

vivo, HYPOX-4 successfully identified avascular regions in the retinal flatmounts of OIR mice 
[124] (Figure 2) and hypoxic regions downstream of the occluded vein in the retinas of laser-

induced retinal vein occluded (RVO) mice [125] (Figure 3). Using a micron IV imaging system, 

HYPOX-4 was then used for in vivo imaging of hypoxia in both the OIR and RVO mice. In both 

models, HYPOX-4 clearly identified areas of hypoxia in vivo [124, 125]. HYPOX-4 had no effect 
on proliferation (as measured by BrdU assay), toxicity (TUNEL), or function (ERG) [124].

The advantages to these hypoxia sensitive fluorescent probes are that they can be conjugated 
to already FDA approved fluorescent dyes and they allow for direct imaging of hypoxia 
within the retinal tissue, rather than the microvasculature. Furthermore, studies in the OIR 

mice have shown they are capable of detecting hypoxia in diseases where there is oxygen 

imbalance in the entire retina, while the RVO model has shown that they are also capable 

of detecting regional, focal hypoxia downstream of either a single or double vein occlusion. 

This alone makes these probes particularly useful in diseases such as DR where there is likely 

capillary occlusion leading to localized hypoxia within the retinal tissue. A disadvantage of 

these hypoxia sensitive fluorescent probes are that they only give an image of hypoxic areas 
without providing actual values for PO

2
, although the PO

2
 threshold for bioreduction and 

adduct formation is well characterized. Furthermore, these probes have been used in OIR and 

LCNV models to show their ability to identify focal hypoxia; however their use in models of 
diabetic retinopathy needs to be examined.
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3. Summary

Hypoxia has been shown to play a significant role in DR progression. Hypoxia stimulates the 
production of a number of different pro-inflammatory cytokines (IL-1beta, TNF-a, ICAM-1) [7, 

126, 127] and growth factors (VEGF and PDGF) [45, 47, 128, 129]that lead to neovasculariza-

tion, increased vascular permeability and cell death. Studies have found that treatments such 

as laser photocoagulation provide benefits by restoring oxygen tension in the diabetic retina 
[15]. Furthermore, studies have indicated that oxygen imbalance actually precedes many of the 

pathological events that occur throughout the progression of diabetic retinopathy [2, 43, 130]. 

Therefore, early detection of hypoxic regions in the diabetic retina can potentially help clini-

cians choose appropriate treatment strategies before irreversible damage has already occurred.

New advances in imaging strategies allow for optical measurement the of oxygen levels in 

vivo. Oxygen sensitive microelectrodes have been the gold standard for direct measurement of 

oxygen levels in the retinal tissue, however the measurement is highly invasive and unable to 

consistently identify small areas of focal hypoxia. Together these factors prevent oxygen sen-

sitive microelectrodes from being used in DR patients. More recently, less invasive techniques 

such as retinal oximetry, phosphorescence-lifetime imaging and hypoxia sensitive fluorescent 
probes have been developed in an effort to detect oxygen imbalances and allow for optical 
identification of hypoxic regions in vivo. Retinal oximetry and phosphorescence-lifetime have 

Figure 3. HYPOX-4 mediated retinal imaging of laser-induced retinal vein occlusion (RVO) in the mouse. HYPOX-4 
injected 2 hours post vein occlusion with an argon photocoagulator in tandem with rose Bengal photosensitization. 

The imaging agent accumulated within the venous occlusion site (A, arrowhead) and downstream capillary bed (B). 

Disclaimer: this figure has been adapted from the original article by Uddin et al. [125] under Creative Commons 

Attribution 4.0 International License.
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been used primarily to measure oxygen saturation in the retinal vasculature. These methods 

have been used in a number of different animal models and have shown that they can suc-

cessfully identify regions of focal hypoxia surrounded by predominantly normoxic tissue, 

similar to what is hypothesized in DR. Hypoxia sensitive fluorescent probes differ from these 
techniques in that they detect hypoxic regions within the retina itself, rather than the micro-

vasculature. These probes have been developed by the conjugation of fluorescein dyes, such 
as FITC, to 2-nitroimidazoles. These 2-nitroimidazoles are bioreduced by nitroreductases in 

under hypoxic conditions, causing them to aggregate within the hypoxic cells. A number of 

these hypoxia sensitive fluorescent probes have been developed and characterized for in vitro, 

ex vivo, and in vivo use with low toxicity.

The imaging techniques reviewed here have all been shown to optically identify regions of 

focal hypoxia in vivo. Clinically, these techniques can help to give an accurate depiction of 

oxygen imbalances within the diabetic retina before retinal pathologies are detectable and 

may therefore guide future treatment strategies in DR patients.
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