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Abstract

Human motions give rise to frequency modulations, known as micro-Dopplers, to contin-
uous wave radar signals. Micro-Doppler signals have been extensively researched for the 
classification of different types of human motions as well as to distinguish humans from 
other moving targets. However, there are two main scenarios where the performance of 
existing algorithms deteriorates significantly—one, when the channel consists of multiple 
moving targets resulting in distorted signatures, and two, when the systems conditions 
during the training stage deviate significantly from the conditions during the test stage. 
In this chapter, it is demonstrated that both of these limitations can be overcome by rep-
resenting the radar data through customized dictionaries, fine-tuned to provide sparser 
representations of the data, than traditional data-independent dictionaries such as Fourier 
or wavelets. The performances of the algorithms are evaluated with both simulated and 
measured radar data gathered from moving humans in indoor line-of-sight conditions.

Keywords: micro-Doppler, dictionary learning, classification, detection

1. Introduction

Radar detection of humans has emerged as a topic of considerable research interest in the 

last two decades for varied applications such as security and law enforcement, through-wall 

surveillance, search and rescue operations, biomedical applications, and automobile radars. 

Two types of radars have been studied for these applications. The first type is the broadband 
impulse radars with high range resolution. These radars map the surroundings and moving 

targets (such as humans) are detected with the assistance of moving target detection algo-

rithms [1, 2]. The second type of radars is the phase coherent continuous wave radars. These 

could be either broadband frequency-modulated continuous wave radars [3], such as those 
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used in automobile radar applications. Alternately, narrowband (single tone) radars have 

been used for through-wall surveillance applications [4]. The latter are cheap to build with 
off-the-shelf components. In this chapter, human detection and classification by a monostatic 
continuous wave Doppler radar that transmits a sinusoidal signal of carrier frequency f

c
 is 

discussed. The human body can be considered as an extended target with multiple point scat-

terers on different body parts. When the radar signal impinges on a non-rigid moving human 
body, the micro-motions of the arms, legs and torso introduce micro-Doppler shifts (  f  

D
   ) on the 

scattered radar signal at the radar receiver. Each of these shifts is proportional to the carrier 
frequency and the radial relative velocity ( v ) between the body part and radar—  f  

D
   =   

2v  f  
c
  
 

____
 c   . Each 

of these body parts follows a unique trajectory giving rise to multiple micro-Doppler compo-

nents that superpose. The scattered radar signal at the receiver is amplified and demodulated. 
There are several methods for representing the time-domain micro-Doppler returns,  x (t)  , of 

which, the most popular technique is to use joint time-frequency transforms such as the short-

time Fourier transform (STFT) as shown below:

  χ (t, f)  = ∫ x (τ) h (t − τ)   e   −j2𝜋f𝜏  d𝜏  (1)

In the above equation, the short time window is given by  h (t)  . The STFT showcases the time-

varying nature of the individual Doppler tracks from multiple body parts [5, 6]. For example, 

Figure 1 shows the micro-Doppler signature of a human walking toward a monostatic con-

tinuous wave radar at 7.5 GHz. The micro-Dopplers are mostly positive since the human is 

moving towards the radar. Dopplers from the right and left arms and legs alternate with each 

other due to the swinging motion of the limbs.

The highest Dopplers arise from the feet followed by the arms and then the torso. The torso, 

though, gives rise to the strongest signal due to the high radar cross-section.

Different periodic motions—such as running, crawling, and boxing—each give rise to unique 
micro-Doppler spectrograms. Hence, these STFT-based signatures have been extensively 

studied for classification of different human activities as well as to differentiate humans from 

Figure 1. Spectrogram of walking human at 7.5 GHz.
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other movers [7–23]. The main limitation of the STFT, however, is that the resolution along 

both the time and frequency domains are controlled by the choice of the dwell time or short 

time window used in the transform. Depending on the type of target, the dwell time param-

eters are often chosen heuristically, to realize the most informative signatures. Other repre-

sentations include the use of signal processing techniques such as independent component 

analysis [24], Hilbert-Huang transforms [25, 26], etc. In all of these cases, the dictionaries 

or bases for representation of the radar data are independent of the data. While data-inde-

pendent dictionaries are usually computationally simple to derive, they are not specifically 
fine-tuned to the underlying features of the data and are dependent on heuristic parameter 
selection. Hence, while they have had success in simple scenarios—such as target classifica-

tion when the channel consists of only a single target or when the test and training conditions 

are identical—they are not suited for more complex realistic scenarios.

Over the last decade, dictionary learning has emerged under the aegis of machine learning. 

Here, customized dictionaries are derived directly from the data and hence are capable of 

abstracting the fundamental characteristics of the data. Dictionary learning has been used 

successfully in a variety of domains such as image processing and face recognition [27, 28] 

and energy disaggregation [29]. Due to the abstraction of the data bases, the hypothesis is that 

they will be useful for addressing detection and classification challenges under more complex 
scenarios. This chapter specifically addresses two such scenarios discussed in [30, 31].

In the first scenario in [30], the problem when the propagation channel consists of multi-

ple simultaneously moving targets is considered. Whether the radar is deployed in indoor 
or outdoor environments, the presence of multiple simultaneous movers is highly likely. 

For instance, in indoor environments, multiple human movers are encountered along with 

dynamic clutter from moving fans, loud speakers, etc. Similarly, in outdoor environments, 
moving vehicles and animals along with pedestrians are encountered. When multiple targets 
move simultaneously in the propagation channel, their radar scattered returns superpose giv-

ing rise to distorted spectrograms. Therefore, the radar returns from these targets must be 

disaggregated before they can be fed into classifiers. In other words, the research problem 
focuses on single channel source separation or multiple target detection rather than single target 

classification. Specifically, unique dictionaries are learned directly from the raw time domain 
radar data from each of the single target categories. This means that no type of parameter 

selection operation is carried out. Then, these unique dictionaries are used to detect the pres-

ence of multiple targets in test data.

Next in [31], the scenario when the training and test conditions of radar data measurement 

deviate considerably is considered. Usually training data are gathered in tightly controlled 

laboratory conditions. But the test data are gathered in real world scenarios where the radar 

system deployment may encounter some challenges. For instance, presence of wireless inter-

ference sources or dispersion in the propagation channel (say through-wall scenario) may 

render some change in the carrier frequency inevitable. In such instances, a degree of recon-

figurability in the radar hardware parameters and flexibility in the radar software is desirable. 
While the hardware reconfigurability can be realized by implementing the radar on software 
defined radio platforms, the flexibility in the software can only be realized if the processing 
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algorithms can handle diversity in the training and test data. When data-driven dictionaries 
are derived from diverse radar data, collected across multiple carrier frequencies, the algo-

rithms derive fundamental characteristics of the data that are common to specific motions 
across different carrier frequencies. In this manner, they are capable of recognizing that spe-

cific motion category even when the radar data are gathered at a new carrier frequency that is 
distinct from those used previously while training.

The chapter is organized as follows. Section 2 details the analytical framework for learning 

dictionaries from raw time domain data along with description of how these dictionaries can 

be utilized for both single channel source separation (or disaggregation) and for classification 
(when training and test data are gathered in different conditions). Sections 3 and 4 provide 
the experimental validation and results for both of these scenarios. Section 5 concludes with 

a discussion on the advantages and limitations of the dictionary learning algorithm in the 

context of radar.

2. Theory

Throughout the chapter, vectors are indicated with small bold letters, matrices with capital 
bold letters, and constants or variables with small letters. In this section, the concept of repre-

senting time-domain micro-Doppler data with uniquely customized dictionaries is introduced. 

These dictionaries are learnt from training data. In this chapter, we discuss the synthesis learn-

ing dictionary framework which is based on the idea that radar data, x, can be synthesized 

with unique data dependent bases functions, D, and their corresponding coefficients, z. In 

other words, x = Dz. An alternate framework that has also been investigated is called the analy-

sis dictionary learning framework. Here, the data is analyzed by dictionaries to create sparse 

coefficient representations. This can be shown as Dx = z. The analysis dictionary framework is 

quicker to execute than the synthesis dictionary learning in the test stages, since it involves a 

multiplicative operation rather than matrix inversion. Interested readers may refer to [32] for 

further details on the analysis dictionary learning framework and its experimental validation.

2.1. Dictionary learning

Consider the case of I targets. Each target is assumed to be moving in isolation in the propaga-

tion environment. The radar data from the target, i, is represented as a vector   x  
i
    which consist 

of N samples. The training data corresponding to target i consist of M such measurements and 

hence   X  
i
   ϵ [N × M]  . The objective is to represent   X  

i
    as shown in Eq. (2):

   X  
i
   =  D  

i
    Z  
i
    (2)

Here,   D  
i
   ϵ [N × P]   and   Z  

i
   ϵ [P × M]   are the dictionary and coefficient matrices corresponding to the 

target i. The distinction of this dictionary learning process from other data-independent trans-

forms such as Fourier or DCT is that   Z  
i
    must be a row-wise sparse coefficient matrix with a spar-

sity value of  τ . Therefore, the objective of the dictionary learning algorithm is given as Eq. (3)
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   min  
 D  
i
  , Z  
i
  
     ‖ X  

i
   −  D  

i
    Z  
i
  ‖   

F
  2   s . t   ‖ Z  

i
  ‖   

0
   < τ  (3)

It is well known that the l
0
—minimization problem stated above is NP-hard [33]. There are 

therefore, two approaches for solving Eq. (2). One is to implement the l
0
—minimization 

using computationally expensive greedy techniques. Alternately, the l
0
—minimization can be 

reduced to a l
1
—minimization technique as shown in Eq. (4)

   min  
 D  
i
  , Z  
i
  
     ‖ X  

i
   −  D  

i
    Z  
i
  ‖   

F
  2   + λ   ‖ Z  

i
  ‖   

1
    (4)

Here,  λ  is the regularization parameter that trades off between the representational accuracy 
and the sparsity in the l

1
—minimization operation. An iterative alternative minimization 

approach is used to solve Eq. (4). First,   D  
i
    is initialized using random columns selected from 

the training data   X  
i
   . Then   Z  

i
    is determined using Eq. (5) by implementing the iterative soft 

thresholding algorithm (ISTA) discussed in [34]

   min  
 Z  
i
  
     ‖ X  

i
   −  D  

i
    Z  
i
  ‖   

F
  2   + λ   ‖ Z  

i
  ‖   

1
    (5)

Once   Z  
i
    is determined,   D  

i
    is estimated using the simple least squares minimization shown in 

Eq. (6). Each of the P columns of the dictionary has to be normalized to less than unity in order 

to prevent scale ambiguities

   min  
 D  
i
  
     ‖ X  

i
   −  D  

i
    Z  
i
  ‖   

F
  2   s . t    ‖ d  

p
  ‖   

2

  2  ≤ 1  (6)

Equations (5) and (6) are iterated until the representation error falls below a pre-defined 
threshold or when it converges. The process is repeated to learn unique dictionaries for every 

target. Then, all the dictionaries are concatenated to form an aggregate over-complete dic-

tionary  D =  [ D  
1
    D  

2
   ⋯  D  

I
  ]  . The aggregate dictionary,  D ∈  [N × IP]  , is used for both single channel 

source separation and for classification of test micro-Dopplers. Both of these are discussed in 
the succeeding sections.

The dictionaries of multiple targets are learned individually in Eq. (4). An alternate mecha-

nism would be to learn the multiple dictionaries together as suggested by [35]. Here, besides 

the sparsity penalty in Eq. (3), an additional penalty is introduced to increase the discrimina-

tion across multiple target categories. This step increases the computational complexity dur-

ing the training stages. But since there was no discernible improvement in the performance of 

the disaggregation and classification algorithms, this scheme is not discussed in this chapter.

2.2. Single channel source separation of multiple radar micro-Dopplers

Now each single test measurement—a vector consisting of N samples,    x 
~

   ∈  [N × 1]   is consid-

ered. In the test scenario, there may be single or multiple targets moving simultaneously 

in the propagation channel. Therefore, the test signal may be the aggregate of time-domain 

micro-Dopplers from multiple targets. Using the aggregate dictionary, the test coefficient vec-

tor      z 
~

    
1:I

   ∈  [IP × 1]   is derived using Eq. (7)
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   min  
   z ~    

1:I
  
     ‖ x  

i
   − D    z ~    

1:I
  ‖   

F
  2   +  λ  

1
      z ~    

1:I
    (7)

Note that the test coefficient vector,    z ~    
1:I

   , is distinct from the columns of the coefficient matrix,   Z  
i
   , 

derived earlier from Eq. (5). In     z 
~

    
1:I

   , the coefficients (    z 
~

    
i
   ) corresponding to each of the I categories 

of targets are obtained at once as opposed to Eq. (5), where the coefficients corresponding 
to just the training target category are realized. If one or more targets are present, then the 

hypothesis is that their corresponding coefficients (    z 
~

    
i
   ∈  [P × 1]  ) extracted from the composite 

test coefficient vector (    z 
~

    
1:I

   ) will be non-sparse, while the coefficients belonging to the absent 
targets will be close to zeros. The intuition here is that if the dictionaries are sufficiently dis-

criminative, then they will be able to extract the corresponding target coefficients even when 
the radar data consists of superposition of returns from multiple targets. Therefore, a target i 

is determined to be present if the corresponding   D  
i
      z 
~

    
i
    is above a predefined threshold.

2.3. Classification of radar micro-Dopplers

In the previous section, single channel source separation of test data that comprises of radar 

returns from multiple targets was discussed. Now, the focus is on classification of radar data 
from an unknown test target category. It is important to note that while the previous problem 

focused on multiple target detection, the problem in this section focuses on single target classifi-

cation. In both cases, the aggregate dictionary matrix, D, obtained from concatenation of the 

individual dictionaries learned from each of the target categories is utilized. For classification 
purposes, the training features for each target i are derived from the coefficient vector,    Z ¨    

1:I
  i   , 

obtained using the training data,   X  
i
   , and the aggregate dictionary using Eq. (8)

   min  
  Z ¨    

1:I
  i  
     ‖ X  

i
   − D   Z ¨    

1:I
  i  ‖   

F
  

2
   +  λ  

2
     Z ¨    

1:I
  i    (8)

Though the training data matrix is identical, the training feature,    Z ¨    
1:I

  i   , is distinct from the pre-

viously derived   Z  
i
    from Eq. (5) since    Z ¨    

1:I
  i    is a composite matrix derived from the aggregate D 

rather than an individual dictionary   D  
i
   . The the training feature shows the sparsity pattern 

corresponding to an ith target within the cluster of coefficients from multiple targets. Any well-

established classifier, such as support vector machine or K-Nearest neighbor, etc., can now 
be trained with multiple columns of the training feature matrix. Each of the columns of    Z ¨    

1:I
  i    is 

treated as a single training instance for the ith target and the classifier is similarly trained for 
all the target classes.

During the test stage, test features,    z ¨    
1:I

   , are extracted from each test measurement,    x ¨    
i
    (from a 

single target category) using Eq. (9)

   min  
  z ¨    

1:I
  
     ‖  x ¨    

i
   − D   z ¨    

1:I
  ‖   

F
  2   +  λ  

2
     z ¨    

1:I
    (9)

The test data are subsequently classified based on the similarity between    z ¨    
1:I

     and the columns 

of    Z ¨    
1:I

  i    across all the  I  target categories. In this chapter, the support vector machine classifier is 
used. The data were tested on other popular classifiers such as KNN but did not result in any 
significant difference in the results.
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3. Experimental data collection

The proposed dictionary learning methods are validated on experimental radar data gath-

ered from moving humans. Both simulated radar data and measured data are considered. 

Both types of data offer some advantages and some limitations. The simulated radar data 
offer an opportunity to test the performance of the algorithms quickly and under a variety 
of radar operating conditions. In other words, the simulations offer a flexible mechanism to 
change radar parameters. The data are also highly sanitized due to the absence of noise and 

limitations of radar hardware. The measurement data collection is limited by radar system 

parameters such as the dynamic range of the radar receiver, the carrier frequency, sampling 

frequency, and antenna characteristics. On the other hand, current state-of-the-art simulation 

methodologies for human radar data do not capture the entire physics of the human scatter-

ing phenomena. The measurement data, therefore, are crucial for validating the proposed 

algorithms in real world scenarios. The second important limitation of the simulation data 

(unlike the measurement data) is that with the current techniques, the channel can consist of 

only a single target. Therefore, the simulation data are only used for the single target classifi-

cation problem and not for the multiple target detection or disaggregation problem.

In the following two subsections, both the simulation and measurement methodologies are 

detailed.

3.1. Simulation data

Simulation of radar scatterings of still humans has been investigated with full wave elec-

tromagnetic techniques as well as the computationally cheaper ray tracing technique at 

frequencies below X band [36]. The results from the simulations of a uniformly dielectric 

human body showed that the ray tracing results were comparable to the results from 

full wave methods. However, both of these methods are computationally not feasible for 

simulating radar returns from dynamic humans since this requires modeling of multiple 

human poses. Alternately, the simple primitive-based modeling has proven to be reason-

ably accurate for modeling human motions [37, 38]. Here, the different body parts on the 
human are modeled as simple primitives such as the head as a sphere, the torso as a cylin-

der or ellipsoid, and so forth. The radar cross-sections of these simple shapes (  σ  
b
   ) are well 

characterized for different carrier frequencies (  f  
c
   ) and aspect angles. One or more point 

scatterers (   r 
→
    
b
   ) are identified for each body part. When the human moves, the time-varying 

positions of the point scatterers give rise to micro-Dopplers. Then, the radar returns of 
the human are obtained by the complex sum of the returns from each of the body parts as 

shown in Eq. (10)

  x =  ∑ 
b=1

  
B

     √ 
___

  σ  
b
       1 __ 
 r  

b
  2 
    e   −j  

2π f  
c
  
 ____ c  2 r  

b
   (t)    (10)

This simplistic model is easy to execute in real time. However, it does not capture the entire 

physics of the human scatterings. For instance, it does not capture the multiple scatterings of 
waves between the different body parts or their shadowing effects.
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There are three methods that are currently used to describe human motions. The simplest 

method is to model the swinging motion of the two legs as a double pendulum. A more 

complete analytical model, known as the Boulic-Thalmann model, was proposed in [37]. 

This model provides analytical equations to describe different human body parts (arms, legs, 
hands, and feet) as a function of the human height and relative velocity with respect to height. 

However, the model is restricted only to a simple human walking motion. More complex and 

realistic motions, such as crawling, hopping, and running, can be obtained using computer 

animation data. The radar scattered returns from complex human motions can be therefore 
obtained by combining animation data with the primitive-based electromagnetic modeling 

[38]. However, the animation data are obtained through motion capture technologies of a 

live actor. Therefore, the model cannot be parameterized to obtain varied data for different 
humans (of different heights or gait patterns) through a single measurement.

In this study, the Thalmann model was used to model human walking motions for multiple 

human heights (1.5–1.8 m) and velocities (1.5–3.6 m/s). Due to the limitations of the model, 

a variety of human motions could not be simulated. Instead, just two types of motions were 

considered—when a human is walking towards the radar and when the human is walk-

ing away from the radar. The human moves in the line-of-sight of a monostatic continuous 

wave radar anywhere from a distance of 2–8 m. The duration of the human motion is 1 s 

and the sampling frequency of the simulation is 1 kHz. We imparted frequency diversity to 
the simulation data by varying the carrier frequency across five values—{2.5, 3, 3.5, 4, and 
4.5 GHz}. Three hundred and sixty distinct walking motions are simulated both toward and 

away from radar at each of the carriers. Of these, 80% of the 1800 total simulations—cor-

responding to four of the five carrier frequencies—were used for training the classification 
algorithm; and the remaining 20%—from the fifth remaining carrier frequency—were used 
for testing purposes. The objective here is to test the capability of the dictionary learning 

algorithm to learn fundamental features from the human micro-Doppler data pertaining to 

a specific motion despite the variations of the carrier frequency. The dictionaries are learned 
directly from the raw data without any additional post processing. Therefore, at no stage 

were any parameters heuristically chosen.

A third category of indoor mover may give rise to significant dynamic clutter—a fan. Hence, a fan 
was modeled with three blades and multiple point scatterers on each blade. A lot of variety in the 
experimental data from the fan was generated by changing its speed of rotation (200–400 rpm), 

the length of the blades (0.2–0.4 m), width of the blades (0.14–0.17 m) and the orientation of the 

fan with respect to the monostatic radar. The fan micro-Dopplers at five carrier frequencies (1800 
distinct simulations) were simulated of which data from four carriers were used for training and 

the data from the fifth carrier for testing purposes. The results and analyses for dictionary-based 
classification of simulated human radar data are presented in the following section.

3.2. Measurement data

Next, experimental data were collected in indoor line-of-sight conditions. A monostatic con-

tinuous wave radar was set up using a N9926A FieldFox vector network analyzer (VNA) and 
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two linearly polarized broad band horn antennas (HF907). The VNA was configured to make 
narrowband measurements around a center carrier frequency (Figure 2).

The transmitted power of the VNA was set at +3 dBm. The instrument is highly sensitive with 
a dynamic range of over 100 dB. The received signal is amplified, in-phase quadrature (IQ) 
demodulated and digitized inside the instrument and then directly processed in a 2.4GHz 

Intel Pentium processor. Two sets of experiments were carried out.

The first experiment was carried out to validate the multiple target detection algorithm based 
on dictionary learning. The center frequency of the VNA was set to 7.5 GHz. Then, human 

radar data were collected for two types of motions—when a human is walking towards the 
radar (FH) and when a human is walking away from the radar (BH). Each measurement trace 
is 2.7 s long with 1000 samples. The low sampling frequency is due to the system constraints 

of the VNA when it is configured in the narrowband mode. Measurement data were gathered 
for 40 humans of both genders and of varying heights and gait patterns. The humans move 
between 1 and 9 m away from the radar in line-of-sight conditions. The third motion class that 

was considered was of a table fan (TF) with three blades. The table fan was operated at three 

different rotation rates and was placed at different distances and orientations from the radar. 
Then, measurement data were gathered with multiple targets moving simultaneously. The 

cases are: FH + BH, FH + TF, BH + TF, and FH + BH + TF. The objective is to learn dictionaries 

using training data in the single-target scenario. Then these dictionaries are combined and 

used to detect targets in multiple target scenarios.

The next experiment that was conducted was again based on the same set up. However, this 

time only single-target scenarios were considered. Instead, the carrier frequency of the mea-

surement data was varied across five values—{2.5, 3, 3.5, 4, and 4.5} GHz. A variety of human 
motions were considered—two humans walking simultaneously before the radar (TH), 
human standing still but boxing with his arms (HB) and a human walking while holding a 

stick (HHS). The last case that was considered was of the rotating table fan (TF). The chal-

lenge in this experiment is to learn dictionaries and training features from measurement data 

corresponding to four carrier frequencies, while testing the classifier with data from a fifth 
distinct carrier frequency. This experiment was specifically chosen since the human micro-
Doppler shows a lot of variations due to the carrier frequency and the Dopplers are directly 

proportional to the frequency. The table fan was selected for both types of experiments, since 

it is one of the key contributors of dynamic clutter in indoor environment.

N9926A

FieldFox VNA

HF907

HF907

S
21

Figure 2. Measurement data collection in indoor line-of-sight conditions using a VNA and two horn antennas.
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4. Results and analysis

In this section, the results of using the customized micro-Doppler dictionaries of the different 
types of motions for both multiple target detection as well as single target classification are 
discussed.

4.1. Results from multiple target detection using disaggregation of radar data

First, the measured data that are gathered for multiple target detection are considered. As 

mentioned in Section 3.2, three target classes—human walking toward the radar (FH), away 
from the radar (BH), and table fan (TF) are considered. The dictionaries are learned from 

single target data and use them to detect the presence of multiple simultaneous movers in 

three scenarios—single-target scenario, two-target scenario, and three-target scenario. The 
true detection and false alarm percentage for each of these cases is summarized in Table 1. 

The results show that for a single-target scenario, the true detection is very high (above 93%) 

in all the three cases. The true detection of the fan is slightly poorer than that of the humans 

because of greater probability of aliasing arising with the fan micro-Dopplers due to the lim-

ited sampling frequency of the radar measurements. This also gives rise to the slightly higher 

false alarm rate of the fan when compared to the humans. Next, three two-target scenarios 

are considered. In each of the scenarios, the algorithm correctly detects the presence of two 

targets in more than 80% of the cases by disaggregating their micro-Dopplers. The false alarm 

rate though is high especially from the table fan due to the aliasing. In the three-target sce-

nario, the algorithm correctly detects the presence of all three targets in more than 90% of the 

cases. This sort of multiple target detection cannot be carried out using basic data indepen-

dent transforms and this result demonstrates the usefulness of representing micro-Dopplers 

with unique data-dependent dictionaries.

Scenarios True detections False alarms

FH BH TF FH BH TF

Single target (FH) 100 NA NA NA 4 14

Single target (BH) NA 100 NA 12 NA 8

Single target (TF) NA NA 94 2 0 NA

Two targets (FH + BH) 87.5 80 NA NA NA 52.5

Two targets (FH + TF) 88 NA 94 NA 12 NA

Two targets (BH + TF) NA 94 96 28 NA NA

Three targets (FH + BH + TF) 95 90 90 NA NA NA

Mean 94 11

Table 1. Disaggregation and detection results from measured human micro-Dopplers in multiple target scenario at 

7.5 GHz from [29].
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4.2. Results of single target classification using frequency diverse radar 
micro-Dopplers

Now the objective is to correctly classify that target class when the propagation channel con-

sists of only one type of target class. The challenge here is to classify test data where system 

conditions (carrier frequency) during test deviate significantly from the training conditions. 
Therefore, during the training stage, the dictionaries for each target class are learned from 

diverse frequency data (from four carrier frequencies) and the test data consists of micro-

Dopplers from a fifth carrier frequency that was previously not used for training.

The following five carrier frequencies—{2.5, 3, 3.5, 4, and 4.5} GHz are considered. In fold 1 
through fold 5, the test frequencies are 2.5, 3,…,4.5 GHz, respectively, and the training data 

for each fold are obtained from the corresponding complimentary set from the total set of 

carrier frequencies. The performance of the algorithm for both simulation and measurement 

data are studied. In the simulation set up, three target classes are considered—a human 
walking towards the radar (FH), a human walking away from the radar (BH), and a fan (TF). 

The classification results obtained from the fivefold classification are presented in Table 2. 

The results show very high classification accuracy (close to 100%) for all the cases. This 
shows that the algorithm is capable of learning unique dictionaries corresponding to each 

human motion from frequency diverse training data. Again, this type of classification would 
not be possible with other data-independent transforms which rely on heuristic parameter 

selection.

The simulation data are highly sanitized, since they are not affected by real world conditions 
such as noise, interference, and radar system limitations. Therefore, in the next study, the per-

formance of the algorithm on real world data is studied. Four types of motions—two humans 
walking simultaneously in the propagation channel (forming a single class of motion—TH), a 
single human standing still and boxing his arms (HB), a human walking with a stick (HHS), 

and a table fan are considered. Five-fold classification is performed on the target data and the 
results are presented in the following two tables. Table 3 shows the confusion matrix obtained 

for a single fold (fold 4). The column headers show the class labels that the classification algo-

rithm assigns to the test data. The true class labels are shown as row headers. The results show 

that TH, HB, and TF are classified with 100% accuracy, while the HHS is confused with TH 
and HB. There are two reasons for this confusion. When two humans are walking together, 

Cases Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean

Human walking away from radar 100 100 100 100 100 100

Human walking towards radar 100 100 100 100 100 100

Ceiling Fan 100 98 100 100 97 99

Data from four carriers are used for training while data from the fifth carrier are used for testing.

Table 2. Fivefold cross-validation of classification based on dictionary learning of simulated human micro-Dopplers at 
{2.5, 3, 3.5, 4.0, 4.5} GHz from [30].
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there are times when the scattered signal from one human may be weaker than the other 
human (due to shadowing or due to different distances of the two humans from the radar). 
As a result, there are similarities at times between TH and HHS. Second, when the human is 

boxing, the micro-Dopplers occur at both positive and negative frequencies due to motions 

of the arms toward and away from the radar. This can be confused with the HHS, especially 

from the back swing of the legs, stick, and arms. The micro-Dopplers of both these motions 

could resemble each other especially across different carrier frequencies.

Table 4 shows the classification results across all the fivefolds. The results show a fairly good 
classification performance (above 85%) for all of the cases. The confusion of the table fan with 
the human motions can again be attributed to the limited sampling frequency of the measure-

ment data.

5. Conclusion

In conclusion, the usefulness of representing human micro-Dopplers with unique data depen-

dent dictionaries is investigated. These dictionaries are applied subsequently to two appli-

cations. The first application is for detecting multiple simultaneously moving targets in the 
propagation channel. Results demonstrated that weak targets are detected in the presence of 

stronger targets and strong targets are correctly identified even when their signatures are dis-

torted by returns from the weaker targets. The second application that was discussed was classi-

fication when there is significant variation between the training and test conditions. Specifically, 

Cases Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

TH 95 100 75 85 80 87

HB 85 100 85 100 100 94

HHS 85 75 85 80 100 85

TF 90 100 90 85 90 91

Data from four carriers are used for training while data from the fifth carrier are used for testing.

Table 4. Fivefold cross-validation of classification based on dictionary learning of measured human micro-Dopplers at 
{2.5, 3, 3.5, 4.0, 4.5} GHz from [30].

Cases TH HB HHS TF

Two humans (TH) 100 0 0 0

Human boxing (HB) 0 100 0 0

Human holding stick (HHS) 15 10 75 0

Table fan (TF) 0 0 0 100

The classifier was trained using measured data at {2.5, 3, 3.5, and 5} GHz from [30].

Table 3. Confusion matrix obtained while classifying human measured micro-Dopplers at 4 GHz.
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the carrier frequency—the fundamental parameter that controls the resolution, extent, and 
quality of micro-Doppler data—was varied. The algorithm learned dictionaries from diverse 
training data and was capable of correctly classifying completely different test data. While 
the dictionary learning techniques were examined in the context of micro-Doppler data, the 

encouraging results suggest that these techniques may be successfully extended to other radar 

scenarios especially the range-Doppler images of ISAR.
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