
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



14 

Greedy Algorithms to Determine Stable Paths 
and Trees in Mobile Ad hoc Networks 

Natarajan Meghanathan 
Jackson State University, Jackson, MS 

United States of America 

1. Introduction 

A mobile ad hoc network (MANET) is a dynamic, resource-constrained, distributed system 

of independent and arbitrarily moving wireless nodes and bandwidth-constrained links.  

MANET nodes operate with limited battery charge and use a limited transmission range to 

sustain an extended lifetime. As a result, MANET routes are often multi-hop in nature and 

nodes forward the data for others. Based on their primary route selection principle, MANET 

routing protocols are classified into two categories (Meghanathan & Farago, 2004): 

minimum-weight based routing and stability-based routing protocols. The minimum-

weight path among the set of available paths in a weighted network graph is the path with 

the minimum total weight summed over all its edges. The routing metrics generally targeted 

include: hop count, delay, energy consumption, node lifetime and etc. The stability-based 

routing protocols are aimed to minimize the number of route transitions and incur the least 

possible route discovery and maintenance overhead to the network.  

A majority of the ad hoc routing protocols are minimum-weight based and are proposed to 
optimize one or more performance metrics in a greedy fashion without looking at the future. 
For example, the Dynamic Source Routing (DSR) protocol (Johnson et. al., 2001) 
instantaneously selects any shortest path that appears to exist and similarly the Ad hoc On-
demand Distance Vector (AODV) protocol (Perkins & Royer, 1999) chooses the route that 
propagated the Route Request (RREQ) route discovery messages, with the lowest delay. To 
maintain optimality in their performance metrics, minimum-weight based routing protocols 
change their paths frequently and incur a huge network overhead. The stability-based 
routing protocols attempt to discover stable routes based on the knowledge of the past 
topology changes, future topology changes or a combination of both. Prominent within the 
relatively smaller class of stability-based routing protocols proposed in the literature 
include: Associativity-based Routing (ABR) (Toh, 1997), Flow-Oriented Routing Protocol 
(FORP) (Su et. al., 2001) and the Route-lifetime Assessment Based Routing (RABR) (Agarwal 
et. al., 2000) protocols. ABR selects paths based on the degree of association stability, which 
is basically a measure of the number of beacons exchanged between two neighbor nodes. 
FORP selects the route that will have the largest expiration time since the time of its 
discovery. The expiration time of a route is measured as the minimum of the predicted 
expiration time of its constituent links. RABR uses the average change in the received signal 
strength to predict the time when the received signal strength would fall below a critical O

pe
n 

A
cc

es
s 

D
at

ab
as

e 
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,  
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com



 Advances in Greedy Algorithms 

 

254 

threshold. The stable path MANET routing protocols are distributed and on-demand in 
nature and thus are not guaranteed to determine the most stable routes (Meghanathan 
2006d; Meghanathan 2007).   
Stability is an important design criterion to be considered while developing multi-hop 
MANET routing protocols. The commonly used route discovery approach of flooding the 
route request can easily lead to congestion and also consume node battery power. Frequent 
route changes can also result in out-of-order data packet delivery, causing high jitter in multi-
media, real-time applications. In the case of reliable data transfer applications, failure to 
receive an acknowledgement packet within a particular timeout interval can also trigger 
retransmissions at the source side. As a result, the application layer at the receiver side might 
be overloaded in handling out-of-order, lost and duplicate packets, leading to reduced 
throughput. Thus, stability is also important from quality of service (QoS) point of view too. 
This chapter addresses the issue of finding the sequence of stable paths and trees, such that 

the number of path and tree transitions is the global minimum. In the first half of the 

chapter, we present an algorithm called OptPathTrans (Meghanathan & Farago, 2005) to 

determine the sequence of stable paths for a source-destination (s-d) communication session. 

Given the complete knowledge of the future topology changes, the algorithm operates on 

the greedy “look-ahead” principle: Whenever an s-d path is required at a time instant t, 

choose the longest-living s-d path from t. The sequence of long-living stable paths obtained 

by applying the above strategy for the duration of the s-d session is called the stable mobile 

path and it incurs the minimum number of route transitions. We quantify route stability in 

terms of the number of route transitions. Lower the number of route transitions, higher is 

the stability of the routing algorithm. 

In the second half of the chapter, we show that the greedy look-ahead principle behind 
OptPathTrans is very general and can be extended to find a stable sequence of any 
communication structure as long as there is an underlying algorithm or heuristic to 
determine that particular communication structure. In this direction, we propose algorithm 
OptTreeTrans (Meghanathan, 2006c) to determine the sequence of stable multicast Steiner 
trees for a multicast session. The problem of determining the multicast Steiner tree is that 
given a weighted network graph G = (V, E) where V is the set of vertices, E is the set of 
edges connecting these vertices and S, is a subset of set of vertices V, called the multicast 
group or Steiner points, we want to determine the set of edges of G that can connect all the 
vertices of S and they form a tree. It is very rare that greedy strategies give an optimal 
solution. Algorithms OptPathTrans and OptTreeTrans join the league of Dijkstra algorithm, 
Minimum spanning tree Kruskal and Prim algorithms (Cormen et. al., 2001) that have used 
greedy strategies, but yet give optimal solution. In another related work, we have also 
proposed an algorithm to determine the sequence of stable connected dominating sets for a 
network session (Meghanathan, 2006b). 
The performance of algorithms OptPathTrans and OptTreeTrans have been studied using 
extensive simulations under two different scenarios: (1) Scenarios in which the complete 
knowledge of the future topology changes is available at the time of path/tree selection and 
(2) Scenarios in which the locations of nodes are only predicted for the near future and not 
exact. To simulate the second scenario, we consider a location prediction model called 
“Prediction with Uncertainty” that predicts the future locations of nodes at different time 
instants based on the current location, velocity and direction of travel of each node, even 
though we are not certain of the velocity and direction of travel in the future. Simulation 

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

255 

results illustrate that the algorithms OptPathTrans and OptTreeTrans, when run under the 
limited knowledge of future topology changes, yield the sequence of paths and trees such 
that the number of transitions is close to the minimum values obtained when run under the 
complete knowledge of future topology changes.  
The rest of the chapter is organized as follows: In Section 2, we describe algorithm 
OptPathTrans to determine the stable mobile path, discuss its proof of correctness and run-
time complexity. Section 3 illustrates the simulation results of OptPathTrans under the two 
scenarios of complete and limited knowledge of future topology changes. In Section 4, we 
explain algorithm OptTreeTrans to determine the stable mobile multicast Steiner tree, discuss 
its proof of correctness and run-time complexity. Section 5 illustrates the simulation results 
of OptTreeTrans under the two scenarios of complete and limited knowledge of future 
topology changes. In Section 6, we discuss the impact of the stability-hop count tradeoff on 
network resources and routing protocol performance. Section 7 concludes the chapter and 
discusses future work. Note that we use the terms ‘path’ and ‘route’ interchangeably 
throughout the chapter. They are the same. 

2. Algorithm for the optimal number of path transitions 

One could resort to flooding as a viable alternative at high mobility (Corson & Ephremides, 
1995). But, flooding of the data packets will prohibitively increase the energy consumption 
and congestion at the nodes. This motivates the need for stable path routing algorithms and 
protocols in dynamically changing scenarios, typical to that of MANETs.  

2.1 Mobile graph 

A mobile graph (Farago & Syrotiuk, 2003) is defined as the sequence GM = G1G2 … GT of 
static graphs that represents the network topology changes over some time scale T. In the 
simplest case, the mobile graph GM = G1G2 … GT can be extended by a new instantaneous 
graph GT+1 to a longer sequence GM = G1G2 … GT GT+1, where GT+1 captures a link change 
(either a link comes up or goes down). But such an approach has very poor scalability. In 
this chapter, we sample the network topology periodically for every one second, which 
could, in reality, be the instants of data packet origination at the source. For simplicity, we 
assume that all graphs in GM have the same vertex set (i.e., no node failures). 

2.2 Mobile path 

A mobile path (Farago & Syrotiuk, 2003), defined for a source-destination (s-d) pair, in a 
mobile graph GM = G1G2 … GT is the sequence of paths PM = P1P2 … PT, where Pi is a static 
path between the same s-d pair in Gi = (Vi, Ei), Vi is the set of vertices and Ei is the set of 
edges connecting these vertices at time instant ti. That is, each static path Pi can be 
represented as the sequence of vertices v0v1 … vl, such that v0 = s and vl = d and (vj-1,vj) ∈  Ei 
for j = 1,2, …, l. The timescale of tT normally corresponds to the duration of an s-d session.  
Let wi(Pi) denote the weight of a static path Pi in Gi. For additive path metrics, such as hop 
count and end-to-end delay, wi(Pi) is simply the sum of the link weights along the path. 
Thus, for a given s-d pair, if Pi = v0v1 … vl such that v0 = s and vl = d,  

 ∑
=

−=
l

j

jjiii vvwPw

1

1 ),()(   (1)                          

www.intechopen.com



 Advances in Greedy Algorithms 

 

256 

For a given mobile graph GM = G1G2 … GT and s-d pair, the weight of a mobile path PM = 
P1P2 … PT is   

 ∑ ∑
=

−

=
++=

T

i

T

i

iitransiiM PPCPwPw

1

1

1

1),()()(   (2) 

where ),( 1+iitrans PPC is the transition cost incurred to change from path Pi in Gi to path Pi+1 

in Gi+1 and is measured in the same unit used to compute wi(Pi).  

2.3 Stable mobile path and minimum hop mobile path 

The Stable Mobile Path for a given mobile graph and s-d pair is the sequence of static s-d 
paths such that the number of route transitions is as minimum as possible. A Minimum Hop 
Mobile Path for a given mobile graph and s-d pair is the sequence of minimum hop static s-d 
paths. With respect to equation (2), a Stable Mobile Path minimizes only the sum of the 

transition costs 
1

1
1

( , )
T

trans i i
i

C P P
−

+
=
∑ and a Minimum Hop Mobile Path minimizes only the term 

∑
=

T

i

ii Pw

1

)( , assuming unit edge weights. For additive path metrics and a constant transition 

cost, a dynamic programming approach to optimize the weight of a mobile path 

∑ ∑
=

−

=
++=

T

i

T

i

iitransiiM PPCPwPw

1

1

1

1),()()(  has been proposed in (Farago & Syrotiuk, 2003).   

2.4 Algorithm description 

Algorithm OptPathTrans operates on the following greedy strategy: Whenever a path is 
required, select a path that will exist for the longest time. Let GM = G1G2 … GT be the mobile 
graph generated by sampling the network topology at regular instants t1, t2, …, tT of an s-d 
session. When an s-d path is required at sampling time instant ti, the strategy is to find a 
mobile sub graph G(i, j) = Gi∩Gi+1∩… ∩Gj such that there exists at least one s-d path in 
G(i, j) and no s-d path exists in G(i, j+1). A minimum hop s-d path in G(i, j) is selected. Such a 
path exists in each of the static graphs Gi, Gi+1, …, Gj. If sampling instant tj+1 ≤ tT, the above 
procedure is repeated by finding the s-d path that can survive for the maximum amount of 
time since tj+1. A sequence of such maximum lifetime static s-d paths over the timescale of a 
mobile graph GM forms the Stabile Mobile s-d Path in GM. The pseudo code of the algorithm 
is given in Fig. 1. 
 

Input: GM = G1G2 … GT, source s, destination d 
Output: PS              // Stable Mobile Path 
Auxiliary Variables: i, j 
Initialization: i=1; j=1; PS = Φ 
 
Begin OptPathTrans 
 
1    while (i ≤ T) do 
 

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

257 

2 Find a mobile graph G(i, j) = Gi ∩  Gi+1 ∩  …  ∩  Gj such that there exists at least one 
s-d path in G(i, j) and {no s-d path exists in G(i, j+1) or j = T} 

          
3         PS = PS U { minimum hop s-d path in G(i, j) } 
 
4         i = j + 1      
           
5     end while 

 
6 return PS 
 
End OptPathTrans 

Fig. 1. Pseudo code for algorithm OptPathTrans 

2.5 Algorithm complexity and proof of correctness 

In a mobile graph GM = G1G2 … GT, the number of route transitions can be at most T. A path-
finding algorithm will have to be run T times, each time on a graph of n nodes. If we use 
Dijkstra algorithm that has a worst-case run-time complexity of O(n2), where n is the 
number of nodes in the network, the worst-case run-time complexity of OptPathTrans is 
O(n2T). We use the proof by contradiction technique to prove the correctness of algorithm 

OptPathTrans. Let 
S
P  (with m route transitions) be the mobile path generated by algorithm 

OptPathTrans. To prove m is optimal, we assume the contrary that there exists a mobile path 

'S
P  with m’ route transitions such that m’ < m. Let 1

S
epoch , 2

S
epoch , …., m

S
epoch  be the set of 

sampling time instants in each of which the mobile path 
S
P  suffers no route transitions 

(refer Fig. 2). Similarly, let 1

'S
epoch , 2

'S
epoch , …, '

'
m

S
epoch  be the set of sampling time instants in 

each of which the mobile path 
'S

P  suffers no route transitions (refer Fig. 3). 

 

 
 

Fig. 2. Sampling Time Instants for Mobile Path 
S
P  (Determined by OptPathTrans) 

 

 
 

Fig. 3. Sampling Time Instants for Mobile Path 
'S

P  (Hypothesis for the Proof) 

www.intechopen.com



 Advances in Greedy Algorithms 

 

258 

Let 
jinit

S
t

,
and 

jend
S
t

,
be the initial and final sampling time instants of 

j

S
epoch  where 1 ≤ j ≤ 

m. Similarly, let 
,

'
init k

S
t and 

,

'
end k

S
t  be the initial and final sampling time instants of 

'
k

S
epoch  

where 1 ≤ k ≤ m’. Note that ,1init

S
t = 

,1

'
init

S
t  and ,end m

S
t  = , '

'
end m

S
t  to indicate that 

S
P  and 

'S
P  span 

over the same time period, T, of the network session.  
Now, since the hypothesis is m’ < m, there should exist j, k where 1 ≤ j ≤ m and 1 ≤ k ≤ m’ 

such that j

S
epoch s

'
k

S
epoch , i.e., t

S

init k

'
,

< tS
init j,

 < tS
end j,

 < t
S

end k

'
,

and at least one s-d path 

existed in [
,

'
init k

S
t ,…,

,

'
end k

S
t ]. In other words, there should be at least one s-d path in

'S
P  that 

has a lifetime larger than that of the lifetime of the s-d paths in
S
P . But, algorithm 

OptPathTrans made a route transition at tS
end j,

 since there was no s-d path from ,init j

S
t  

beyond 
,end j

S
t . Thus, there is no common s-d path in the range [

,init j

S
t , …, 

,

'
end k

S
t ] and hence 

there is no common s-d path in the range [
,

'
init k

S
t ,…,

,

'
end k

S
t ]. This shows that the lifetime of each 

of the s-d paths in
'S

P  has to be smaller or equal to the lifetime of the s-d paths in
S
P , 

implying m’ ≥ m. This is a contradiction and proves that our hypothesis m’ < m is not correct. 

Hence, the number of route transitions in
S
P  is optimal and

S
P  is the Stable Mobile Path. 

2.6 Example run of algorithm OptPathTrans 

Consider the mobile graph GM = G1G2G3G4G5 (Fig. 4.), generated by sampling the network 
topology for every second. Let node 1 and node 6 be the source and destination nodes 
respectively. The Minimum Hop Mobile 1-6 Path for the mobile graph GM would be {{1-3-
6}G1, {1-4-6}G2, {1-2-6}G3, {1-3-6}G4, {1-2-6}G5}. As the minimum hop path in one static graph 
does not exist in the other, the number of route transitions incurred for the Minimum Hop 
Mobile Path is 5. The hop count in each of the static paths is 2 and hence the time averaged 
hop count would also be 2.  
 

 

Fig. 4. Mobile Graph and Minimum Hop Mobile Path 

The execution of algorithm OptPathTrans on the mobile graph GM, of Fig. 4. is shown in Fig. 
5. The Stable Mobile Path generated would be {{1-4-5-6}G123, {1-2-5-6}G45}. The number of 
route transitions is 2 as we have to discover a common path for static graphs G1, G2 and G3 
and a common path for static graphs G4 and G5. The hop count of each of the constituent 
paths of the Stable Mobile Path is 3 and hence the time averaged hop count of the Stable 

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

259 

Mobile Path would also be 3. Note that even though there is a 2-hop path {1-3-6} common to 
graphs G1 and G2, the algorithm ends up choosing the 3-hop path {1-4-5-6} that is common 
to graphs G1, G2 and G3. This shows the greedy nature of algorithm OptPathTrans, i.e., 
choose the longest living path from the current time instant. To summarize, the Minimum 
Hop Mobile Path incurs 5 path transitions with an average hop count of 2; while the Stable 
Mobile Path incurs 2 path transitions with an average hop count of 3. This illustrates the 
tradeoff between stability and hop count which is also observed in the simulations. 
 

 
Fig. 5. Execution of Algorithm OptPathTrans on Mobile Graph of Fig. 4.   

2.7 Prediction with uncertainty 

Under the Prediction with Uncertainty model, we generate a sequence of predicted network 
topology changes starting from the time instant a path is required. We assume we know 
only the current location, direction and velocity of movement of the nodes and that a node 
continues to move in that direction and velocity. Whenever the node hits a network 
boundary, we predict it stays there, even though a node might continue to move. Thus, even 
though we are not sure of actual locations of the nodes in the future, we construct a 
sequence of predicted topology changes based on the current information. We run 
algorithm OptPathTrans on the sequence of predicted future topology changes generated 
starting from the time instant a path is required. We validate the generated path with 
respect to the actual locations of the nodes in the network. Whenever a currently used path 
is found to be invalid, we repeat the above procedure. The sequence of paths generated by 
this approach is referred to as Stable-Mobile-PathUncertain-Pred.  
In practice, information about the current location, direction and velocity of movement 
could be collected as part of the Route-Request and Reply cycle in the route setup phase. 
After collecting the above information from each node, the source and destination nodes of a 
session assume that each node continues to move in its current direction of motion with the 

current velocity. Given the network dimensions (0… Xmax, 0… Ymax), the location ( xi
t

, yi
t

) of 

a node i at time instant t, the direction of motion Θ (0 ≤ Θ ≤ 360) with reference to the 

positive x-axis, and the current velocity vi
t

, the location of node i at time instant t + δt, 

( xi
t t+δ

, yi
t t+δ

) would be predicted as follows:  

                       xi
t t+δ

= x v ti

t

i

t+ ( * *cos )δ Θ                     if 0 ≤ Θ ≤ 90 

                         =  x v ti

t

i

t− −( * *cos( ))δ 180 Θ             if 90 ≤ Θ ≤ 180 

                         = x v ti

t

i

t− −( * *cos( ))δ Θ 180              if 180 ≤ Θ ≤ 270 

www.intechopen.com



 Advances in Greedy Algorithms 

 

260 

                         =  x v ti

t

i

t+ −( * *cos( ))δ 360 Θ             if 270 ≤ Θ ≤ 360 

                 yi
t t+δ

= y v ti

t

i

t+ ( * *sin )δ Θ                            if 0 ≤ Θ ≤ 90    

                          = y v ti

t

i

t+ −( * *sin( ))δ 180 Θ              if 90 ≤ Θ ≤ 180     

                          =  y v ti

t

i

t− −( * *sin( ))δ Θ 180             if 180 ≤ Θ ≤ 270 

                          = y v ti

t

i

t− −( * *sin( ))δ 360 Θ              if 270 ≤ Θ ≤ 360 

At any situation, when xi
t t+δ

 is predicted to be less than 0, then xi
t t+δ

is set to 0. 

                              when xi
t t+δ

 is predicted to be greater than Xmax, then xi
t t+δ

 is set to Xmax.  

           Similarly, when yi
t t+δ

is predicted to be less than 0, yi
t t+δ

 is set to 0.  

                             when yi
t t+δ

 is predicted to be greater than Ymax, then yi
t t+δ

 is set to Ymax. 

 
When a source-destination (s-d) path is required at time instant t, we try to find the 

minimum hop s-d path in the predicted mobile sub graph Gpred(t, t+δt) = Gt 

∩ Gt
pred

+1 ∩ Gt
pred

+2 ∩  …∩ Gt t

pred

+δ . If a minimum hop s-d path exists in Gpred(t, t+δt), then 

that path is validated in the actual mobile sub graph Gactual(t, t+δt) = Gt ∩  Gt+1 ∩  Gt+2 ∩  … 

∩  Gt+δt that spans time instants t, t+1, t+2, …, t+δt. If an s-d path exists in both Gpred(t, t+δt) 
and Gactual(t, t+δt), then that s-d path is used at time instants t, t+1, …, t+δt.  
If an s-d path exists in Gpred(t, t+δt), Gpred(t, t+δt+1) and Gactual(t, t+δt), but not in Gactual(t, 

t+δt+1), the above procedure is repeated by predicting the locations of nodes starting from 

time instant t+δt+1.  Similarly, if an s-d path exists in Gpred(t, t+δt) and Gactual(t, t+δt), but 

not in Gpred(t, t+δt+1), the above procedure is repeated by predicting the locations of nodes 

starting from time instant t+δt+1. The sequence of paths obtained under this approach 

will be denoted as Stable-Mobile-PathUncertain-Pred in order to distinguish from the Stable 

Mobile Path generated when future topology changes are completely known. 

3.  Simulation study of algorithm OptPathTrans 

3.1 Simulation conditions 

We ran our simulations with a square topology of dimensions 1000m x 1000m. The wireless 

transmission range of a node is 250m. The node density is varied by performing the 

simulations in this network with 50 (10 neighbors per node) and 150 nodes (30 neighbors 

per node). Note that, two nodes a and b are assumed to have a bidirectional link at time t if 

the Euclidean distance between them at time t (derived using the locations of the nodes 

from the mobility trace file) is less than or equal to the wireless transmission range of the 

nodes. We obtain a centralized view of the network topology by generating mobility trace 

files for 1000 seconds in the ns-2 network simulator (Bresalu et. al., 2000; Fall & Varadhan, 

2001). Each data point in Fig. 6, 7, 8 and 9 is an average computed over 10 mobility trace files 

and 15 randomly selected s-d pairs from each of the mobility trace files. The starting time of 

each s-d session is uniformly randomly distributed between 1 to 20 seconds. The topology 

sampling interval to generate the mobile graph is 1 second.  

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

261 

3.2 Mobility model 

We use the Random Waypoint mobility model (Betstetter et. al., 2004), one of the most 
widely used mobility simulating models for MANETs. According to this model, each node 
starts moving from an arbitrary location to a randomly selected destination with a randomly 
chosen speed in the range [vmin ... vmax]. Once the destination is reached, the node stays there 
for a pause time and then continues to move to another randomly selected destination with 
a different speed. We use vmin = 0 and pause time of a node is 0. The values of vmax used are 
10 and 15 m/s (representing low mobility scenarios), 20 and 30 m/s (representing moderate 
mobility scenarios), 40 and 50 m/s (representing high mobility scenarios). 

3.3 Performance metrics 

The performance metrics evaluated are the number of route transitions and the time 

averaged hop count of the mobile path under the conditions described above. The time 

averaged hop count of a mobile path is the sum of the products of the number of hops per 

static path and the number of seconds each static path exists divided by the number of static 

graphs in the mobile graph. For example, if a mobile path spanning over 10 static graphs 

comprises of a 2-hop static path p1, a 3-hop static path p2, and a 2-hop static path p3, with 

each existing for 2, 3 and 5 seconds respectively, then the time-averaged hop count of the 

mobile path would be (2*2 + 3*3 + 2*5) / 10 = 2.3.       

3.4 Obtaining minimum hop mobile path 

To obtain the Minimum Hop Mobile Path for a given simulation condition, we adopt the 

following procedure: When a minimum-hop path is required at time instant t and stability is 

not to be considered, the minimum-hop path Dijkstra algorithm is run on static graph at 

time instant t, and the minimum-hop path obtained is used as long as it exists. We repeat the 

above procedure until the end of the simulation time. 

 

   

Fig. 6. Stability of Routes (50 Nodes)                   Fig. 7. Hop Count of Routes (50 Nodes) 

 

   

Fig. 8. Stability of Routes (150 Nodes)                  Fig. 9. Hop Count of Routes (150 Nodes) 

www.intechopen.com



 Advances in Greedy Algorithms 

 

262 

3.5 Stability-hop count tradeoff 

For all simulation conditions, the Minimum Hop Mobile Path incurs the maximum number 
of route transitions, while the average hop count per Minimum Hop Mobile Path is the least. 
On the other hand, the Stable Mobile Path incurs the minimum number of route transitions, 
while the average hop count per Stable Mobile Path is the maximum. The number of route 
transitions incurred by a Minimum Hop Mobile Path is 5 to 7 times to that of the optimal 
number of route transitions for a low-density network (refer Fig. 6) and 8 to 10 times to that 
of the optimal for a high-density network (refer Fig. 8). The average hop count per Stable 
Mobile Path is 1.5 to 1.8 times to that of the optimal hop count incurred in a low-density 
network (refer Fig. 7) and is 1.8 to 2.1 times to that of the optimal in a high-density network 
(refer Fig. 9). Optimality in both these metrics cannot be obtained simultaneously.   

3.6 Impact of physical hop distance 

The probability of a link (i.e., hop) failure increases with increase in the physical distance 

between the constituent nodes of the hop. We observed that the average physical distance 

between the constituent nodes of a hop at the time of a minimum-hop path selection is 70-

80% of the transmission range of the nodes, accounting for the minimum number of 

intermediate nodes to span the distance between the source and destination nodes of the 

path. On the other hand, the average physical distance between the constituent nodes of a 

hop at the time of a stable path selection is only 50-55% of the transmission range of the 

nodes. Because of the reduced physical distance between the constituent nodes of a hop, 

more intermediate nodes are required to span the distance between the source and 

destination nodes of a stable path. Hence, the probability of failure of a hop in a stable path 

is far less compared to that of the probability of a failure of a hop in a minimum hop path. 

Also, the number of hops does not increase too much so that the probability of a path failure 

increases with the number of hops. Note that when we have a tie among two or more static 

paths that have the longest lifetime in a mobile sub graph, we choose the static path that has 

the minimum hop count to be part of the Stable Mobile Path. 

3.7 Impact of node density 

As we increase the node density, there are more neighbors per node, which increases the 

probability of finding a neighbor that is farther away. This helps to reduce the number of 

hops per path, but the probability of failure of the hop (due to the constituent nodes of the 

hop moving away) is also high. Thus, for a given value of vmax, minimum hop paths are 

more stable in low-density networks compared to high-density networks (compare Fig. 6 

and Fig. 8). The average hop count of a Minimum Hop Mobile Path is more in a low-density 

network compared to that incurred in a high-density network (compare Fig. 7 and Fig. 9).  

When we aim for stable s-d paths, we target paths that have low probability of failure due to 

the constituent nodes of a hop in the path moving away. With increase in node density, 

algorithm OptPathTrans gets more options in selecting the paths that can keep the source 

and destination connected for a longer time. In high density networks, we have a high 

probability of finding links whose physical distance is far less than the transmission range of 

the nodes. This is explored to the maximum by algorithm OptPathTrans and hence we 

observe a reduction in the number route transitions accompanied by an increase in the hop 

count in high-density networks compared to low-density networks.  

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

263 

3.8 Performance under the prediction with uncertainty model 

The number of route transitions incurred by Stable-Mobile-PathUncertain-pred is only at most 1.6 
to 1.8 times that of the optimal for low-density networks (refer Fig. 6) and 2 to 3 times that of 
optimal for high-density networks (refer Fig. 8). Nevertheless, the average hop count 
incurred by Stable-Mobile-PathUncertain-pred is 1.3–1.6 times to that incurred by Minimum-
Hop-Mobile-Path (refer Fig. 7 and Fig. 9).  
The mobility prediction model is practically feasible because the current location of each 

node, its direction and velocity can be recorded in the Route Request (RREQ) packets that 

get propagated from the source to destination during an on-demand route discovery. Rather 

than just arbitrarily choosing a minimum hop path traversed by the RREQ packet and 

sending a Route Reply (RREP) packet along that path, the destination node can construct a 

mobile sub graph by incorporating the locations of nodes in the near future, apply algorithm 

OptPathTrans, obtain the Stable-Mobile-PathUncertain-Pred and send the RREP along that path. 

4.  Algorithm for the optimal number of multicast tree transitions 

MANETs are deployed in applications such as disaster recovery, rescue missions, military 
operations in a battlefield, conferences, crowd control, outdoor entertainment activities, etc. 
One common feature among all these applications is one-to-many multicast 
communications among the participants. Multicasting is more advantageous than multiple 
unicast transmissions of the same data independently to each and every receiver, which also 
leads to network clogging. Hence, to support these applications in dynamic environments 
like MANETs, ad hoc multicast routing protocols that find a sequence of stable multicast 
trees are required.  

4.1 Multicast steiner tree 

Given a weighted graph, G = (V, E), where V is the set of vertices, E is the set of edges and a 
subset of vertices (called the multicast group or Steiner points) S ⊆ V, the Steiner tree is the 

minimum-weight tree of G connecting all the vertices of S. In this chapter, we assume unit 
weight edges and that all the edges of the Steiner tree are contained in the edge set of the 
graph. Accordingly, we define the minimum Steiner tree as the tree with the least number of 
edges required to connect all the vertices in the multicast group (the set of Steiner points). 
Unfortunately, the problem of determining a minimum Steiner tree in an undirected graph 
like that of the unit disk graph is NP-complete. Efficient heuristics (e.g., Kou et. al., 1981) 
have been proposed in the literature to approximate a minimum Steiner tree. 

4.2 Stable mobile multicast steiner tree vs minimum mobile multicast steiner tree 

Aiming for the minimum Steiner tree in MANETs, results in multicast trees that are highly 
unstable. The multicast tree has to be frequently rediscovered, and this adds considerable 
overhead to the resource-constrained network. By adding a few more links and nodes to the 
tree, it is possible to increase its stability. We define stability of a multicast Steiner tree in 
terms of the number of times the tree has to change for the duration of a multicast session. 
Extending the greedy approach of OptPathTrans to multicasting, we propose an algorithm 
called OptTreeTrans to determine the minimum number of tree transitions incurred during 
the period of a multicast session for a multicast group comprising of a source node and a set 
of receiver nodes. Given the complete knowledge of future topology changes, the algorithm 

www.intechopen.com



 Advances in Greedy Algorithms 

 

264 

operates on the following principle: Whenever a multicast tree connecting a given source 
node to all the members of a multicast group is required, choose the multicast tree that will 
keep the source connected to the multicast group members for the longest time. The above 
strategy is repeated over the duration of the multicast session and the sequence of stable 
multicast Steiner trees obtained by running this algorithm is called the Stable Mobile 
Multicast Steiner Tree. We use the Kou. et. al’s (Kou et. al., 1981) well-known O(|V||S|2) 
heuristic, as the underlying heuristic to determine the longest existing multicast Steiner tree. 
A Minimum Mobile Multicast Steiner Tree is the sequence of approximations to the 
minimum Steiner tree obtained by directly using Kou’s heuristic whenever required. 

4.3 Heuristic to approximate minimum steiner tree 

We use the Kou et. al’s (Kou et. al., 1981) well-known O(|V||S|2) heuristic (|V| is the 
number of nodes in the network graph and |S| is the size of the multicast group) to 
approximate the minimum Steiner tree in graphs representing snapshots of the network 
topology. We give a brief outline of the heuristic in Fig. 10. An (s-S)-tree is defined as the 
multicast Steiner tree connecting a source node s to all the members of the multicast group 
S, which is also the set of Steiner points. Note that s ∈ S.  
 

Input:   An undirected graph G = (V, E) 
              Multicast group S ⊆ V 

Output: A tree TH  for the set S in G 
 
Step 1:  Construct a complete undirected weighted graph GC = (S, EC) from G and S where 

∀ (vi, vj) ∈ EC, vi and vj are in S, and the weight of edge (vi, vj) is the length of the shortest 
path from vi  to vj in G.  
Step 2: Find the minimum weight spanning tree TC in GC (If more than one minimal 
spanning tree exists, pick an arbitrary one). 
Step 3: Construct the sub graph GS of G, by replacing each edge in TC with the 
corresponding shortest path from G (If there is more than one shortest path between two 
given vertices, pick an arbitrary one).  
Step 4: Find the minimal spanning tree TS in GS (If more than one minimal spanning tree 
exists, pick an arbitrary one). Note that each edge in GS has weight 1.  
Step 5: Construct the minimum Steiner tree TH, from TS by deleting edges in TS, if necessary, 
such that all the leaves in TH are members of S. 

Fig. 10. Kou et. al’s Heuristic (Kou et. al., 1981) to find an Approximate Minimum Steiner 
Tree 

4.4 Algorithm OptTreeTrans 

Let GM = G1G2 … GT be the mobile graph generated by sampling the network topology at 
regular instants t1, t2, …, tT of a multicast session. When an (s-S)-tree is required at sampling 
time instant ti, the strategy is to find a mobile sub graph G(i, j) = Gi∩Gi+1∩… ∩Gj such 
that there exists at least one multicast (s-S)-tree in G(i, j) and none exists in G(i, j+1). A 
multicast (s-S)-tree in G(i, j) is selected using Kou’s heuristic. Such a tree exists in each of the 
static graphs Gi, Gi+1, …, Gj. If there is a tie, the (s-S)-tree with the smallest number of 
constituent links is chosen. If sampling instant tj+1 ≤ tT, the above procedure is repeated by 

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

265 

finding the (s-S)-tree that can survive for the maximum amount of time since tj+1. A 
sequence of such maximum lifetime multicast Steiner (s-S) trees over the timescale of GM 
forms the Stable Mobile Multicast Steiner Tree in GM. The pseudo code is given in Fig. 11. 
 

Input: GM = G1G2 … GT, source s, multicast group S  
Output: (s-S)MobileStabletree // Stable-Mobile-Multicast-Steiner-Tree 
Auxiliary Variables: i, j 
Initialization: i=1; j=1; (s-S)MobileStabletree = Φ   
 
Begin OptTreeTrans 
 
1  while (i ≤ T) do 
 
2      Find a mobile graph G(i, j) = Gi ∩  Gi+1 ∩  …  ∩  Gj such that there exists at least one (s- 
        S)-tree in  G(i, j) and { no (s-S)-tree exists in G(i, j+1) or j = T } 
          
3      (s-S)MobileStabletree = (s-S)MobileStabletree U {Minimum Steiner (s-S)-tree in G(i, j) } 
 
4        i = j + 1      
           
5     end while 
 
6   return (s-S)MobileStabletree 
 
End OptTreeTrans 
 

Fig. 11. Pseudo Code for Algorithm OptTreeTrans 

4.5 Algorithm complexity and proof of correctness 

In a mobile graph GM = G1G2 … GT, the number of tree transitions can be at most T. The 

minimum Steiner tree Kou’s heuristic will have to be run at most T times, each time on a 

graph of |V| nodes. As Kou’s heuristic is of O(|V||S|2) worst-case run-time complexity 

where |S| is the size of the multicast group, the worst-case run-time complexity of 

OptTreeTrans is O(|V||S|2T). 

Given a mobile graph GM = G1G2 … GT, source node s and multicast group S, let the number 

of tree transitions in the Mobile Multicast Steiner Tree, (s-S)MobileStabletree, generated by 

OptTreeTrans be m. To prove m is optimal, assume the contrary: there exists another Mobile 

Multicast Steiner Tree (s-S)’MobileStabletree in GM and the number of tree transitions in (s-

S)’MobileStabletree is m’ < m.  

Let 1
S

epoch , 2
S

epoch ,…, epochS
m be the set of sampling time instants in each of which the 

Mobile Multicast Steiner Tree (s-S)MobileStabletree suffers no tree transitions. Let epoch
S '
1 , 

epoch
S '
2 , …, epoch

S

m

'
' be the set of sampling time instants in each of which the Mobile 

Multicast Steiner Tree (s-S)’MobileStabletree suffers no tree transitions. Let t s S
init j

( )

,

− and t s S
end j

( )

,

− be the 

www.intechopen.com



 Advances in Greedy Algorithms 

 

266 

initial and final sampling time instants of epochS
j where 1 ≤ j ≤ m. Let t

s S

init k

( )

,

'−
and t

s S

end k

( )

,

'−
be 

the initial and final sampling time instants of epoch
S

k

'
where 1 ≤ k ≤ m’. Note that tS

init ,1
= 

t
S

init

'
,1

 and tS
end m,

 = t
S

end m

'
',
 to indicate (s-S)MobileStabletree and (s-S)’MobileStabletree  span over the 

same time period, T, of the network session.  
Now, since we claim that m’ < m, there should exist j, k where 1 ≤ j ≤ m and 1 ≤ k ≤ m’ such 

that epochS
j ⊂ epoch

S

k

'
, i.e., t

S

init k

'
,

< tS
init j,

 < tS
end j,

 < t
S

end k

'
,

and at least one (s-S)’-tree 

existed in [ t
S

init k

'
, ,…, t

S

end k

'
,

]. In other words, there should be at least one (s-S)’-tree in (s-

S)’MobileStabletree that has a lifetime larger than that of the lifetime of the (s-S)-trees in (s-

S)MobileStabletree. But, algorithm OptTreeTrans made a tree transition at tS
end j,

 since there was 

no (s-S)-tree from tS
init j,

 beyond tS
end j,

. Thus, there is no (s-S)-tree in the range [ tS
init j,

, …, 

t
S

end k

'
,

] and hence there is no (s-S)-tree in the range [ t
S

init k

'
, ,…, t

S

end k

'
, ]. This shows that the 

lifetime of each of the (s-S)’-trees in (s-S)’MobileStabletree has to be smaller or equal to the lifetime 

of the (s-S)-trees in (s-S)MobileStabletree, implying m’ ≥ m. This is a contradiction and proves that 

our hypothesis m’ < m is not correct. Hence, the number of tree transitions in (s-S)MobileStabletree 

is optimal and (s-S)MobileStabletree is the Stable Mobile Multicast Steiner Tree. 

4.6 Example run of algorithm OptTreeTrans 

Consider the mobile graph GM = G1G2G3G4G5 sampled every second (Fig. 12). Let node 1 

be the source node and nodes 5 and 6 be the receivers of the multicast group. The 

Minimum Mobile Steiner Tree in GM is {{1-3, 3-6, 5-6}G1, {1-4, 4-6, 4-5}G2, {1-2, 2-6, 5-6}G3, 

{1-3, 3-6, 5-6}G4, {1-2, 2-6, 2-5}G5}. The edges of the constituent minimum Steiner trees in 

each of the static graphs are shown in dark lines. The number of tree transitions is 5 and 

the time averaged number of edges per Minimum Mobile Steiner Tree is 3 as there are 

three edges in each constituent minimum Steiner tree. The execution of algorithm 

OptTreeTrans on the mobile graph GM is shown in Fig. 13. The Stable Mobile Steiner Tree 

formed is {{1-4, 4-3, 3-6, 4-5}G12, {1-2, 2-3, 3-6, 2-4, 4-5}G345}. The number of tree transitions 

is 2 and the time-averaged number of edges in the Stable Mobile Steiner Tree is (4*2 + 

5*3)/5 = 4.6 as there are 4 edges in the stable Steiner tree common to graphs G1 and G2 and 

5 edges in the stable Steiner tree common to G3, G4 and G5. The simulation results also 

vindicate such tradeoff between the number of Steiner tree transitions and number of 

edges in the mobile Steiner tree.  
 

 

Fig. 12. Mobile Graph and Minimum-Mobile-Steiner-Tree 

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

267 

 

Fig. 13. Execution of Algorithm OptTreeTrans on Fig. 12.  

5. Simulation study of algorithm OptTreeTrans 

5.1 Simulation conditions 

We ran our simulations with a square topology of dimensions 1000m x 1000m. The wireless 
transmission range of a node is 250m. The node density is varied by performing the 
simulations in this network with 50 (10 neighbors per node) and 150 nodes (30 neighbors 
per node). We obtain a centralized view of the network topology by generating mobility 
trace files for 1000 seconds in ns-2 (Bresalu et. al., 2000; Fall & Varadhan, 2001). Random 
waypoint mobility model is the mobility model used in the simulations. The range of node 
velocity values used are [0...10 m/s] and [0...50 m/s]. Each multicast group includes a 
source node and a set of receiver nodes. The multicast group size values are 2, 4, 8, 12, 18 
and 24. Each data point in Fig. 14 through 21 is an average computed over 10 mobility trace 
files and 5 randomly selected groups for each size. The starting time of each multicast 
session is uniformly randomly distributed between 1 to 50 seconds and the simulation time 
is 1000 seconds. The topology sampling interval to generate the mobile graph is 1 second.  

5.2 Minimum mobile multicast steiner tree and performance metrics 

When an (s-S) Steiner tree is required at sampling time instant ti and stability is not to be 
considered, then Kou’s heuristic is run on static graph Gi and the (s-S) tree obtained is used 
as long as it exists. The procedure is repeated till the last sampling time instant tT is reached. 
We refer to the sequence of multicast Steiner trees generated by the above strategy as 
Minimum Mobile Multicast Steiner Tree. The performance metrics evaluated are the number 
of tree transitions and the average number of edges in the mobile Steiner trees, which is the 
number of links in the constituent (s-S) Steiner trees, averaged over time.  

5.3 Minimum mobile multicast steiner tree vs stable mobile multicast steiner tree 

The number of multicast tree transitions increases rapidly with increase in multicast group 
size (refer Fig. 14, 16, 18 and 20). On the other hand, by accommodating 10-40% more edges 
(refer Fig. 15, 17, 19 and 21), stability of the Stable Mobile Multicast Steiner Tree is almost 
insensitive to multicast group size. For given value of vmax, the number of tree transitions 
incurred by the Minimum Mobile Multicast Steiner Tree in a low-density network (refer Fig. 
14 and 18) is 5 (with group size of 4) to 10 (with group size of 24) times to that of the 
optimal. In high-density networks (refer Fig. 16 and 20), the number of tree transitions 
incurred by the Minimum Mobile Multicast Steiner Tree is 8 (with group size of 4) to 25 
(with group size of 24) times to that of the optimal.  
For a given node mobility and multicast group size, as the network density increases, 
algorithm OptTreeTrans makes use of the available nodes and links as much as possible in 
order to maximize the stability of the trees. For a Minimum Mobile Steiner Tree, the average 

www.intechopen.com



 Advances in Greedy Algorithms 

 

268 

number of links in the constituent (s-S) trees is the same with increase in node density; the 
stability of the Minimum Mobile Steiner Trees decreases with increase in node density.  
 

   

Fig. 14. Stability of Trees                                        Fig. 15. Edges per Tree 

(50 Nodes, vmax = 10 m/s)                                      (50 Nodes, vmax = 10 m/s) 

 

   

Fig. 16. Stability of Trees                                        Fig. 17. Edges per Tree 

(150 Nodes, vmax = 10 m/s)                                     (150 Nodes, vmax = 10 m/s) 

 

   

Fig. 18. Stability of Trees                                        Fig. 19. Edges per Tree  

(50 Nodes, vmax = 50 m/s)                                      (50 Nodes, vmax = 50 m/s) 

 

   

Fig. 20. Stability of Trees                                        Fig. 21. Edges per Tree  

(150 Nodes, vmax = 50 m/s)                                     (150 Nodes, vmax = 50 m/s) 

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

269 

For a given value of vmax, the number of tree transitions incurred by the Stable-Mobile-
Multicast-Steiner-TreeUncertain-pred in a low-density network (refer Fig. 14 and 18) is 1.6 (with 
group size of 2) to 2 (with group size of 24) times to that of the optimal, while in a high-
density network (refer Fig. 16 and 20), the number of tree transitions is 3 (with group size of 
2) to 4 (with group size of 24) times to that of the optimal. Thus, the stability of the 
constituent static trees in Stable-Mobile-Multicast-Steiner-TreeUncertain-pred is not much 
affected by multicast group size and the number of edges (refer Fig. 15, 17, 19 and 21) is at 
most 40% more than that found in a Minimum Mobile Multicast Steiner Tree. 

6. Impact of the stability-hop count tradeoff on network resources and 
routing protocol performance 

We now discuss the impact of the stability-hop count tradeoff on network resources like the 
available node energy and the performance metrics like end-to-end delay per data packet.   

6.1  Energy consumption 

With increase in network density, a Stable Mobile Path incurs a reduced number of route 
transitions at the cost of an increased hop count; while a Minimum Hop Mobile Path incurs 
a reduced hop count per path at the cost of an increase in the number of route transitions. In 
(Meghanathan & Farago, 2006a), we analyzed the impact of these contradicting route 
selection policies on the overall energy consumption of a source-destination (s-d) session 
when using a Stable Mobile Path vis-à-vis a Minimum Hop Mobile Path for on-demand 
routing in MANETs. Some of the significant observations include:  
- As we reduce the energy consumed per hop for data packet transfer (i.e., as we adopt 

reduced overhearing or no overhearing models), a Stable Mobile Path can bring 
significant energy savings than that obtained using a Minimum Hop Mobile Path. 

- When data packets are sent continuously but at a reduced rate, we should use stable 
paths. If minimum hop paths are used, we may end up discovering a route to send 
every data packet, nullifying the energy savings obtained from reduced hop count.  

- At high data packet rates (i.e., high data traffic), even a slight increase in the hop count 
can result in high energy consumption, especially in the presence of complete 
overhearing (also called as promiscuous listening). At high data traffic, energy spent in 
route discovery is overshadowed by the energy spent in data packet transfer.  

- Route discovery is very expensive with respect to energy consumption in networks of 
high density compared to networks of low density. To minimize the overall energy 
consumption at moderate data traffic, we should use minimum-hop based routing at 
low network densities and stability-based routing at high network densities.  

6.2  End-to-end delay per data packet 

In (Meghanathan, 2008), we studied the performance of stable path routing protocols like 
ABR, FORP and RABR in ns-2 and measured the route stability and the end-to-end delay 
per data packet for  s-d sessions running each of these three protocols. We observed a 
stability-hop count tradeoff within the class of stability-based routing protocols and the 
three protocols are ranked in the following increasing order of hop count: ABR, RABR and 
FORP; while in terms of the increasing order of the number of route transitions per s-d 
session, the ranking is: FORP, RABR and ABR. At low and moderate mobility conditions 

www.intechopen.com



 Advances in Greedy Algorithms 

 

270 

(vmax <= 30 m/s), ABR routes incurred the lowest delay per packet compared to that of 
FORP. This could be attributed to the higher route relaying load on the nodes. Especially at 
high data traffic load, FORP routes incur significant delays due to MAC layer contention 
and queuing before transmission. RABR achieves a right balance between the route relaying 
load per node and the route discovery latency. RABR routes incur an end-to-end delay per 
packet that is close to that of ABR at low and moderate velocities and at the same time 
achieve stability close to that of the FORP routes. At high velocity, the buffering delay due 
to the route acquisition latency plays a significant role in increasing the delay of ABR routes 
and to a certain extent the RABR routes. Thus, at high node mobility conditions, all the three 
protocols incur end-to-end delay per packet that is close enough to each other.  

7. Conclusions and future work 

In this chapter, we described algorithms OptPathTrans and OptTreeTrans to determine 
respectively the sequence of stable paths (Stable Mobile Path) and multicast trees (Stable 
Mobile Multicast Steiner Tree) over the duration of a MANET  session. Performance study 
of the two algorithms, when the complete knowledge of future topology changes is 
available at the time of path/tree selection, illustrates a distinct tradeoff between path hop 
count and the number of path transitions, and the number of edges in the multicast Steiner 
tree and the number of multicast Steiner tree transitions. It is highly impossible to 
simultaneously achieve optimality in the above mentioned contrasting performance metrics 
for paths and trees. The sequence of stable paths and trees generated by the two algorithms 
under the ”Prediction with Uncertainty“ model are highly stable compared to their 
minimum mobile versions. Also, the hop count, the number of edges and the number of 
nodes in the stable paths and trees is not as high as that observed in the stable mobile paths 
and trees obtained when the algorithms are run with complete knowledge of the future 
topology changes.  
Note that the Dijkstra algorithm and the Kou et. al heuristic are merely used as a tool to find 
the appropriate stable communication structures. The optimal number of route and tree 
reconstructions does not depend on these underlying algorithms as we try to find the 
longest living route and tree in the mobile sub graph spanning a sequence of static graphs. 
But, the run-time complexity of the two algorithms depends on the underlying algorithm 
used to determine the Stable Mobile Path and the Stable Mobile Multicast Steiner Tree.  
Future work is on the following: (i) To develop distributed versions of OptPathTrans and 
OptTreeTrans by extending these algorithms respectively as unicast and multicast routing 
protocols, (ii) To study the performance of algorithms OptPathTrans and OptTreeTrans under 
other MANET mobility models like Random Walk, Random Direction and Gauss-Morkov 
models (Camp et. al., 2002)  and (iii) To develop various location-update and mobility 
prediction mechanisms to gather and/or distribute knowledge of future topology changes. 

8. References 

Agarwal, S.; Ahuja, A.; Singh, J. P. & Shorey, R. (2000). Route-Life Time Assessment Based 
Routing Protocol for Mobile Ad hoc Networks, Proceedings of the IEEE International 
Conference on Communications, pp. 1697-1701, ISBN: 0780362837, June 2000, New 
Orleans, LA, USA.  

www.intechopen.com



Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc Networks 

 

271 

Bettstetter, C.; Hartenstein, H. & Perez-Costa, X. (2004). Stochastic Properties of the Random 
Way Point Mobility Model. Wireless Networks, Vol. 10, No. 5, (September 2004), pp. 
555-567, ISSN: 10220038.  

Breslau, L.; Estrin, D.; Fall, K.; Floyd, S.; Heidemann, J.; Helmy, A.; Huang, P.; McCanne, S.; 
Varadhan, K.; Xu, Y.; Yu, H. (2000). Advances in Network Simulation. IEEE 
Computer, Vol. 33, No. 5 (May 2000), pp. 59-67, ISSN: 00189162.  

Camp, T.; Boleng, J. & Davies, V. (2002). A Survey of Mobility Models for Ad Hoc Network 
Research, Wireless Communication and Mobile Computing, Vol. 2, No. 5, (September 
2002), pp. 483-502, ISSN: 15308669.  

Cormen, T. H.; Leiserson, C. E.; Rivest, R. L. & Stein, C. (2001). Introduction to Algorithms, 2nd 
Edition, MIT Press, ISBN: 0262032937.  

Corson, M. S. & Ephremides, A. (1995). A Distributed Routing Algorithm for Mobile 
Wireless Networks. Wireless Networks, Vol. 1, No. 1, (February 1995), pp. 61-81, 
ISSN: 10220038.  

Fall, K. & Varadhan, K. (2001). ns notes and documentation. The VINT Project at LBL, Xerox 
PARC, UCB, and USC/ISI, http://www.isi.edu/nsnam/ns, August 2001.  

Farago, A. & Syrotiuk, V. R. (2003). MERIT: A Scalable Approach for Protocol Assessment. 
Mobile Networks and Applications, Vol. 8, No. 5, (October 2003), pp. 567 – 577, ISSN: 
1383-469X.  

Johnson, D. B.; Maltz, D. A. & Broch, J. (2001). DSR: The Dynamic Source Routing Protocol 
for Multi-hop Wireless Ad hoc Networks, In: Ad hoc Networking, Charles E. 
Perkins, (Ed.), 139 – 172, Addison Wesley, ISBN: 0201309769.  

Kou, L.; Markowsky, G. & Berman, L. (1981). A Fast Algorithm for Steiner Trees. Acta 
Informatica, Vol. 15, No. 2, (June 1981), pp. 141-145, ISSN: 0001-5903.  

Meghanathan, N. & Farago, A. (2004). Survey and Taxonomy of 55 Unicast Routing 
Protocols for Mobile Ad hoc Networks, Technical Report UTD-CSC-40-04, The 
University of Texas at Dallas, Richardson, TX, November 2004.  

Meghanathan, N. & Farago, A. (2005). An Efficient Algorithm for the Optimal Number of 
Route Transitions in Mobile Ad hoc Networks. Proceedings of the 1st IEEE 
International Conference on Wireless and Mobile Computing, Networking and 
Communications, Vol. 3, pp. 41-48, ISBN: 0780391810, August 2005, Montreal, 
Canada.  

Meghanathan, N. & Farago, A. (2006a). Comparison of Routing Strategies for Minimizing 
Energy Consumption in Mobile Ad Hoc Networks. Proceedings of the 4th Asian 
International Mobile Computing Conference, pp. 3-11, ISBN: 0070608342, January 2006, 
Kolkatta, India.  

Meghanathan, N. (2006b). An Algorithm to Determine the Sequence of Stable Connected 
Dominating Sets in Mobile Ad Hoc Networks, Proceedings of 2nd Advanced 
International Conference on Telecommunications, ISBN: 0769525229, February 2006, 
Guadeloupe, French Caribbean.  

Meghanathan, N. (2006c). Determining a Sequence of Stable Multicast Steiner Trees in 
Mobile Ad hoc Networks. Proccedings of the 44th ACM Southeast Conference, pp. 102-
106, ISBN: 1595933158, March 2006, Melbourne, FL, USA.  

Meghanathan, N. (2006d). A Simulation Study on the Stability-Oriented Routing Protocols 
for Mobile Ad hoc Networks. Proceedings of the IFIP International Conference on 

www.intechopen.com



 Advances in Greedy Algorithms 

 

272 

Wireless and Optical Communication Networks, ISBN: 1424403405, April 2006, 
Bangalore, India.  

Meghanathan, N. (2007). Path Stability based Ranking of Mobile Ad hoc Network Routing 
Protocols. ISAST Transactions Journal on Communications and Networking, Vol. 1, No. 
1, (August 2007), pp. 66-73, ISSN: 17970989.  

Meghanathan, N. (2008). Exploring the Stability-Energy Consumption-Delay-Network 
Lifetime Tradeoff of Mobile Ad hoc Network Routing Protocols. Journal of 
Networks, Vol. 3, No. 2, (February 2008), pp. 17-28, ISSN: 17962056.  

Perkins, C. E. & Royer, E. M. (1999). Ad hoc On-demand Distance Vector Routing, 
Proceedings of the Second Annual IEEE International Workshop on Mobile Computing 
Systems and Applications, pp. 90–100, ISBN: 0769500250, February 1999, New 
Orleans, LA, USA.  

Su, W.; Lee, S.-J. & Gerla, M. (2001). Mobility Prediction and Routing in Ad hoc Wireless 
Networks. International Journal of Network Management, Vol. 11, No. 1, (Jan-Feb. 
2001), pp. 3-30, ISSN: 10991190.  

Toh, C.-K. (1997). Associativity-Based Routing for Ad hoc Mobile Networks. IEEE Personal 
Communications, Vol. 4, No. 2, (March 1997), pp. 103 – 109, ISSN: 10709916. 

www.intechopen.com



Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Natarajan Meghanathan (2008). Greedy Algorithms to Determine Stable Paths and Trees in Mobile Ad hoc

Networks, Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5, InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/greedy_algorithms_to_determine_stable_paths_and_tre

es_in_mobile_ad_hoc_networks



© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


