
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

16

Greedy Like Algorithms for the
Traveling Salesman and Multidimensional

Assignment Problems

Gregory Gutin and Daniel Karapetyan
Royal Holloway, University of London

United Kingdom

1. Introduction

Majority of chapters of this book show usefulness of greedy like algorithms for solving
various combinatorial optimization problems. The aim of this chapter is to warn the reader
that not always a greedy like approach is a good option and, in certain cases, it is a very bad
option being sometimes among the worst possible options. Our message is not a
discouragement from using greedy like algorithms altogether; we think that for every
combinatorial optimization problem of importance, researchers and practitioners should
simply investigate the appropriateness of greedy like algorithms and the existence of better
alternatives to them (considering both quality of solution and running time). In many cases,
especially when the running time must be very short, the conclusion may still be that the
most practical of known approaches is a greedy like algorithm.
The Traveling Salesman and Multidimensional Assignment Problems are optimization
problems for which greedy like approaches are usually not very successful. We demonstrate
this by providing both theoretical and experimental results on greedy like algorithms as
well as on some other algorithms that produce (in theory and/or in experiments) much
better results without spending significantly more time.
There are some general theoretical results that indicate that there are, in fact, many
combinatorial optimization problems for which greedy like algorithms are not the best
option even among fast construction heuristics, see, e.g., [3, 5, 17]. We will not consider these
general results in order to avoid most mathematical details that are not necessary for
understanding the results of this chapter. For this reason we will not give proofs here apart
from two simple proofs: that of Theorem 8 which shows that some instances on which the
greedy algorithm fails are not exotic in a sense and that of Theorem 11 since Theorem 11 is a
new result.
It is not a trivial question whether a certain algorithm is greedy like or not. In the next
section we define an independence system and give the classic definition of the greedy
algorithm for such a system. We extend this definition to so-called greedy type algorithms
that include such well-known algorithms as the Prim’s algorithm for the minimum
spanning tree problem and the nearest neighbor algorithm for the traveling salesman
problem. We use the term ‘greedy like’ in an informal way and we include in this class
simple and fast construction heuristics that seem to us to be of greedy nature. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Advances in Greedy Algorithms, Book edited by: Witold Bednorz,
ISBN 978-953-7619-27-5, pp. 586, November 2008, I-Tech, Vienna, Austria

www.intechopen.com

 Advances in Greedy Algorithms

292

Unfortunately, no formal definition exists for the wide family of greedy like algorithms and
one can understand the difficulty to formally classify such algorithms by, for example,
considering local search algorithms which find the best solution in each neighborhood they
search. Intuitively, it is clear that such local search algorithms are not greedy yet their every
search is greedy in a sense.
In the next section, we give most of terminology and notation used in this chapter. Several
results on theoretical performance of greedy like algorithms for the Traveling Salesman and
Multidimensional Assignment Problems are discussed in Sections 3 and 4, respectively.
Experimental results on greedy like algorithms for the Traveling Salesman and
Multidimensional Assignment Problems are given and analyzed in Sections 5 and 6,
respectively.

2. Terminology and notation

The Asymmetric Traveling Salesman Problem (ATSP) is the problem of computing a minimum
weight tour (Hamilton directed cycle) passing through every vertex in a weighted complete
digraph on n vertices. The Symmetric TSP (STSP) is the same problem, but on a weighted
complete undirected graph Kn. When a certain fact holds for both ATSP and STSP, we will
simply speak of TSP. We often assume that the vertices of and Kn are 1, 2, …, n and often
refer to the weight w(ij) of an edge ij of (or Kn) as the distance from i to j. TSP has a large
number of applications, see, e.g., the two recent books [1, 13] on TSP.
The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s
dimensions) is a well-known optimization problem with a host of applications (see, e.g., [2,
6, 7] for ‘classic’ applications and [4, 25] for recent applications in solving systems of
polynomial equations and centralized multisensor multitarget tracking). In fact, several
applications described in [4, 6, 25] naturally require the use of s-AP for values of s larger
than 3.
For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = … = Xs = {1, 2, … , n}. We will

consider only vectors that belong to the Cartesian product X = X1 × X2 × … × Xs. Each vector

e ∈ X is assigned a non-negative integral weight w(e). For a vector e ∈ X, the component ej

denotes its jth coordinate, i.e., ej ∈ Xj . A collection A of t ≤ n vectors e1, e2, …, et is a (feasible)

partial assignment if

 holds for each i ≠ k and j ∈ {1, 2, … , s}. The weight of a partial

assignment A is w(A) = Σ w(ei). An assignment (or full assignment) is a partial assignment

with n vectors. The objective of s-AP is to find an assignment of minimum weight.

Let P be a combinatorial optimization problem and let H be a heuristic for P. The domination

number domn(H, I) of H for an instance I of P is the number of solutions of I that are not

better than the solution s produced by H including s itself. For example, consider an

instance T of the STSP on 5 vertices. Suppose that the weights of tours in T are 2, 5, 5, 6, 6, 9,

9, 11, 11, 12, 12, 15 (every instance of STSP on 5 vertices has 12 tours) and suppose that the

greedy algorithm computes the tour T of weight 6. Then domn(greedy, T) = 9. In general,

if domn(H, I) equals the number of solutions in I, then H finds an optimal solution for I. If

domn(H, I) = 1, then the solution found by H for I is the unique worst possible one. The

domination number domn(H, n) of H is the minimum of domn(H, I) over all instances I of

size n.

An independence system is a pair consisting of a finite set E and a family F of subsets (called

independent sets) of E such that (I1) and (I2) are satisfied.

www.intechopen.com

Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems

293

(I1) the empty set is in F;

(I2) If X ∈ F and Y is a subset of X, then Y ∈ F.

All maximal sets of F are called bases (or, feasible solutions).

Many combinatorial optimization problems can be formulated as follows. We are given an

independence system (E,F), a set W ⊆ Z+ and a weight function w that assigns a weight

w(e) ∈ W to every element of E (Z+ is the set of non-negative integers). The weight w(S) of

S ∈ F is defined as the sum of the weights of the elements of S. It is required to find a base

B ∈ F of minimum weight. We will consider only such problems and call them the (E,F,W)-

optimization problems.

ATSP is an (E,F,Z+)-optimization problem, where E is the set of arcs of the complete digraph

 and F = {B ⊆ H : H ∈ H}, where H is the set of Hamilton directed cycles of . MAP is

also an (E,F,Z+)-optimization problem, where E is the set of all vectors and F is the set of all

partial assignments.

If S ∈ F, then let I(S) = {x : S ∪ {x} ∈ F} \ S. This means that I(S) consists of those elements

from E \ S, which can be added to S, in order to have an independent set of size │S│+ 1.
Note that by (I2) I(S) ≠ 0 for every independent set S which is not a base.
The Greedy Algorithm (Greedy) tries to construct a minimum weight base as follows: it starts
from an empty set X, and at every step it takes the current set X and adds to it a minimum

weight element e ∈ I(X), the algorithm stops when a base is built. We assume that the greedy
algorithm may choose any element among equally weighted elements in I(X). Thus, when
we say that the greedy algorithm may construct a base B, we mean that B is built provided
the appropriate choices between elements of the same weight are made.

Greedy type algorithms were introduced in [14]. They include the nearest neighbor

algorithm for TSP and are defined as follows. A greedy type algorithm H is similar to the

greedy algorithm: start with the partial solution X = 0; and then repeatedly add to X an

element of minimum weight in (X) (ties are broken arbitrarily) until X is a base of F,

where (X) is a subset of I(X) that does not depend on the cost function c, but only on the

independence system (E,F) and the set X. Moreover, (X) is non-empty if I(X) ≠ 0, a

condition that guarantees that H always outputs a base.

3. Theoretical performance of greedy like algorithms for TSP

The main practical message of this and the next section is that one should be careful while
using the classical greedy algorithm and its variations in combinatorial optimization: there
are many instances of combinatorial optimization problems for which such algorithms will
produce the unique worst possible solution. Moreover, this is true for several well-known
optimization problems and the corresponding instances are not exotic, in a sense. This
means that not always the paradigm of greedy optimization provides any meaningful
optimization at all.
The first results of the kind mentioned in the previous paragraph were obtained in [19]:
Theorem 1. For each n ≥ 2 there is an instance of ATSP for which the Greedy Algorithm finds the
unique worst possible tour.
Gutin, Yeo and Zverovitch [19] proved Theorem 1 also for the Nearest Neighbor (NN)
algorithm: start from an arbitrary vertex i1 and go to a vertex i2 ≠ i1 with shortest distance

www.intechopen.com

 Advances in Greedy Algorithms

294

from i1; when in a vertex ik, k < n, go to a vertex ik+1 with shortest distance from ik among
vertices not in the set {i1, i2, …, ik-1}. The proof for NN is correct for both ATSP and STSP. The
proof of Theorem 1 itself (for Greedy) cannot be extended to STSP, but Theorem 1 holds
also for STSP [18].
The Greedy and NN algorithms are special cases of greedy type algorithms and Bendall
and Margot [5] proved the following result that generalizes all the results above.

Theorem 2. Let A be a TSP greedy type algorithm. For each n ≥ 3 there is an instance of TSP for

which A finds the unique worst possible tour.

At this stage the reader may ask the following natural question: ‘Perhaps, it is true that

every TSP heuristic has the domination number equal 1?’ The answer is negative. In fact,

there are many TSP heuristics (see, e.g., [15, 23]) which, for every instance T of TSP with n

vertices (n ≥ 3), produce a tour that is no longer than the average length of a tour in T.

Among these heuristics there are several fast construction heuristics. Thus, we can apply the

following theorem to many TSP heuristics (we formulate this theorem for ATSP, but an

almost identical result by Rublineckii [26] is known for STSP, see [13]):

Theorem 3. Let H be an ATSP heuristics that, for every instance T of ATSP on n ≥ 2 vertices,

produces a tour that is no longer than the average length of a tour in T. Then the domination number

of H is at least (n - 2)! for each n ≠ 6.
This theorem was first proved by Sarvanov [27] for odd values of n and by Gutin and Yeo
[15] for even values of n.
Sometimes, we are interested in TSP with only restricted range of weights. The following
two results for this variation of TSP were obtained by Bang-Jensen, Gutin and Yeo [3].

Theorem 4. Consider STSP as an (E,H,W)-optimization problem.

a. If n ≥ 4 and │W│≤ , then the greedy algorithm never produces the unique worst possible

base (i.e., tour).
b. If n ≥ 3, r ≥ n - 1 and W = {1, 2, …, r}, then there exists a weight function w : E→{1, 2, …, r}

such that the greedy algorithm may produce the unique worst possible base (i.e., tour).

Theorem 5. Consider ATSP as an (E,H,W)-optimization problems. Let n ≥ 3.

a. If │W│ ≤ , then the greedy algorithm never produces the unique worst possible base (i.e.,

tour).

b. For every r ≥ there exists a weight function w : E()→{1, 2, …, r} such that the greedy

algorithm may produce the unique worst possible base (i.e., tour).
Notice that the above-mentioned theorems can be proved as corollaries of general results

that hold for many (E,H,W)-optimization problems, see, e.g., [3, 5, 16].

Another ATSP greedy like heuristic, max-regret-fc (fc abbreviates First Coordinate), was
first introduced by Ghosh et al. [8]. Extensive computational experiments in [8]
demonstrated a clear superiority of max-regret-fc over the greedy algorithm and several
other construction heuristics from [9]. Therefore, the result of Theorem 6 obtained by Gutin,
Goldengorin and Huang [11] was somewhat unexpected.

Let Q be a collection of disjoint directed paths in and let V = V () ={1, 2, … , n}. An arc

a = ij is a feasible addition to Q if Q ∪ {a} is either a collection of disjoint paths or a tour in .

Consider the following two ATSP heuristics: max-regret-fc and max-regret.
The heuristic max-regret-fc proceeds as follows. Set W = T = 0. While W ≠ V do the following:
For each i ∈ V \W, compute two lightest arcs ij and ik that are feasible additions to T, and

www.intechopen.com

Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems

295

compute the difference Δi = │w(ij) - w(ik)│. For i ∈ V \ W with maximum Δi choose the
lightest arc ij, which is a feasible addition to T and add ij to M and i to W.

The heuristic max-regret proceeds as follows. Set W + = W - = T = 0. While W + ≠ V do the

following: For each i ∈ V \ W +, compute two lightest arcs ij and ik that are feasible additions

to T, and compute the difference = │w(ij) - w(ik)│; for each i ∈ V \ W -, compute two

lightest arcs ji and ki that are feasible additions to T, and compute the difference =

│w(ji) - w(ki)│. Compute i ’ ∈ V \ W + with maximum and i” ∈ V \ W - with maximum

. If ≥ choose the lightest arc i ’j ’, which is a feasible addition to T and add i ’j ’ to

M, i’ to W + and j ’ to W -. Otherwise, choose the lightest arc j “ i ”, which is a feasible addition

to T and add j “ i “ to M, i “ to W - and j “ to W +.
Notice that in max-regret-fc, if │V \ W│ = 1 we set Δi = 0. A similar remark applies to max-
regret.
Theorem 6. The domination number of both max-regret-fc and max-regret equals 1 for each n ≥ 2.

4. Theoretical performance of greedy like algorithms for MAP

In this section, we will first prove that the greedy algorithm for s-AP is of domination
number 1. The proof shows that the greedy algorithm fails on instances that cannot be called
‘exotic’ in the sense that they do not have very large weights. For our proof we need the
following definitions and lemma.
A vector h is backward if min{hi : 2 ≤ i ≤ s} < h1; a vector h is horizontal if h1 = h2 = … = hs. A
vector is forward if it is not horizontal or backward.
Lemma 7. Let F be an assignment of s-AP (s ≥ 2). Either all vectors of F are horizontal or F contains
a backward vector.

Proof: Let F = {f 1, f 2, … , f n}, where = i for each 1 ≤ i ≤ n. Assume that not every vector of

F is horizontal. We show that F has a backward vector. Suppose it is not true. Then F has a

forward vector f i. Thus, there is a subscript j such that > i. By the pigeonhole principle,

there exists a superscript k > i such that ≤ i, i.e., f k is backward; a contradiction. □

Theorem 8. For each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which Greedy will find the
unique worst possible assignment.

Proof: Consider some M > n and let E = {e1, e2, … , en}, where e i = (i, i, … i) for every 1 ≤ i ≤ n.

We define the required instance I as follows: w(ei) = iM for each 1 ≤ i ≤ n and, for each f ∉ E,

w(f) = min{f i : 1 ≤ i ≤ s} ⋅ M + 1.

Observe that Greedy will construct E. Let F = {f 1, f 2, …, f n} be any other assignment, where
 = i for each 1 ≤ i ≤ n. By Lemma 7, F has a backward vector f k. Notice that

 (1)

By the definition of the weights and (1),

www.intechopen.com

 Advances in Greedy Algorithms

296

 □
One can consider various greedy type algorithms for s-AP. One natural algorithm of this

kind proceeds as follows: At the ith iteration, i = 1, 2, … , n choose a vector e i of minimum

weight such that = i and {e1, e2, … , e i} is a partial assignment. We call this algorithm the

First Coordinate Fixing (FCF) heuristic. A simple modification of the proof of the first half of
Theorem 10 in [5] shows the following:
Theorem 9. For every n ≥ 1, s ≥ 2, there is an instance of s-AP and for every greedy type algorithm

H for s-AP, there is an instance I of s-AP for which H finds the unique worst possible assignment.

In Section 3, we considered the max-regret-fc and max-regret heuristics. In fact, max-regret
was first introduced for 3-AP by Balas and Saltzman [2]. The s-AP heuristic max-regret
proceeds as follows. We start from the empty partial assignment A and, at every iteration,
we consider a partial assignment A. Set Vd = {1, 2, … , n} for each 1 ≤ d ≤ s. For each

dimension d and each value v ∈ Vd consider every vector e ∈ X’ such that ed = v, where

X’ ⊂ X is a set of feasible additional vectors, i.e., A∪{e} is a feasible partial assignment if e ∈

X’. If X’ ≠ 0, find two vectors and in the considered subset Yd,v = {e ∈ X’ : ed = v}

such that

, and . (If

│Yd;v│= 1, set = .) Select the pair (d, v) that corresponds to the maximum

difference w() - w() and add the vector for the selected (d, v) to the solution A.

In computational experiments, Balas and Saltzman [2] compared the greedy algorithm with

max-regret and concluded that max-regret is superior to the greedy algorithm with respect

to the quality of solutions. However, after conducting wider computational experiments,

Robertson [25] came to a different conclusion: the greedy algorithm and max-regret are of

similar quality for 3-AP. Gutin, Goldengorin and Huang [11] share the conclusion of

Robertson: both greedy algorithm and max-regret are of domination number 1 for s-AP for

each s ≥ 3. Moreover, there exists a common family of s-AP instances for which both

heuristics find the unique worst assignment [11] (for each s ≥ 3).

Similarly to TSP, we may obtain MAP heuristics of factorial domination number if we
consider not-worth-than-average heuristics. This follows from the next theorem:

Theorem 10. [11] Let H be a heuristic that for each instance of s-AP constructs an assignment of

weight at most the average weight of an assignment. Then the domination number of H is at least

((n - 1)!)s-1.
Using Theorem 10, it is proved in [11] that the following heuristic is of domination number

at least ((n - 1)!)s-1. The Recursive Opt Matching (ROM) heuristic proceeds as follows. Initialize

the solution by trivial vectors: e i = (i, i, … , i), i = 1, 2, … , n. On each jth iteration of the

heuristic, j = 1, 2, … , s - 1, calculate an n × n matrix Mi,v
 = Σe∈Y (j,i,v)

 w(e), where Y (j, i, v) is a

set of all vectors e ∈ X such that the first j coordinates of the vector e are equal to the first j

coordinates of the vector e i and the (j + 1)th coordinate of e is v: Y (j, i, v) = {e ∈ X : e k = 1

≤ k ≤ j, and ej+1
 = v}. Let permutation Ǒ be a solution of the 2-AP for the matrix M. We set

 = Ǒ(i) for each 1 ≤ i ≤ n.

www.intechopen.com

Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems

297

The Multi-Dimensionwise Variation (MDV) heuristic is introduced in [12] as a local search

heuristic for MAP. MDV starts from the trivial solution e i = (i, i, … , i), i = 1, 2, … , n. On each
step it selects a nonempty set of distinct dimensions, F {1, 2, ..., s}. The corresponding

dimensions are fixed, while the others are varied, and an n × n matrix M i,j
 = w(v i,j) is

produced, where

Let permutation ǒ be a solution of the corresponding 2-AP. If ǒ is not an identity
permutation, the heuristic changes the s-AP assignment in the following way:

There are 2s - 2 distinct sets of the fixed dimensions F, but a half of them may be omitted
since there is no difference whether to fix the selected dimensions and to vary the others, or
to vary the selected dimensions and to fix the others. So, every iteration of the heuristic tries

2s-1 - 1 distinct sets F. If no improvement was obtained during an iteration, the algorithm
terminates. We have the following:

Theorem 11. The domination number of MDV equals (2s-1 - 1)(n! - 1) + 1.

Proof: Let a vector e i = (i, i, … , i) ∈ X for every i = 1, 2, … , n and let vectors e(i,j,F) ∈ X, 1 ≤ i ≠

j ≤ n, be defined as ∈ {i, j} for every k = 1, 2, … , s and = i if and only if k ∈ F.

We assign the weights as follows: w(e i) = 1 for every i = 1, 2, … , n, w(e(i,j,F)) = 2 for each of

the 2s-1 - 1 sets F and 1 ≤ i ≠ j ≤ n and w(e) = 0 for every vector e ∈ X that has at least three
coordinates of different value. Let F0

 be the first set F chosen by MDV. Observe that for F0

MDV outputs the trivial assignment e1, … , en, which is the best among n! assignments.
For every other F MDV outputs the trivial assignment which is better than n!–1 assignments.
Further iteration will output the trivial assignment as well. Thus, we conclude that the

trivial assignment is the best among at most (2s–1 – 1)(n! – 1)+1 assignments considered by

MDV and, hence, the domination number of MDV is at most (2s–1 – 1)(n! – 1) + 1.
Now consider the last iteration of MDV. No improvement is made, and, thus, a solution with
which we started the iteration will not change during the iteration. By permuting the

elements of X2, X3, … ,Xs (recall that X = X1 × X2 × … × Xs), if needed, we may assume,
without loss of generality, that the solution at the start of the last permutation is the trivial

assignment. Since provided F’ ≠ F” and F’ ≠ {1, 2, … , s} \ F”, as above,

we can see that the trivial assignment is the best among exactly (2s–1 – 1)(n! – 1)+1 distinct

assignments of the last iteration. Thus, (2s–1 – 1)(n! – 1) + 1 is a lower bound on the
domination number of MDV. Since this lower bound is also an upper bound on the
domination number, we are done. □
This theorem and the result just after Theorem 10 show that ROM is of larger domination
number than MDV for every fixed s ≥ 3 for every n large enough. This is in contrast with the
experimental results reported in Section 6, where the solutions obtained by MDV are almost

www.intechopen.com

 Advances in Greedy Algorithms

298

always better than those produced by ROM. There is no contradiction in the two comparisons
as they measure different sides of the quality of the two heuristics: the worst case behavior
vs. the performance on some particular families of MAP instances.

5. Empirical evaluation of greedy like algorithms for TSP

We considered three ATSP heuristics in our experiments: Greedy, NN, and Patch Cycles
(Patch) [22].
The Greedy heuristic is implemented as follows. Construct an array of all arcs xiyi, xi ≠ yi,
1 ≤ i ≤ n(n - 1), and sort this array by the arc weight: w(xiyi) ≤ w(xi+1yi+1) for every 1 ≤ i < n(n -
1). Let prev(i) be the vertex preceding the vertex i in the tour, and let next(i) be the vertex
succeeding the vertex i in the tour. Initialize prev(i) = next(i) = 0 for every 1 ≤ i ≤ n. While the
solution is incomplete, it consists of several separate components. For a vertex i let id(i) be
the identifier of the vertex i component. Initialize id(i) = i for every 1 ≤ i ≤ n. On every kth
step of the heuristic try to add the arc xkyk to the current solution, i.e., check whether next(xk)
= 0 and prev(yk) = 0 and id(xk) ≠ id(yk). If all the conditions are met, set next(xk) = yk, prev(yk) =

xk, and id(i) = id(yk) for every i ∈ { j : id(j) = id(xk)}. When n - 1 arcs are added to the solution,
the algorithm closes the cycle and stops.
The details on the NN heuristic are available in Section 3.
The Patch heuristic proceeds as follows. Let Ǒ be a solution of the assignment problem
(AP) for the distance matrix of ATSP. Construct vertex-disjointed cycles ci based on the AP

solution Ǒ such that = Ǒ() for every 1 ≤ j < si and = Ǒ(), where si is the number of

vertices in the ith cycle. Let m be the number of cycles, such that Σ si = n. If m = 1, the

cycle c1 is the optimal solution of ATSP and no further actions are required. Otherwise select
two longest cycles (i.e., the cycles with the maximum values of si) and patch them by
removing edges x1x2 from the first of them and y1y2 from the second one such that the value
w(x1y2)+w(y1x2) – w(x1x2) – w(y1y2) is minimized. Repeat this procedure until there is just one
cycle, that is considered as a solution.
All the heuristics in this section and in Section 6 are implemented in Visual C++. The
evaluation platform is based on AMD Athlon 64 X2 3.0 GHz processor.
The experiment results are reported in Tables 1 and 2. Table 1 includes the results for
randomly generated instances of nine classes (for details see [13]). Ten instances of size 100,
ten instances of size 316, three instances of size 1000, and one instance of size 3162 are
considered for every instance class. The solution quality is presented by percent above the
Held-Karp (HK) lower bound [20, 21].
Table 2 includes the results for several real-world ATSP instances from TSPLIB [24] and
some other sources [20]. The solution quality is presented by percent above the best known
solutions.
One can see that Patch clearly outperforms both Greedy and NN with respect to the
solution quality, and the NN solutions are usually better than the Greedy ones (though
Greedy slightly outperform NN on average with respect to the solution quality for the real-
world instances). NN is much faster than both Greedy and Patch, while Patch is faster
than Greedy for small instances and slower for the large ones. Johnson et al. [20] showed
that, along with Patch, there are some other ATSP heuristics that are relatively fast and
normally produce solutions that are much better than those obtained by Greedy and NN.
(Some ATSP heuristics of good quality are also studied in [8].) Thus, it appears that Greedy

www.intechopen.com

Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems

299

should never be used in practice and NN is of interest only if a very fast heuristic is
required.

6. Empirical evaluation of greedy like algorithms for MAP

In this chapter we consider four MAP heuristics: Greedy, First Coordinate Fixing (FCF),
Recursive Opt Matching (ROM), and Multi-Dimensionwise Variation (MDV).
Greedy proceeds as follows. Let A = be a partial assignment and B an array of vectors.
While │A│< n, i.e., A is not a full assignment, the following steps are repeated. Scan the
weight matrix to fill array B with k vectors corresponding to k minimal weights and sort B in

non-decreasing order. For each vector e ∈ B, starting from the lightest, check whether A ∪ {e}

is a feasible partial assignment and, if so, add e to A. Note, that during the second and

further cycles we scan not the whole weight matrix but only a subset X’ ⊂ X of the vectors

that can be included into the partial assignment A with the feasibility preservation: A ∪ {x} is

a partial assignment for any x ∈ X’. The size of the array B is calculated as k = min{128,
│X’│}.
The details on FCF, ROM and MDV heuristics are available in Section 4. As in [12], the
number of MDV iterations was artificially restricted to 10.
The testbed includes three instance families: Random, Composite, and GP, discussed in
[12].
In Random Instance Family (Random) the weight assigned to a vector is a random uniformly
distributed integer value in the interval [a, b - 1]. We set a = 1 and b = 101. It is proved (see
[12]) that the optimal solutions of large Random instances are very likely to be of weight an,
so we assume in our experiments that the optimal solutions of the considered Random
instances are exactly n.
The Composite Instance Family (Composite) is a family of semi-random instances. They were
introduced by Crama and Spieksma for 3-AP as a problem T [7]. We extend this family for s-
AP.

Let d1, d2, . . . , ds
 be n × n matrices of non-negative uniformly distributed random integers in

the interval [a, b - 1]. Let us consider a graph G(X1 ∪ X2 ∪… ∪ Xs, (X1 ×X2) ∪ (X2 ×X3) ∪ … ∪

(Xs-1 ×Xs) ∪ (X1×Xs)), where the weight of an edge (i, j) ∈ Xk × Xk+1 is for 1 ≤ k < s and the

weight of an edge (i, j) ∈ X1 × Xs is . In this interpretation of s-AP, the objective is to find

a set of n vertex-disjoint s-cycles C ⊂ X1 ×X2 × … ×Xs such that the total weight of all edges

covered by the cycles C is minimized.

In other words,

The GP Instance Family (GP) contains pseudo-random instances with predefined optimal

solutions. GP instances are generated by an algorithm given by Grundel and Pardalos [10].

The generator is naturally designed for s-AP for arbitrary large values of s and n. The GP

generator is relatively slow and, thus, is was impossible to experiment with large GP

instances.

The results of the experiments are reported in Tables 3, 4, and 5. One can see that Greedy is

significantly slower than the FCF heuristic, while its solution quality is not significantly

better than the FCF’s one. ROM outperforms or have very close results to Greedy with

respect to both the solution quality and the running times. MDV clearly outperforms all

other heuristics with respect to the solution quality, and it is the fastest algorithm for

www.intechopen.com

 Advances in Greedy Algorithms

300

Random and Composite instances. For GP instances FCF and ROM are faster than MDV.

Based on the experimental data, MDV is definitely the overall winner.

7. References

[1] D.L. Applegate, R.E. Bixby, V. Chvátal and W.J. Cook, The Traveling Salesman Problem: A

Computational Study, Princeton University Press, 2006.

[2] E. Balas, and M.J. Saltzman, An algorithm for the three-index assignment problem,

Operations Research 39 (1991), 150–161.

[3] J. Bang-Jensen, G. Gutin and A. Yeo, When the greedy algorithm fails, Discerete

Optimization 1 (2004), 121–127.

[4] H. Bekker, E.P. Braad and B. Goldengorin, Using bipartite and multidimentional

matchings to select roots of a system of polynomial equations. In Proc. ICCSA’05,

Lecture Notes in Computer Science 3483 (2005), 397–406.

[5] G. Bendall and F. Margot, Greedy Type Resistance of Combinatorial Problems, Discrete

Optimization 3 (2006), 288–298.

[6] R.E. Burkard and E. C¸ ela, Linear assignment problems and extensions, in Handbook of

Combinatorial Optimization, Kluwer, Dordrecht, 1999, (Z. Du and P. Pardalos,

eds.), 75–149.

[7] Y. Crama and F.C.R. Spieksma, Approximation algorithms for threedimensional

assignment problems with triangle inequalities, Europ. J. Operational Res. 60 (1992),

273–279.

[8] D. Ghosh, B. Goldengorin, G. Gutin and G. J¨ager, Tolerance-based greedy algorithms for

the traveling salesman problem, Communications in DQM 10 (2007), 52–70.

[9] F. Glover, G. Gutin, A. Yeo and A. Zverovich, Construction heuristics for the asymmetric

TSP, European Journal of Operational Research 129 (2001), 555–568.

[10] D.A. Grundel and P. M. Pardalos, Test problem generator for the multidimensional

assignment problem, Comput. Optim. Appl., 30(2):133146, 2005.

[11] G. Gutin, B. Goldengorin, and J. Huang, ‘Worst Case Analysis of Max-Regret, Greedy

and Other Heuristics for Multidimensional Assignment and Traveling Salesman

Problems’, Lect. Notes Computer Sci., 4368 (2006), 214–225.

[12] G. Gutin and D. Karapetyan, Local Search Heuristics For The Multidimensional

Assignment Problem, Preprint arXiv:0806.3258v2.

[13] G. Gutin and A.P. Punnen (eds.), The Traveling Salesman Problem and its Variations ,

Kluwer, 2002 and Springer-Verlag, 2007.

[14] G. Gutin, A. Vainshtein and A. Yeo, When greedy-type algorithms fail, unpublished

manuscript, 2002.

[15] G. Gutin and A. Yeo, Polynomial approximation algorithms for the TSP and the QAP

with a factorial domination number, Discrete Appl. Math. 119 (2002), 107–116.

[16] G. Gutin and A. Yeo, Anti-matroids, Oper. Res. Lett. 30 (2002), 97–99.

[17] G. Gutin and A. Yeo, Domination Analysis of Combinatorial Optimization Algorithms

and Problems. Graph Theory, Combinatorics and Algorithms: Interdisciplinary

Applications (M.C. Golumbic and I.B.-A. Hartman, eds.), Springer-Verlag, 2005.

[18] G. Gutin and A. Yeo, The Greedy Algorithm for the Symmetric TSP. Algorithmic Oper.

Res. 2 (2007), 33–36.

www.intechopen.com

Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems

301

[19] G. Gutin, A. Yeo and A. Zverovitch, Traveling salesman should not be greedy:

domination analysis of greedy-type heuristics for the TSP, Discrete Appl. Math. 117

(2002), 81–86.

[20] D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo, X. Zhang and A. Zverovitch,

Experimental Analysis of Heuristics for ATSP, Chapter 10 in [13].

[21] D.S. Johnson and L.A. McGeoch, Experimental Analysis of Heuristics for STSP, Chapter

9 in [13].

[22] R.M. Karp, A patching algorithm for the non-symmetric traveling salesman problem,

SIAM J. Comput., 8:561573, 1979.

[23] A.P. Punnen, F. Margot and S.N. Kabadi, TSP heuristics: domination analysis and

complexity, Algorithmica 35 (2003), 111–127.

[24] G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA J. Comput. 3 (1991),

376-384, http://www.crpc.rice.edu/softlib/ tsplib/.

[25] A.J. Robertson, A set of greedy randomized adaptive local search procedure

implementations for the multidimentional assignment problem. Computational

Optimization and Applications 19 (2001), 145–164.

[26] V.I. Rublineckii, Estimates of the Accuracy of Procedures in the Traveling Salesman

Problem, Numerical Mathematics and Computer Technology no. 4 (1979), 18–23 [in

Russian].

[27] V.I. Sarvanov, The mean value of the functional of the assignment problem, Vestsi Akad.

Navuk BSSR Ser. Fiz. -Mat. Navuk no. 2 (1976), 111–114 [in Russian].

www.intechopen.com

 Advances in Greedy Algorithms

302

Table 1. ATSP heuristics experiment results for randomly generated instances.

www.intechopen.com

Greedy Like Algorithms for the Traveling Salesman and Multidimensional Assignment Problems

303

Table 2. ATSP heuristics experiment results for real-world instances. Here ∞ stands for ‘>
105’ and BK for ‘best known.’

Table 3. MAP heuristics experiment results for Random instances.

www.intechopen.com

 Advances in Greedy Algorithms

304

Table 4. MAP heuristics experiment results for Composite instances.

Table 5. MAP heuristics experiment results for GP instances.

www.intechopen.com

Greedy Algorithms

Edited by Witold Bednorz

ISBN 978-953-7619-27-5

Hard cover, 586 pages

Publisher InTech

Published online 01, November, 2008

Published in print edition November, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Each chapter comprises a separate study on some optimization problem giving both an introductory look into

the theory the problem comes from and some new developments invented by author(s). Usually some

elementary knowledge is assumed, yet all the required facts are quoted mostly in examples, remarks or

theorems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gregory Gutin and Daniel Karapetyan (2008). Greedy Like Algorithms for the Traveling Salesman and

Multidimensional Assignment Problems, Greedy Algorithms, Witold Bednorz (Ed.), ISBN: 978-953-7619-27-5,

InTech, Available from:

http://www.intechopen.com/books/greedy_algorithms/greedy_like_algorithms_for_the_traveling_salesman_an

d_multidimensional_assignment_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

