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1. Introduction 

Majority of chapters of this book show usefulness of greedy like algorithms for solving 
various combinatorial optimization problems. The aim of this chapter is to warn the reader 
that not always a greedy like approach is a good option and, in certain cases, it is a very bad 
option being sometimes among the worst possible options. Our message is not a 
discouragement from using greedy like algorithms altogether; we think that for every 
combinatorial optimization problem of importance, researchers and practitioners should 
simply investigate the appropriateness of greedy like algorithms and the existence of better 
alternatives to them (considering both quality of solution and running time). In many cases, 
especially when the running time must be very short, the conclusion may still be that the 
most practical of known approaches is a greedy like algorithm. 
The Traveling Salesman and Multidimensional Assignment Problems are optimization 
problems for which greedy like approaches are usually not very successful. We demonstrate 
this by providing both theoretical and experimental results on greedy like algorithms as 
well as on some other algorithms that produce (in theory and/or in experiments) much 
better results without spending significantly more time. 
There are some general theoretical results that indicate that there are, in fact, many 
combinatorial optimization problems for which greedy like algorithms are not the best 
option even among fast construction heuristics, see, e.g., [3, 5, 17]. We will not consider these 
general results in order to avoid most mathematical details that are not necessary for 
understanding the results of this chapter. For this reason we will not give proofs here apart 
from two simple proofs: that of Theorem 8 which shows that some instances on which the 
greedy algorithm fails are not exotic in a sense and that of Theorem 11 since Theorem 11 is a 
new result. 
It is not a trivial question whether a certain algorithm is greedy like or not. In the next 
section we define an independence system and give the classic definition of the greedy 
algorithm for such a system. We extend this definition to so-called greedy type algorithms 
that include such well-known algorithms as the Prim’s algorithm for the minimum 
spanning tree problem and the nearest neighbor algorithm for the traveling salesman 
problem. We use the term ‘greedy like’ in an informal way and we include in this class 
simple and fast construction heuristics that seem to us to be of greedy nature. O
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Unfortunately, no formal definition exists for the wide family of greedy like algorithms and 
one can understand the difficulty to formally classify such algorithms by, for example, 
considering local search algorithms which find the best solution in each neighborhood they 
search. Intuitively, it is clear that such local search algorithms are not greedy yet their every 
search is greedy in a sense. 
In the next section, we give most of terminology and notation used in this chapter. Several 
results on theoretical performance of greedy like algorithms for the Traveling Salesman and 
Multidimensional Assignment Problems are discussed in Sections 3 and 4, respectively. 
Experimental results on greedy like algorithms for the Traveling Salesman and 
Multidimensional Assignment Problems are given and analyzed in Sections 5 and 6, 
respectively. 

2. Terminology and notation 

The Asymmetric Traveling Salesman Problem (ATSP) is the problem of computing a minimum 
weight tour (Hamilton directed cycle) passing through every vertex in a weighted complete 
digraph  on n vertices. The Symmetric TSP (STSP) is the same problem, but on a weighted 
complete undirected graph Kn. When a certain fact holds for both ATSP and STSP, we will 
simply speak of TSP. We often assume that the vertices of  and Kn are 1, 2, …, n and often 
refer to the weight w(ij) of an edge ij of  (or Kn) as the distance from i to j. TSP has a large 
number of applications, see, e.g., the two recent books [1, 13] on TSP. 
The Multidimensional Assignment Problem (MAP) (abbreviated s-AP in the case of s 
dimensions) is a well-known optimization problem with a host of applications (see, e.g., [2, 
6, 7] for ‘classic’ applications and [4, 25] for recent applications in solving systems of 
polynomial equations and centralized multisensor multitarget tracking). In fact, several 
applications described in [4, 6, 25] naturally require the use of s-AP for values of s larger 
than 3. 
For a fixed s ≥ 2, the s-AP is stated as follows. Let X1 = X2 = … = Xs = {1, 2, … , n}. We will 

consider only vectors that belong to the Cartesian product X = X1 × X2 × … × Xs. Each vector 

e ∈ X is assigned a non-negative integral weight w(e). For a vector e ∈ X, the component ej 

denotes its jth coordinate, i.e., ej ∈ Xj . A collection A of t ≤ n vectors e1, e2, …, et is a (feasible) 

partial assignment if  
 
 holds for each i ≠ k and j ∈ {1, 2, … , s}. The weight of a partial 

assignment A is w(A) = Σ w(ei). An assignment (or full assignment) is a partial assignment 

with n vectors. The objective of s-AP is to find an assignment of minimum weight. 

Let P be a combinatorial optimization problem and let H be a heuristic for P. The domination 

number domn(H, I) of H for an instance I of P is the number of solutions of I that are not 

better than the solution s produced by H including s itself. For example, consider an 

instance T of the STSP on 5 vertices. Suppose that the weights of tours in T are 2, 5, 5, 6, 6, 9, 

9, 11, 11, 12, 12, 15 (every instance of STSP on 5 vertices has 12 tours) and suppose that the 

greedy algorithm computes the tour T of weight 6. Then domn(greedy, T ) = 9. In general, 

if domn(H, I) equals the number of solutions in I, then H finds an optimal solution for I. If 

domn(H, I) = 1, then the solution found by H for I is the unique worst possible one. The 

domination number domn(H, n) of H is the minimum of domn(H, I) over all instances I of 

size n. 

An independence system is a pair consisting of a finite set E and a family F of subsets (called 

independent sets) of E such that (I1) and (I2) are satisfied. 
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(I1) the empty set is in F; 

(I2) If X ∈ F and Y is a subset of X, then Y ∈ F. 

All maximal sets of F are called bases (or, feasible solutions). 

Many combinatorial optimization problems can be formulated as follows. We are given an 

independence system (E,F), a set W ⊆ Z+ and a weight function w that assigns a weight  

w(e) ∈ W to every element of E (Z+ is the set of non-negative integers). The weight w(S) of  

S ∈ F is defined as the sum of the weights of the elements of S. It is required to find a base  

B ∈ F of minimum weight. We will consider only such problems and call them the (E,F,W)-

optimization problems. 

ATSP is an (E,F,Z+)-optimization problem, where E is the set of arcs of the complete digraph 

 and F = {B ⊆ H : H ∈ H}, where H is the set of Hamilton directed cycles of . MAP is 

also an (E,F,Z+)-optimization problem, where E is the set of all vectors and F is the set of all 

partial assignments. 

If S ∈ F, then let I(S) = {x : S ∪ {x} ∈ F} \ S. This means that I(S) consists of those elements 

from E \ S, which can be added to S, in order to have an independent set of size │S│+ 1. 
Note that by (I2) I(S) ≠ 0 for every independent set S which is not a base. 
The Greedy Algorithm (Greedy) tries to construct a minimum weight base as follows: it starts 
from an empty set X, and at every step it takes the current set X and adds to it a minimum 

weight element e ∈ I(X), the algorithm stops when a base is built. We assume that the greedy 
algorithm may choose any element among equally weighted elements in I(X). Thus, when 
we say that the greedy algorithm may construct a base B, we mean that B is built provided 
the appropriate choices between elements of the same weight are made. 

Greedy type algorithms were introduced in [14]. They include the nearest neighbor 

algorithm for TSP and are defined as follows. A greedy type algorithm H is similar to the 

greedy algorithm: start with the partial solution X = 0; and then repeatedly add to X an 

element of minimum weight in (X) (ties are broken arbitrarily) until X is a base of F, 

where (X) is a subset of I(X) that does not depend on the cost function c, but only on the 

independence system (E,F) and the set X. Moreover, (X) is non-empty if I(X) ≠ 0, a 

condition that guarantees that H always outputs a base. 

3. Theoretical performance of greedy like algorithms for TSP 

The main practical message of this and the next section is that one should be careful while 
using the classical greedy algorithm and its variations in combinatorial optimization: there 
are many instances of combinatorial optimization problems for which such algorithms will 
produce the unique worst possible solution. Moreover, this is true for several well-known 
optimization problems and the corresponding instances are not exotic, in a sense. This 
means that not always the paradigm of greedy optimization provides any meaningful 
optimization at all. 
The first results of the kind mentioned in the previous paragraph were obtained in [19]: 
Theorem 1. For each n ≥ 2 there is an instance of ATSP for which the Greedy Algorithm finds the 
unique worst possible tour. 
Gutin, Yeo and Zverovitch [19] proved Theorem 1 also for the Nearest Neighbor (NN) 
algorithm: start from an arbitrary vertex i1 and go to a vertex i2 ≠ i1 with shortest distance 
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from i1; when in a vertex ik, k < n, go to a vertex ik+1 with shortest distance from ik among 
vertices not in the set {i1, i2, …, ik-1}. The proof for NN is correct for both ATSP and STSP. The 
proof of Theorem 1 itself (for Greedy) cannot be extended to STSP, but Theorem 1 holds 
also for STSP [18]. 
The Greedy and NN algorithms are special cases of greedy type algorithms and Bendall 
and Margot [5] proved the following result that generalizes all the results above. 

Theorem 2. Let A be a TSP greedy type algorithm. For each n ≥ 3 there is an instance of TSP for 

which A finds the unique worst possible tour. 

At this stage the reader may ask the following natural question: ‘Perhaps, it is true that 

every TSP heuristic has the domination number equal 1?’ The answer is negative. In fact, 

there are many TSP heuristics (see, e.g., [15, 23]) which, for every instance T of TSP with n 

vertices (n ≥ 3), produce a tour that is no longer than the average length of a tour in T. 

Among these heuristics there are several fast construction heuristics. Thus, we can apply the 

following theorem to many TSP heuristics (we formulate this theorem for ATSP, but an 

almost identical result by Rublineckii [26] is known for STSP, see [13]): 

Theorem 3. Let H be an ATSP heuristics that, for every instance T of ATSP on n ≥ 2 vertices, 

produces a tour that is no longer than the average length of a tour in T. Then the domination number 

of H is at least (n - 2)! for each n ≠ 6. 
This theorem was first proved by Sarvanov [27] for odd values of n and by Gutin and Yeo 
[15] for even values of n. 
Sometimes, we are interested in TSP with only restricted range of weights. The following 
two results for this variation of TSP were obtained by Bang-Jensen, Gutin and Yeo [3]. 

Theorem 4. Consider STSP as an (E,H,W)-optimization problem. 

a. If n ≥ 4 and │W│≤ , then the greedy algorithm never produces the unique worst possible 

base (i.e., tour). 
b. If n ≥ 3, r ≥ n - 1 and W = {1, 2, …, r}, then there exists a weight function w : E→{1, 2, …, r} 

such that the greedy algorithm may produce the unique worst possible base (i.e., tour). 

Theorem 5. Consider ATSP as an (E,H,W)-optimization problems. Let n ≥ 3. 

a. If │W│ ≤ , then the greedy algorithm never produces the unique worst possible base (i.e., 

tour). 

b. For every r ≥  there exists a weight function w : E( )→{1, 2, …, r} such that the greedy 

algorithm may produce the unique worst possible base (i.e., tour). 
Notice that the above-mentioned theorems can be proved as corollaries of general results 

that hold for many (E,H,W)-optimization problems, see, e.g., [3, 5, 16]. 

Another ATSP greedy like heuristic, max-regret-fc (fc abbreviates First Coordinate), was 
first introduced by Ghosh et al. [8]. Extensive computational experiments in [8] 
demonstrated a clear superiority of max-regret-fc over the greedy algorithm and several 
other construction heuristics from [9]. Therefore, the result of Theorem 6 obtained by Gutin, 
Goldengorin and Huang [11] was somewhat unexpected. 

Let Q be a collection of disjoint directed paths in  and let V = V ( ) ={1, 2, … , n}. An arc 

a = ij is a feasible addition to Q if Q ∪ {a} is either a collection of disjoint paths or a tour in . 

Consider the following two ATSP heuristics: max-regret-fc and max-regret. 
The heuristic max-regret-fc proceeds as follows. Set W = T = 0. While W ≠ V do the following: 
For each i ∈ V \W, compute two lightest arcs ij and ik that are feasible additions to T, and 
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compute the difference Δi = │w(ij) - w(ik)│. For i ∈ V \ W with maximum Δi choose the 
lightest arc ij, which is a feasible addition to T and add ij to M and i to W. 

The heuristic max-regret proceeds as follows. Set W + = W - = T = 0. While W + ≠ V do the 

following: For each i ∈ V \ W +, compute two lightest arcs ij and ik that are feasible additions 

to T, and compute the difference  = │w(ij) - w(ik)│; for each i ∈ V \ W -, compute two 

lightest arcs ji and ki that are feasible additions to T, and compute the difference  = 

│w(ji) - w(ki)│. Compute i ’ ∈ V \ W + with maximum  and i” ∈ V \ W - with maximum 

. If  ≥  choose the lightest arc i ’j ’, which is a feasible addition to T and add i ’j ’ to 

M, i’ to W + and j ’ to W -. Otherwise, choose the lightest arc j “ i ”, which is a feasible addition 

to T and add j “ i “ to M, i “ to W - and j “ to W +. 
Notice that in max-regret-fc, if │V \ W│ = 1 we set Δi = 0. A similar remark applies to max-
regret. 
Theorem 6. The domination number of both max-regret-fc and max-regret equals 1 for each n ≥ 2. 

4. Theoretical performance of greedy like algorithms for MAP 

In this section, we will first prove that the greedy algorithm for s-AP is of domination 
number 1. The proof shows that the greedy algorithm fails on instances that cannot be called 
‘exotic’ in the sense that they do not have very large weights. For our proof we need the 
following definitions and lemma. 
A vector h is backward if min{hi : 2 ≤ i ≤ s} < h1; a vector h is horizontal if h1 = h2 = … = hs. A 
vector is forward if it is not horizontal or backward. 
Lemma 7. Let F be an assignment of s-AP (s ≥ 2). Either all vectors of F are horizontal or F contains 
a backward vector. 

Proof: Let F = {f 1, f 2, … , f n}, where  = i for each 1 ≤ i ≤ n. Assume that not every vector of 

F is horizontal. We show that F has a backward vector. Suppose it is not true. Then F has a 

forward vector f i. Thus, there is a subscript j such that  > i. By the pigeonhole principle, 

there exists a superscript k > i such that  ≤ i, i.e., f k is backward; a contradiction.                 □ 

Theorem 8. For each s ≥ 2, n ≥ 2, there exists an instance of s-AP for which Greedy will find the 
unique worst possible assignment. 

Proof: Consider some M > n and let E = {e1, e2, … , en}, where e i = (i, i, … i) for every 1 ≤ i ≤ n. 

We define the required instance I as follows: w(ei) = iM for each 1 ≤ i ≤ n and, for each f ∉ E, 

w(f) = min{f i : 1 ≤ i ≤ s} ⋅ M + 1. 

Observe that Greedy will construct E. Let F = {f 1, f 2, …, f n} be any other assignment, where 
 = i for each 1 ≤ i ≤ n. By Lemma 7, F has a backward vector f k. Notice that 

 (1) 

By the definition of the weights and (1), 
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                                                                                        □ 
One can consider various greedy type algorithms for s-AP. One natural algorithm of this 

kind proceeds as follows: At the ith iteration, i = 1, 2, … , n choose a vector e i of minimum 

weight such that = i and {e1, e2, … , e i} is a partial assignment. We call this algorithm the 

First Coordinate Fixing (FCF) heuristic. A simple modification of the proof of the first half of 
Theorem 10 in [5] shows the following: 
Theorem 9. For every n ≥ 1, s ≥ 2, there is an instance of s-AP and for every greedy type algorithm 

H for s-AP, there is an instance I of s-AP for which H finds the unique worst possible assignment. 

In Section 3, we considered the max-regret-fc and max-regret heuristics. In fact, max-regret 
was first introduced for 3-AP by Balas and Saltzman [2]. The s-AP heuristic max-regret 
proceeds as follows. We start from the empty partial assignment A and, at every iteration, 
we consider a partial assignment A. Set Vd = {1, 2, … , n} for each 1 ≤ d ≤ s. For each 

dimension d and each value v ∈ Vd consider every vector e ∈ X’ such that ed = v, where  

X’ ⊂ X is a set of feasible additional vectors, i.e., A∪{e} is a feasible partial assignment if e ∈ 

X’. If X’ ≠ 0, find two vectors  and  in the considered subset Yd,v = {e ∈ X’ : ed = v} 

such that
 

, and . (If 

│Yd;v│= 1, set  = .) Select the pair (d, v) that corresponds to the maximum 

difference w( ) - w( ) and add the vector  for the selected (d, v) to the solution A. 

In computational experiments, Balas and Saltzman [2] compared the greedy algorithm with 

max-regret and concluded that max-regret is superior to the greedy algorithm with respect 

to the quality of solutions. However, after conducting wider computational experiments, 

Robertson [25] came to a different conclusion: the greedy algorithm and max-regret are of 

similar quality for 3-AP. Gutin, Goldengorin and Huang [11] share the conclusion of 

Robertson: both greedy algorithm and max-regret are of domination number 1 for s-AP for 

each s ≥ 3. Moreover, there exists a common family of s-AP instances for which both 

heuristics find the unique worst assignment [11] (for each s ≥ 3). 

Similarly to TSP, we may obtain MAP heuristics of factorial domination number if we 
consider not-worth-than-average heuristics. This follows from the next theorem: 

Theorem 10. [11] Let H be a heuristic that for each instance of s-AP constructs an assignment of 

weight at most the average weight of an assignment. Then the domination number of H is at least  

((n - 1)!)s-1. 
Using Theorem 10, it is proved in [11] that the following heuristic is of domination number 

at least ((n - 1)!)s-1. The Recursive Opt Matching (ROM) heuristic proceeds as follows. Initialize 

the solution by trivial vectors: e i = (i, i, … , i), i = 1, 2, … , n. On each jth iteration of the 

heuristic, j = 1, 2, … , s - 1, calculate an n × n matrix Mi,v
 = Σe∈Y (j,i,v)

 w(e), where Y (j, i, v) is a 

set of all vectors e ∈ X such that the first j coordinates of the vector e are equal to the first j 

coordinates of the vector e i and the (j + 1)th coordinate of e is v: Y (j, i, v) = {e ∈ X : e k =   1 

≤ k ≤ j, and ej+1
 = v}. Let permutation Ǒ be a solution of the 2-AP for the matrix M. We set 

 = Ǒ(i) for each 1 ≤ i ≤ n. 
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The Multi-Dimensionwise Variation (MDV) heuristic is introduced in [12] as a local search 

heuristic for MAP. MDV starts from the trivial solution e i = (i, i, … , i), i = 1, 2, … , n. On each 
step it selects a nonempty set of distinct dimensions, F  {1, 2, ..., s}. The corresponding 

dimensions are fixed, while the others are varied, and an n × n matrix M i,j
 = w(v i,j) is 

produced, where 

 

Let permutation ǒ be a solution of the corresponding 2-AP. If ǒ is not an identity 
permutation, the heuristic changes the s-AP assignment in the following way: 

 

There are 2s - 2 distinct sets of the fixed dimensions F, but a half of them may be omitted 
since there is no difference whether to fix the selected dimensions and to vary the others, or 
to vary the selected dimensions and to fix the others. So, every iteration of the heuristic tries 

2s-1 - 1 distinct sets F. If no improvement was obtained during an iteration, the algorithm 
terminates. We have the following: 

Theorem 11. The domination number of  MDV equals (2s-1 - 1)(n! - 1) + 1. 

Proof: Let a vector e i = (i, i, … , i) ∈ X for every i = 1, 2, … , n and let vectors e(i,j,F ) ∈ X, 1 ≤ i ≠ 

j ≤ n, be defined as  ∈ {i, j} for every k = 1, 2, … , s and  = i if and only if k ∈ F. 

We assign the weights as follows: w(e i ) = 1 for every i = 1, 2, … , n, w(e(i,j,F )) = 2 for each of 

the 2s-1 - 1 sets F and 1 ≤ i ≠ j ≤ n and w(e) = 0 for every vector e ∈ X that has at least three 
coordinates of different value. Let F0

 be the first set F chosen by MDV. Observe that for F0 

MDV outputs the trivial assignment e1, … , en, which is the best among n! assignments. 
For every other F MDV outputs the trivial assignment which is better than n!–1 assignments. 
Further iteration will output the trivial assignment as well. Thus, we conclude that the 

trivial assignment is the best among at most (2s–1 – 1)(n! – 1)+1 assignments considered by 

MDV and, hence, the domination number of MDV is at most (2s–1 – 1)(n! – 1) + 1. 
Now consider the last iteration of MDV. No improvement is made, and, thus, a solution with 
which we started the iteration will not change during the iteration. By permuting the 

elements of X2, X3, … ,Xs (recall that X = X1 × X2 × … × Xs), if needed, we may assume, 
without loss of generality, that the solution at the start of the last permutation is the trivial 

assignment. Since  provided F’ ≠ F” and F’ ≠ {1, 2, … , s} \ F”, as above, 

we can see that the trivial assignment is the best among exactly (2s–1 – 1)(n! – 1)+1 distinct 

assignments of the last iteration. Thus, (2s–1 – 1)( n! – 1) + 1 is a lower bound on the 
domination number of MDV. Since this lower bound is also an upper bound on the 
domination number, we are done.                                                                                                     □  
This theorem and the result just after Theorem 10 show that ROM is of larger domination 
number than MDV for every fixed s ≥ 3 for every n large enough. This is in contrast with the 
experimental results reported in Section 6, where the solutions obtained by MDV are almost 
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always better than those produced by ROM. There is no contradiction in the two comparisons 
as they measure different sides of the quality of the two heuristics: the worst case behavior 
vs. the performance on some particular families of MAP instances. 

5. Empirical evaluation of greedy like algorithms for TSP 

We considered three ATSP heuristics in our experiments: Greedy, NN, and Patch Cycles 
(Patch) [22]. 
The Greedy heuristic is implemented as follows. Construct an array of all arcs xiyi, xi ≠ yi,  
1 ≤ i ≤ n(n - 1), and sort this array by the arc weight: w(xiyi) ≤ w(xi+1yi+1) for every 1 ≤ i < n(n - 
1). Let prev(i) be the vertex preceding the vertex i in the tour, and let next(i) be the vertex 
succeeding the vertex i in the tour. Initialize prev(i) = next(i) = 0 for every 1 ≤ i ≤ n. While the 
solution is incomplete, it consists of several separate components. For a vertex i let id(i) be 
the identifier of the vertex i component. Initialize id(i) = i for every 1 ≤ i ≤ n. On every kth 
step of the heuristic try to add the arc xkyk to the current solution, i.e., check whether next(xk) 
= 0 and prev(yk) = 0 and id(xk) ≠ id(yk). If all the conditions are met, set next(xk) = yk, prev(yk) = 

xk, and id(i) = id(yk) for every i ∈ { j : id(j) = id(xk)}. When n - 1 arcs are added to the solution, 
the algorithm closes the cycle and stops. 
The details on the NN heuristic are available in Section 3. 
The Patch heuristic proceeds as follows. Let Ǒ be a solution of the assignment problem 
(AP) for the distance matrix of ATSP. Construct vertex-disjointed cycles ci based on the AP 

solution Ǒ such that  = Ǒ( ) for every 1 ≤ j < si and  = Ǒ( ), where si is the number of 

vertices in the ith cycle. Let m be the number of cycles, such that Σ si = n. If m = 1, the 

cycle c1 is the optimal solution of ATSP and no further actions are required. Otherwise select 
two longest cycles (i.e., the cycles with the maximum values of si) and patch them by 
removing edges x1x2 from the first of them and y1y2 from the second one such that the value 
w(x1y2)+w(y1x2) – w(x1x2) – w(y1y2) is minimized. Repeat this procedure until there is just one 
cycle, that is considered as a solution. 
All the heuristics in this section and in Section 6 are implemented in Visual C++. The 
evaluation platform is based on AMD Athlon 64 X2 3.0 GHz processor. 
The experiment results are reported in Tables 1 and 2. Table 1 includes the results for 
randomly generated instances of nine classes (for details see [13]). Ten instances of size 100, 
ten instances of size 316, three instances of size 1000, and one instance of size 3162 are 
considered for every instance class. The solution quality is presented by percent above the 
Held-Karp (HK) lower bound [20, 21]. 
Table 2 includes the results for several real-world ATSP instances from TSPLIB [24] and 
some other sources [20]. The solution quality is presented by percent above the best known 
solutions. 
One can see that Patch clearly outperforms both Greedy and NN with respect to the 
solution quality, and the NN solutions are usually better than the Greedy ones (though 
Greedy slightly outperform NN on average with respect to the solution quality for the real-
world instances). NN is much faster than both Greedy and Patch, while Patch is faster 
than Greedy for small instances and slower for the large ones. Johnson et al. [20] showed 
that, along with Patch, there are some other ATSP heuristics that are relatively fast and 
normally produce solutions that are much better than those obtained by Greedy and NN. 
(Some ATSP heuristics of good quality are also studied in [8].) Thus, it appears that Greedy 
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should never be used in practice and NN is of interest only if a very fast heuristic is 
required. 

6. Empirical evaluation of greedy like algorithms for MAP 

In this chapter we consider four MAP heuristics: Greedy, First Coordinate Fixing (FCF), 
Recursive Opt Matching (ROM), and Multi-Dimensionwise Variation (MDV). 
Greedy proceeds as follows. Let A =  be a partial assignment and B an array of vectors. 
While │A│< n, i.e., A is not a full assignment, the following steps are repeated. Scan the 
weight matrix to fill array B with k vectors corresponding to k minimal weights and sort B in 

non-decreasing order. For each vector e ∈ B, starting from the lightest, check whether A ∪ {e} 

is a feasible partial assignment and, if so, add e to A. Note, that during the second and 

further cycles we scan not the whole weight matrix but only a subset X’ ⊂ X of the vectors 

that can be included into the partial assignment A with the feasibility preservation: A ∪ {x} is 

a partial assignment for any x ∈ X’. The size of the array B is calculated as k = min{128, 
│X’│}. 
The details on FCF, ROM and MDV heuristics are available in Section 4. As in [12], the 
number of MDV iterations was artificially restricted to 10. 
The testbed includes three instance families: Random, Composite, and GP, discussed in 
[12]. 
In Random Instance Family (Random) the weight assigned to a vector is a random uniformly 
distributed integer value in the interval [a, b - 1]. We set a = 1 and b = 101. It is proved (see 
[12]) that the optimal solutions of large Random instances are very likely to be of weight an, 
so we assume in our experiments that the optimal solutions of the considered Random 
instances are exactly n. 
The Composite Instance Family (Composite) is a family of semi-random instances. They were 
introduced by Crama and Spieksma for 3-AP as a problem T [7]. We extend this family for s-
AP. 

Let d1, d2, . . . , ds
 be n × n matrices of non-negative uniformly distributed random integers in 

the interval [a, b - 1]. Let us consider a graph G(X1 ∪ X2 ∪… ∪ Xs, (X1 ×X2) ∪ (X2 ×X3) ∪ … ∪ 

(Xs-1 ×Xs) ∪ (X1×Xs)), where the weight of an edge (i, j) ∈ Xk × Xk+1 is  for 1 ≤ k < s and the 

weight of an edge (i, j) ∈ X1 × Xs is . In this interpretation of s-AP, the objective is to find 

a set of n vertex-disjoint s-cycles C ⊂ X1 ×X2 × … ×Xs such that the total weight of all edges 

covered by the cycles C is minimized. 

In other words, 
 

The GP Instance Family (GP) contains pseudo-random instances with predefined optimal 

solutions. GP instances are generated by an algorithm given by Grundel and Pardalos [10]. 

The generator is naturally designed for s-AP for arbitrary large values of s and n. The GP 

generator is relatively slow and, thus, is was impossible to experiment with large GP 

instances. 

The results of the experiments are reported in Tables 3, 4, and 5. One can see that Greedy is 

significantly slower than the FCF heuristic, while its solution quality is not significantly 

better than the FCF’s one. ROM outperforms or have very close results to Greedy with 

respect to both the solution quality and the running times. MDV clearly outperforms all 

other heuristics with respect to the solution quality, and it is the fastest algorithm for 
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Random and Composite instances. For GP instances FCF and ROM are faster than MDV. 

Based on the experimental data, MDV is definitely the overall winner. 
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Table 1. ATSP heuristics experiment results for randomly generated instances. 
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Table 2. ATSP heuristics experiment results for real-world instances. Here ∞ stands for ‘> 
105’ and BK for ‘best known.’ 

 

Table 3. MAP heuristics experiment results for Random instances. 
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Table 4. MAP heuristics experiment results for Composite instances. 

 

 

Table 5. MAP heuristics experiment results for GP instances. 
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