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Abstract

Yeast organisms are widely explored by humans for different biotechnological applica-
tions. During their growth, they need to adapt and interact themselves with the environ-
ment medium. For this purpose, organisms uptake nutrients and at the same time secrete
different molecules include proteins to extracellular medium. This phenomenon requires
the use of specialized structures to regulate entry and exit of molecules called transporters.
Two transporters, namely Proteins and Vesicles, are specialized in translocating molecules
in and out across the wall. The knowledge of these systems is important and served to
bring novel applications of yeast. Taking together, this book chapter is divided into two
parts: at first, it primarily accounts on few examples of protein (carbohydrates and perox-
isome proteins) and vesicle (intracellular and extracellular vesicles) transporters of yeasts.
Second, it deals with the recent advances of yeast applications in diverse area of science.

Keywords: vesicles, symporter, induction, repression, transporters

1. Introduction

For decades, Saccharomyces cerevisiae has been the model organism of the lower eukaryotes.

The available complete genome favors access to perform possible molecular and genetics

researches to understand cell activities of this yeast. The composition and concentration of

molecules that conform the outer medium dictates the transporters pattern present in the

cellular membrane. The role of molecular transport mechanisms is highly recognized and

well-studied. Basically, transport systems can be drawn in two ways; the barrier systems- cell

membrane and cell wall. (1) Transport of compounds from inside to outside, (2) And outside to

inside. There are many compounds involucrated in the phenomenon: carbohydrates, peptides,

some proteins (mucin-type glycopeptides and gycoproteins) and ions (Figure 1). As organisms

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



like S. cerevisiae contains multiple membranous organelles, it is expected to conduct similar

types of transport, from cytosol to intracellular organelles across the membrane. Organelle

could be any of the following: Nucleus, Mitochondria, Golgi bodies, Endoplasmic reticulum,

Peroxisomes. Besides diffusion, various types of transport systems are shown to be involved to

either import or export molecules across membranes; we categorize different types reported in

the literature. Membrane transporters: Embedded in the membrane are demonstrated to carry

out different mechanisms such as a) Protein transport, b) Carbohydrate transport, c) Bilayered

membranous vesicles (both intracellular and extracellular vesicles).

2. Hydrocarbons transporters of yeast

There is a great diversity of yeasts and they all require a carbon source to maintain metabolic,

physiological and cell growth processes. One of the main nutrients is glucose because it plays a

key role regulating the expression of sugar-carrying genes. Yeasts can also consume different

types of sugars like xylose, arabinose and under very specific conditions glycerol. These nutri-

ents need to be introduced into the cell whereby yeasts have developed numerous transporters

proteins, with similar structures, but with very specific substrate functions and affinities.

Figure 1. Pictorial representation of diverse transport systems present in the yeast organisms. It includes protein machin-

ery for the transport of biomolecules such as glucose, amino acids, enzymes, ions. Other transporters include vehicles

such as vesicles, which are bi-layered liposomes.
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2.1. Glucose regulation

Glucose is a substrate of easy metabolism and can act as a signaling molecule depending of its

extracellular/intracellular concentration to adjust diverse cellular activities. In Saccharomyces

cerevisiae, there are two pathways to control glucose consume by regulation of HXT transporter [1].

2.1.1. Pathway of glucose induction Rgt2/Snf3, responsible for its consumption.

Snf3, and Rgt2 are important sugar sensors (not glucose transport) in the S. cerevisiae, they are in

cell membrane and play key roles, selecting what nutrient to utilize and coordinating expression

of sugar transporters. Under low glucose concentration Snf3 sensor elevates the transcription of

high-affinity hexose transporter genes, while at high concentrations, Rgt2 sensor promotes low-

affinity hexose transporter expression [2]. In both cases, glucose binding to sensors leads their

conformation switch and activate a casein kinase I (Yck1/2) which phosphorylates regulators of

the glucose-sensing signal transduction pathwayMth1 and Std1 to subsequently be ubiquitylated

and degraded [3]. The degradation of Mth1 and Std1 interrupts the interaction between a tran-

scriptional factor Rgt1 and Cyc8/Tup1 to form a general co-repressor complex of expression of

HXT genes. Once liberated Rgt1 is phosphorylated therefor HXT genes are expressing [4].

2.1.2. Pathway of glucose repression Snf1/Mth1 negatively regulates genes involved in glucose

oxidation and the use of alternative sugars.

Under glucose limitation, there is transcriptional inhibition of hexose transporter genes (HXT)

by blocking of their promoter by a repressor complex conformed with Snf1, the complex Cyc8-

Tup1 and the Mth1/Std1 [1, 5]. This mechanism is required for the yeast to adapt to glucoses

limitation medium.

In Candida albicans membrane, the sugar sensor Hht4 (homolog to Snf3 and Rgt2) responses to

different levels of sugar by inactivation of a transcriptional repressor Rgt1 that regulates multiple

HGT genes encoding hexoses transporters (Hgt2, Hxt10 and Hgt7), this process plays a key role

in systemic infections [6]. Hxt4 expression is repressed by high levels of glucose. Snf3p in Candida

glabrata is essential for growth in low glucose media and plays a role in the induction of several

hexoses transporters [7]. Kluyveromyces lactis possesses a system of glucose signaling that also

depends of intercellular glucose metabolism, demonstrated in glycolytic mutants whose affec-

tion has a direct correlation with the repression of one of its main transporters of glucose Rag1.

[8]. Figure 2 shows the expression pattern of the carbohydrates transporters depending on the

glucose concentration.

2.2. Hexoses transporters

The vast majority of yeast carbohydrate transporters belong to the Major Facilitator Superfam-

ily (MFS) and the hexoses transporters (HXT) of S. cerevisiae have been extensively studied.

HXT family is conformed of 17 putative membrane proteins with a high similarity, but differ-

ent affinities, [9]. A deletion assay has demonstrated that HXT1–4, HXT6–7 are the mayor

functional transporters in glucose or fructose [10]. Some transporters can transport xylose

efficiently but there is inhibition by glucose presence because they have a clear preference for

this sugar [11].
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All transporters are expressed in several specific conditions. Hxt1 has a low affinity and is

expressed in high glucose levels to control carbon flux; in some cases the affinity of the trans-

porters can be modulated to adapt to consumption needs, as Gal2 and Hxt2, they switch affinity

to regulate specific transport. Some transporters (Hxt 8–17) are transcribed at low levels and

cannot support the demand of nutrients by themselves and in the particular case of Hxt12 does

not transport glucose. HXT family has the ability to translocate other sugars such as fructose,

which also covers a role of expression regulation [9, 10]. In Schizosaccharomyces pompe, the

symporter Ght2 has better affinity for fructose instead of glucose [12].

Specific fructose symporter (Fsy1) has been described to function as a proton symporter; this

transporter is able to discriminate between fructose and other hexoses in Saccharomyces

pastorianus [13]. The symport transport of fructose occurs when cells growth in low fructose

(0.5%) medium and exhibits an unusual fructose:H+ stoichiometry of 1:2 [14].

Figure 2. Expression of transporters in yeasts dependent on the concentration of glucose in the medium. At high

concentrations of Glu: a) Hxt1 main transporter of Glu, b) Hxt7 has inhibition in xylose transport; c) Rgt2 is a sensor that

induces expression of transporters required at high concentrations of glucose. At low concentrations of Glu: d) Mal11

transports α-glusides as maltose, e) Ght2 a symporter proton allows the consumption of fructose, f) decreases inhibition

of xylose transport and initiates its consumption, g) Snf3 is a sensor that induces expression of required transporters at

low glucose concentrations. In the absence of sugars, yeasts use alternative carbon sources via carriers h) Gup1 or 2 and j)

St1. Under osmotic stress, equilibrium is maintained by expelling glycerol via carrier i) Fps1.
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Frt1, from Kluyveromyces lactis encoding a fructose transport protein of high affinity to

fructose that acts as a proton-coupled symporter dependent of energy and is rather specific

for fructose. This transporter is also induced by galactose, although in a lesser extent. It

remains to be determined whether Frt1 transcription is under control of the Rag4 glucose

sensor [15].

Yeast Zygosaccharomyces bailii uptake fructose mainly at high sugar concentrations by a specific

transporter system with high capacity and low affinity and a non-specific transporter with

low-capacity and high-affinity that also transports glucose, similar results were also found for

Z. rouxii [16]. Galactose is another sugar that is uptake by yeast, transporter Gal2 who shows

homology with HXT but is not a specific-transporter and presents two conformational state for

low and high affinity. In mutant of transporter Lac2 of K. lactis lost the capacity of lactose

consumption and also for galactose indicating that Lac2 can transport galactose [17].

2.3. Pentoses transporters

Glucose is preferentially transported into the cell due to a 100-fold lower affinity of xylose for

the transporters. In S. cerevisiae some non-specific Hxt transporters are able to transport xylose

only when glucose is absent or in concentrations below 5 g/L. Hxt7 has a low affinity to xylose

and presents efficient transport for this sugar [11].

Candida intermedia shows to grow well on xylose, the transport of this sugar is carried on by

two different transport systems: a Gxf1 glucose/xylose facilitator 1 with low affinity, it is

constitutive expressed and on the other hand a Gxs1 glucose/xylose symporter 1 whit a high

affinity to xylose is repressed in the presence of glucose [18]. In [19] was detected a very weak

growth in complementation of xylose for YHT1 and YHT6 (genes from Yarrowia lipolytica) in an

hxt-null mutant of S. cerevisiae engineered for use of xylose.

S. cerevisiae lacks of arabinose specific transporters, however Gal2 can be transported at a slow

rate, other yeast as Scheffersomyces stipitis have an AraT to uptake arabinose and apparently

does not facilitate hexoses transport [20].

2.4. α-glucosides transporters

MAL loci contains genes necessary for the transport and consumption of maltose as MALx1

which encodes a maltose permease with low affinity and MALx3 encoding a positive regula-

tory protein of these genes in the presence of maltose, a clear example would be maltotriose/

maltose: symporter Mal61 encoded by MAL61 and a positive regulatory protein encoded by

MAL63 [21]. In yeast there are maltose transporters with high and low affinity, for example

MAL11, MAL21 and Mal 61 have high affinities to maltose (Michaelis constant (Km): 2–4 mM)

and can carry other sugars as turanose but cannot convey maltotriose. Atg1:H+ is a symporter

transporter capable of transporting a wide variety of α-glucosides (trehalose, sucrose, maltose,

α-methyl-glucoside, maltotriose) in S. cerevisiae [22].

2.5. Glycerol transporters

Polyols like glycerol are used as osmoprotectants by many organisms; yeasts accumulate glyc-

erol under high osmolality conditions. Fps1 glycerol efflux facilitator in S. cerevisiae is essential
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maintaining the balance in hypoosmotic changes, this transmembranal protein contain a cyto-

solic terminal domains that is important regulating glycerol flux through the channel [23].

Another glycerol:H+ proton symport transporters like Stl1 are expressed transitorily and acti-

vated when all sugar is consumed and the yeast enters into diauxic shift, during this, major

changes in gene expression alter the fermentative to oxidative metabolism, allowing to utilize

the produced ethanol and glycerol before entry into the stationary phase. Stl1 was inactive in

the presence of glucose [24]. By homology analysis with Stl1 from S. cerevisiae, the Gt1 of

Scheffersomyces stipitis demonstrated to be a glycerol transporter that is active when the

medium contains ethanol and absence of sugars [25].

2.6. Inositol transporter

Inositol transporters ITR1 and ITR2 (from S. cerevisiae) are located in the plasma membrane

and accept myo-inositol, both have similar affinities (ITR1: Km = 100 μM, ITR2: Km = 140 μM).

However, there is insufficient inositol uptake when only ITR2 is present and there for ITR1

appears to be responsible for inositol uptake because ITR1 is highly transcripted. The ITR2

transporter of Schizosaccharomyces pombe (inositol auxotroph) is essential for regular cell

growing, this transporter contains 12 intermembranial domains whit two sugar-transport

motifs typical for HXT and shows similarity whit S. cerevisiae inositol transporters. The mRNA

levels of itr2 gene are also repressed by glucose [26].

All transporters mentioned have the transport of carbohydrates in common, but they pre-

sent variation on substrate affinity that can be classified in low (Km: >40 mM) and high (Km

<40mM) affinity, this feature leads to control carbon flux; therefore at high substrate concentrations

the expression of low affinity transporters is induced. One way to measure carbohydrate

transport rates (uptake) is by scintillation assay, where studied strains that express the trans-

porter of interest. It is harvested and transferred to a substrate-free buffer to subsequently

expose them to a solution of known concentration of the radioactively labeled carbohydrate of

interest for a defined period of time, then, the cells are filtered and washed with the same

buffer, after, the remanent is analized by a liquid scintillation counter. The difference between

the radioactivity data of the initial substrate and the remaining concentrations, allows sub-

strate consumption quantification per unit time; this information can also be integrated into an

enzymatic modeling or nonlinear regression analysis to obtain kinetic parameters of Km and

maximal initial uptake speed (Vmax). Table 1 presents a list of diverse characterized yeast and

transporters.

3. Protein transport

Membranous and non-membranous proteins are the indispensable machinery for the cells

life. Membranous proteins are integral and peripheral membrane proteins that include trans-

porters (sugars, ions), GTP binding proteins, cell wall synthesizing proteins. While, non-

membranous proteins are metabolic proteins, transcription factors and so on. Most proteins

are usually encoded in the nucleus and synthesized in the free ribosomes of cytoplasm [39].
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Species Transporter Hexoses Km Pentoses Km Other Km Regulation Reference

Saccharomyces

cerevisiae
Hxt1 Glu > Fru Low Xyl Low Induced by high glucose level

Does not transport xylose as unique carbon source

[9]*

Hxt2 Glu Mod Induced by low glucose levels

Repressed by high glucose levels

Hxt3 Glu > Fru Low Induced by high glucose levels

Hxt4 Glu > Fru Low Xyl Low As(OH)3 NR Induced by low glucose levels

Repressed by high glucose levels

Hxt5 Glu > Fru Low Xyl Low Regulated by cellular growth

Hxt6 Glu > Fru > Man High Xyl Maltose NR Induced slightly at low glucose concentrations

Highly induced in non-fermentable substrates

Hxt7 Glu High Xyl Low Repression by high glucose levels. It varies only in 2

amino acids with Hxt6

[11]

Atg1 Treha/Sucr:H

+ > Malt/ α-met-

gluc: H*

Maltose

High

Low

High levels of expression of this gene during wort

fermentation

[22]

Gal2 Glu > Gal Mod Xyl/Ara low Induces by presence of galactose.

Repressed at high glucose concentrations

[20]

Mal11, 61 Maltose >

Turanose

High MAL loci of constitutive expression and induced by

presence of maltose.

[21]

Mph2, 3 Maltose/

Maltotriose

[22]

Irt1–2 Inositol Low Repression by the presence of glucose [26]

Stl1: H+ Glycerol Active when found in a system with

nonfermentable carbon sources, inducible in saline

conditions, transient expression, inactive in the

presence of glucose

[24]
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Species Transporter Hexoses Km Pentoses Km Other Km Regulation Reference

Fps1 Glycerol efflux Form protein channel, essential in maintaining the

balance in changes hypoosmotic

[23]

Fsy1

EC1118

Fru

Glu

High

Low

Repressed by high concentrations of glucose or

fructose and was highly expressed on ethanol as the

sole carbon source

[27]

Gup1 / 2 Glycerol They allow medium growth with glycerol as the

sole carbon source and stabilize cell under salinity

conditions, Membrane-bound O-acyl transferases

family.

[28]

Scheffersomyces

stipitis

Xut1/3 Glu/Fru NR Xyl High Preference for xylose over glucose but moderate

transport efficiency

[29]

Qup2 Glu/Fru NR Xyl NR

Hxt2.6 Glu/Fru NR Xyl NR

Arby Ara Repression by the presence of glucose [20]

Gt1 Glycerol NR Is active when the medium contains ethanol and

absence of sugars

[25]

Sut1 Glu > Fru High Xyl Low Induced by glucose presence [9]

Sut2 Glu High Xyl Low Constitutive expression under aerobic conditions

and are independent of carbon source

Sut3 Glu >

Fru

High

Low

Xyl > Gal Low Constitutive expression under aerobic conditions

and are independent of carbon source

Candida intermedia Gxs1 Glu: H+ Xyl: H+ High Repression by the presence of glucose [18]

Gxf1 Glu Low Xyl Low Constitutive expression

Candida albicans Hgt1/Hgt2 Glu High Repression by high glucose levels [30]

Hgt7 Glu NR Induced by low glucose levels

Hgt12 Glu NR Induced by low glucose levels

Stl1 Glycerol: H+ High Induced by salt stress [31]
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Species Transporter Hexoses Km Pentoses Km Other Km Regulation Reference

Yarrowia lipolytica Yht1 Glu/Fru/Man NR Xyl NR Main hexose transporters

Induced by presence of glucose and galactose

[19]

[32]

Yht2 Fru NR Detected in stationary phase of growth

Yht3 Fru NR Detected in stationary phase of growth

Yht4 Glu/Fru/Man NR Main hexose transporters

Induced by presence of glucose and galactose

Yht6 Xyl NR Detected in stationary phase of growth

Schizosaccharomyces

pombe

Ght1 Glu > Fru: H+ /

Fru

High [12]

Ght2 Glu: H+

Fru: H+

Low

High

Ght3 Glu: H+ High Gluconate Transitory expression

Gluconate transport inhibited by glucose presence

Ght5 Glu >

Fru

High

Low

Constitutive expression in different carbon sources

Ght6 Fru > Glu: H+ High Fru High Constitutive expression in different carbon sources

Sut1 Mal > Suc: H+ High No specific induction. Glucose repression [33]

Kluyveromyces lactis Hgt1 Glu > Gal High Constitutive expression with 26–31% identity with

Hxt in S. cerevisiae.

[17]

Ftr1 Fru: H+ High Induced by presence of glucose, fructose and

galactose

[34]

Lac2 Gal Low Lac High [17]

Rag1 Glu Low Fru NR Induced by high levels of glucose, fructose and

other sugars.

Repressed by absence of glucose

[35]

Kht1 Glu Low Induced by high levels of glucose, fructose and

other sugars
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Species Transporter Hexoses Km Pentoses Km Other Km Regulation Reference

Kht2 Glu High Induced by low glucose levels

Repressed by high glucose levels

Kht3 GFal NR [36]

Debaryomyces

hansenii

Xylh Xyl: H+ High Induced by the presence of xylose [37]

Saccharomyces

pastorianus and

bayanus

Fsy1 Glu

Fru: H+

High Sorbose Low Induced by low Fru levels [14]

Zygosaccharomyces

rouxii

Ffz1 Fru: H+ High Induced by High levels of Fru [38]

Ffz2 Fru Low

Fsy1 Glu

Fru: H+

Low

High

Induced by low Fru levels [16]

NR: No reported, Glu: Do not glucose transport, Mod: Affinity modulated by substrate concentrations.

*Modified of Leandro 2009.

Table 1. Yeast transporter with affinity substrate ratios and expression regulation.
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Once synthesized, they must have to be transported to different compartmentalized organ-

elles such as Nucleus, Endoplasmic Reticulum (ER), Mitochondria (Mt), Golgi bodies, Vacu-

oles and Peroxisomes [39–41]. These compartmentalized organelles are constituted by

multiple sites like outer membrane, intermembrane space, inner membrane and matrix as

shown in Figure 3. The proteins should be transported to all specified sites of organelle(s)

and across the wall (cell wall) to the extracellular medium [39–41]. The order of events that

leads the protein to get transported are protein recognition and its subsequent translocation

into the organelle. Despite the organelle specific transport, multiple steps of protein trans-

port are briefly generalized here.

3.1. Signal sequence

Most proteins synthesized in the cytosol are mostly precursors or preproteins carrying signal

sequences [39]. The signal sequences, present in each protein molecule, are organelle specific.

They can be found either at the N-terminal or C-terminal ends of proteins [39–41]. The signal

sequence has three conserved general domains: A N-terminal region that varies widely in length,

but typically, contains amino acids which contribute a net positive charge: a central hydrophobic

region made up of seven to 16 amino acids; followed by a signal cleavage site (Figure 4). For

instance, Mt. preproteins are rich in positively charged amino acids, arginine and lysine, and

hydroxyl bearing ones, serine and threonine. In nuclear preproteins, the sequence region of

first 10–90 N-terminal residues, exhibiting a high composition of arginine and near absence of

Figure 3. Compartmentalization of organelles like nucleus, endoplasmic reticulum, mitochondria, peroxisomes into

multiple layers include outer membrane, intermembrane space, inner membrane and matrix. A mitochondria layers

example is given here.
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negatively charged residues, is considered as signal peptide [42]. Regarding membrane proteins,

the targeting signals have so far only been identified for a small subset of proteins [43]. In

general, non-membranous proteins carry signal peptides at N-terminal, whereas signal peptides

are located at the carboxyl termini of membranous proteins [43]. Additional signal sequences

found in the proteins conceive multiple entries across the membrane layers of organelles. The

example is shown in Figure 4, where Mt. luminal proteins contain three signal sequences as

follows: (1). A N-terminal protein signal required to gain access into organelle, (2). A stretch of

amino acids signalizing the intermembrane space and (3). The mature part of the precursor

protein signal that allows the protein to locate themselves into the Mt. lumen [44, 45].

As proteins contain unique signals to each organelle, various bioinformatics databases are

developed to facilitate the search process of signals in the proteins. The databases are listed at

the end of the book chapter. The enlisted bioinformatic databases will assist the researchers to

study and explore the signal peptides appropriate for the organelles of interest.

3.2. Protein recognition and entry into organelle

The signal sequences present in the protein molecules are recognized by signal receptors or

signal recognition particles and outer-membrane translocases [42, 44, 45]. They are usually

found either in the cytosol or on the membrane of the organelles’. Pex5p is a remarkable

example of cytoplasmic receptor protein [46]. Some examples of membranous receptors are

exportins and importins (nuclei), translocase outer-membrane complex (Tom70; Mt) [44, 45].

The receptor always function by coupling with other accessory proteins to import and export

proteins. For instance, Tom 70 binds to a subset of mitochondrial precursor proteins, with

Tom70, are Tom22, Tom5, Tom6, Tom7, Tom20 and Tom70 [44, 45]. These binding partners

cooperate and facilitate the targeting of mitochondria proteins. Usually, receptors contain

binding sites for signal sequence in the precursor proteins. After gaining access to the organelle

specific receptors, precursor proteins are either further processed and deposited into the

COOH
Positive 

charge

Hydrophobic

region

Signal cleavage

site

Mature

Protein

COOHOMP        IMP     MP        Matrix Mature-Protein

Outer-Membrane Inter-Membrane Inner-Membrane

Mitochondrial Proccesing Peptidase

A)

B)

Figure 4. Representation of signal peptide regions present in the various preproteins. (a). The classic preproteins that are

entering ER organelle consists of three separate regions in signal peptide include a segment of positively charged amino acids

followed by a stretch of hydrophobic amino acids. A protease cleavage site is found next to the mature protein segment. (b).

More similarly, mitochondrial matrix proteins contain three peptide regions that corresponds to specific peptidases located

on the outer membrane, intermembrane space and inner membrane. Each region is highlighted by arrow. The successive

cleavage of peptide regions at respective sites moves the proteins across the membrane to reach matrix.
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respective compartments, or translocated directly through the membrane pore complexes [39–

41]. In the case of processing precursors, the function of multiple peptidases locating in the

respective compartment is required. Especially, in the transport of Mt. luminal proteins, three

peptidases: Mitochondrial processing peptidase, Mitochondrial intermediate peptidase, Mito-

chondrial inner membrane peptidase and their complex proteins are involved to translocate

protein from the outer - membrane to the matrix [44, 45] (Figure 3).

In the followingsection,weaccounton theexamplesof two typicalprotein transport systemsbased

on the presence (peroxisome protein) and absence of signal sequences (vesicle-associated protein).

3.3. Transport of peroxisome proteins

Peroxisomes are ubiquitous eukaryotic cell organelles that compartmentalize a large variety of

oxidative metabolic reactions. Peroxisome proteins play essential roles in glycolate recycling,

amino acid biosynthesis and in fatty acid degradation. Since, it does not contain any genetic

material, all the peroxisome proteins are encoded in the nuclear genome. Two types of Perox-

isome transport sequence (PTS) have been discovered: type I (PTS1) and type II (PTS2) to

translocate proteins from cytoplasm [46, 47]. Some of the identified peroxisome signal peptides

are listed in Table 2. The PTS1 is found in most of the peroxisome matrix proteins and is

located at the C-terminus as a tripeptide SKL20. It generally fits the consensus sequence (S/A/

C)-(K/R/H)-(L/M). The PTS2 is a conserved sequence which is located near the N-terminus of a

protein and is comprised in some species within a pre-sequence that is cleaved off after import

into the peroxisomal matrix. Sequence comparisons showed the conserved nonapeptide of

PTS2 as (R/K)-(L/V/I)-X5-(H/Q)-(L/A/F). Some proteins which do not contain neither a PTS1

nor a PTS2 have been identified and well known examples are acyl-CoA oxidase, catalase from

S. cerevisiae and Y. lipolytica, the alcohol oxidase from Hansenula polymorpha [48].

Pex5p protein, the cytoplasmic receptor, shuttles between a soluble form and an integral

membrane-bound form [46, 49, 50]. They guide free-ribosomal-synthesized peroxisome proteins

to translocate across the peroxisome membrane to matrix. It has been characterized that this

protein has the capacity to translocate folded, and even oligomeric proteins. The C-terminal

domain comprises of seven tetratricopeptide (TPR) repeats, in which 1–3 and 5–7 TPRs adopt

extended conformation to link other three TPRs [49]. This conformation produces a funnel shaped

binding site for the proteins containing PTS1 signal sequence. Once the receptor recognizes the

cargo in the cytosol, a set of proteins Pex13p, Pex14p, Pex17p associate to it forming a docking

Yeasts Protein Sequence

C. tropicalis Catalase ILELSPRK

S. cerevisiae Catalase ELSSNSLF

C. tropicalis Acyl-CoA oxidase EYAAILSK

H. polymorpha Dihydroxyacetone synthase NHDKVNKL

C. tropicalis Trifunctional enzyme LVGDLAKI

S. cerevisiae Trifunctional enzyme LSQAKSKL

Table 2. List of peroxisome protein signal sequences.
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complex [46, 50]. This establishes a possible link to cargo-receptor complex with peroxisome

membrane. At the peroxisome membrane, Pex5p would act as intrinsic membrane protein

forming a stable complex with the docking proteins. This complex is shown to exhibit the main

conductance of a pore with 3.8 nm in diameter [46, 50]. Also, they can transiently expand to more

than 9 nm, when they are importing large oligomeric cargo proteins. The formed pore might at

some stage import and translocate the proteins to the lumen [46, 50]. After the luminal protein is

released, Pex5p is recycled and translocated to the cytosol by an ATP dependent ubiquitination

machinery [46, 49, 50]. In summary, in the cytosol, Pex5p functions as PTS1-receptor in cargo

recognition and at the peroxisomemembrane where it contributes to pore formation and presum-

ably translocation (Figure 5).

3.4. Transport mechanism of a transmembrane protein, Snc1p/2p

Here, we give an example of transport of a transmembrane protein associated to vesicles

(discussed below in the following section). Synaptobrevin (Snc1p/Snc2p) is a soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) transmembrane protein.

These proteins bind onto vesicles and interact with t-SNARE proteins on the plasma mem-

brane, by which they provide specificity for the targeting and fusion of vesicles with the

plasma membrane [51]. It consists of a variable N-terminal domain, a central coiled-coil

domain, and, in most cases, of a single C-terminal transmembrane domain (TMD) that is

thought to be α-helical. The conserved region in the SNARE proteins was predicted to contain

two amphipathic alpha helices [51]. Helix 1, from 39 to 53, is unusually hydrophobic and Helix

Figure 5. Outline of transportation of matrix proteins of peroxisome mediated by Pex5p and its associated proteins. The

protein transport involves five steps: (I) cargo-receptor recognition (II) docking of cargo-receptor complex to the mem-

brane (III) translocation of cargo into matrix across membrane (IV) disassembly and (V) recycling of receptor to cytosol

(modified from [50]).
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2, from 60 to 88, predicted to be interacted with other hydrophobic segments of membrane

proteins t-SNAREs (Syntaxin) during the fusion of vesicles. Other than helices, it carries a

variable domain in the N-terminal, a carboxy trans-membrane domain (TMD) region of

96–110 amino acids is usually hydrophobic and some amino acids present intravesicular in

vesicles [51].

Just like the other class of membrane proteins, it lacks a signal sequence and contains a single

hydrophobic segment close to their C-terminus, leaving most of the polypeptide chain in the

cytoplasm (tail-anchored) [43]. The initial targeting of these proteins to the ER is mediated by

hydrophobic signal sequences, which are recognized during translation by the signal recogni-

tion particle. This hydrophobic stretch near the C termini of membranous protein do not bind

to signal recognition particles and are inserted into membranes post-translationally. Once after

getting entry into ER, it wasn’t clear about the regions responsible in targeting them to

secretory vesicles. Deletion and mutational studies were made in the SNARE proteins to

investigate the region possessing the ability to target it (Table 3). From the targeting studies

of Grote et al. [52] and Gerst [53], it was clear that in the absence of helical loops, it is not

possible to target the Snc proteins onto secretory vesicles. Thus, deletion or gross substitutions

in either of the predicted H1or H2 segments result either in the loss of targeting or in a

complete loss of functions. This shows that conserved amphipathic alpha helical region (32–

85) is essential for the confinement of snare proteins.

Regions deleted Effects Reference

Presence Absence

VAMP 2–30 ++ [52]

2–60 ��

31–38 ��

41–50 ��

61–70 ++

71–80 ++

Snc1 2–27 ++ [53]

31–50 ��

51–82 N.D.

VAMP 1–90 ��

Snc1 91–116 ��

Snc1 1–65 ++

VAMP 65–84

Snc1 85–116

++ confers the targeting of SNARE proteins.

�� confers the non-targeting of SNARE proteins.

VAMP—vesicles associated membrane protein/ortholog of Snc1.

Table 3. Deletion mutational study reveals the regions required for the targeting of Snc1 and its ortholog proteins.
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In the other hand, deletions of both variable domain and transmembrane domain do not

produce a more deleterious effect in the fusion of vesicles. That is, their localization onto

vesicles is not affected by these mutations [52–54]. These results substantiate that the TMD of

Snc protein is tuned to conduct its delivery into ER, while the helices take it over from ER to

Golgi. Besides, the targeting of SNAREs to vesicles, TMD plays a key role in their sorting and

fine tunes their distribution within the secretory pathway. That is, TMD sorts Sncp proteins

and let them to undergo a dynamic cycle of transport to and retrieval from the plasma

membrane to vesicles. Thus, it is understood that TMD serves both, as a key factor in the

membrane distribution and as the targeting signal for initial insertion of protein to ER domain.

Taking together, it was concluded that the sequence-specific information present in the mem-

brane proteins is important for the respective localization to specific organelles and its subse-

quent protein function.

4. Vesicular transport

Despite the appreciable functionality of various transporters and protein machinery, there is

another existing sophisticated source to transport materials across the walls. They are “natu-

rally existing liposomes” which are made up of an outer hydrophobic lipid bi-layer and an

inner aqueous hydrophilic core. Two vesicle types depending on their localization: intracellu-

lar and extracellular vesicles are identified and extensively studied in the literature. This

section briefly describes the role of such vesicles in the transport of biological materials in

yeast organisms.

4.1. Intracellular vesicles

In S. cerevisiae, two types of intracellular vesicles: - early secretory and post secretory

vesicles are involved to transport cargos (proteins) [39–41]. Early secretory vesicles (ESVs),

derived from ER membrane, carry cargoes to Golgi complex, where at this stage post

translational modifications such as glycosylation, mannosylation, acetylation, methylation,

phosphorylation and acylation are done [41]. While post secretory vesicles (PSVs), shed

from trans-Golgi membrane, transport selective cargos destined to extracellular medium

and plasma membrane [40]. First, Golgi complex cargoes, secretion and cargoes of other

organelles requiring post translational modification are selected via the signal peptide.

Later, they are transferred from the ER and packaged as cargo into COPII coated vesicles

(ESVs) bound for the stacks of the Golgi complex [39, 41]. The ER vesicles fuse with the cis-

Golgi membrane to deposit the cargo into the Golgi complex. The deposited proteins are

post translationally modified according to their functional requirements [39, 40]. Then, the

proteins for secretion and plasma membrane, that are sorted away from the rest of the

cargo, pass into the trans-Golgi network (TGN) and are packed into clathrin coated vesicles,

which are called early as PSVs [39].

The PSVs move vectorially towards sites of polarized growth (the bud and mother/daughter

neck). They move to arrive at the target membrane dock and subsequently fuse to transfer

The Yeast Role in Medical Applications94



their contents to extracellular medium [39, 55]. This complete process is termed as polarized

exocytosis. It consists of at least three stages. First, PSVs are targeted to the vicinity of

designated plasma membrane domains via microtubule- and/or actin-based transport sys-

tems [55, 56]. Second, after vesicles arrive at their sites of active exocytosis, where a exocyst

complex consisting of eight components: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and

Exo84 mediate the targeting and tethering of PSVs for subsequent membrane fusion [56–58].

Two proteins Sec15p and Sec10p bridge Sec4p, a Rab Gtpase, to other exocyst components.

On the plasma membrane, Sec3 and Exo70 interact with PIP2 and with other family mem-

bers of Rho Gtpases (Cdc42, Rho1p) [58]. Finally, the fusion between PSVs and plasma

membrane takes place allowing the secretion of vesicle contents and the incorporation of

membrane proteins at specific plasmamembrane domains. This specific fusion event is mediated

by interaction of proteins present in PSVs membrane (v-SNAREs, snc1p/2p) (SNARE, soluble N-

ethylmaleimide-sensitive fusion attachment protein receptors) and plasma-membrane (t-

SNAREs; sso1p/2p) [51].

Wild type S. cerevisiae strains generate PGVs from 50 to 70 nm in diameter. In contrast, some

mutant strains deficient in vesicular transport accumulates PSVs within the cell in different

size ranges. For example, exo70–35 and exo70–38 mutant cells accumulated PSVs from were

80–100 nm in diameter [58]. Forsmark et al. [59] have determined the protein composition of

PGVs obtained from the sec6–4 and sro7 mutant strains for isolation. The protein content

identified are mainly involved in vesicle transport, molecules transportation, metabolism of

carbohydrates and protein biosynthesis and degradation. Major dominant lipids constituents

of membrane are phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and

phosphatidylinositol (PtdIns). It has been speculated that the above mentioned mutants serve

as an outstanding source of vesicles for lateral biotechnological applications.

4.2. Exosomes or extracellular vesicles

In all the three kingdoms of life, Exosomes or Extracellular Vesicles (EVs) are one of the most

protective sources of conducting trans-cell wall transfer of macromolecules to the recipient

cells. EVs (Ø 50–120 nm) are secreted from cells as membranous vesicular organelles by a wide

variety of cells, from lower to higher eukaryotic organisms, i.e., from fungi to mammals [60, 61].

Unlike intracellular vesicles, they act as extracellular carriers of proteins and/or nucleic acids,

particularly microRNAs and mRNAs, between cells and serve as shuttle vectors and media-

tors of intercellular communication, immune responses, and antigen presentation [60]. The

biogenesis of exosomes begins in the last stage of endocytosis, during which the endocytic

membrane undergoes budding to form intraluminal vesicles (ILVs). The accumulated ILVs

within the original endocytic membrane, at this stage, is named the multi-vesicular body.

These bodies, then fuse with either lysosomes for degradation or the plasma membrane for

extracellular release of ILVs, i.e., exosomes or EVs. EVs are released from cells, either consti-

tutively or upon activation of a secretory pathway [60]. The machinery involved in the bio-

genesis of exosomes varies in different cell types [60, 61]; however, in most cells, the ESCRT

(endosomal sorting complex required for transport) machinery plays a major role in EVs

biogenesis [60, 61]. The roles of both the ESCRT-dependent and -independent mechanisms in
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exosome biogenesis remain largely unknown and are yet to be fully elucidated. Similarly, the

mechanisms underlying the packaging of cargo into exosomes and the transport of these

exosomes across cellular membranes have been described both in vivo and in vitro, but remain

to be fully elucidated [60, 61].

EVs have been conserved and distributed widely in many different fungal species, including

yeast cells and hyphae [23]. Pathogenic fungus and opportunistic fungus are the well-recognized

candidates for the release of EVs. Some of the examples are as follows: Paracoccidioides brasiliensis,

Sporothrix schenckii, Candida albicans, Candida parapsilosis, Malassezia sympodialis, Histoplasma

capsulatum, Cryptococcus neoformans, Malassezia sympodialis [61]. Non-pathogenic S. cerevisiae

mutants (sec4–2, sec6–4, sec4–8, sec23–1, exo70–35, and exo70–38) have also been demonstrated

to excrete EVs in the extracellular medium [62]. Several EV proteome studies revealed the

presence of multiple organelle specific proteins which are derived from the cytoplasm, plasma

membrane, mitochondrial, vacuolar and even nuclear proteins. Sterols, phospholipids and pig-

ments are also present in the EVs. Quite recently, the presence of small RNAs in the fungal EVs

was addressed [63].

4.2.1. Diverse roles of transport cargoes of EVs

The EVs derived from pathogenic fungus are natural born carriers of cargo responsible for

fungal pathogenesis. Several components of fungal EVs are potent elicitors of immunolog-

ical activities [64]. For instance, the very common protein HSP60 carried by EVs acts as

immunogen and induces protective antibodies [65]. The main virulence factor of EVs

derived from Cryptococcus neoformans is a polysaccharide capsule coating glucuronoxy-

lomannan, which activates immune-suppressive and anti-phagocytic properties [65]. The

incubation of cryptococcal vesicles with murine macrophages induced high levels of

extracellular tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), and transforming

growth factor β (TGF-β) [65]. M. sympodialis releases extracellular vesicles carrying aller-

gen were shown to induce IL-4 and TNF-α responses in PBMC patients [66]. The immu-

nogenic galactosyl epitopes distributed on the surface of large EVs of Paracoccidioides

brasilensis generated robust immune response in the paramycoccidiodomycosis patients

[67]. They bind to host lectins and induce immunological type 2 suppressive response.

Also, C. albicans EVs stimulated dendritic cells (DCs) to produce IL-12p40, IL-10, and

TNF-α, and induced upregulation of CD86 and MHC-II [68]. The change in protein

composition of THP-1 macrophage-derived EVs was studied during the interaction with

C. albicans [69]. This study revealed the changes in the abundance of proteins relating to

immune response, signaling, or cytoskeletal reorganization. The interaction significantly

increased the secretion of proinflammatory cytokines and the candidacidal activity. More

likely, the treatment of H. capsulatum cells with monoclonal antibodies (MAbs) affected the

sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells

[70]. The coating of Hc with cryptococcal glycans (Cn-gly) resulted in higher pulmonary

fungal burden in co-infected animals relative to control. Co-cultivation or addition of Cn-

gly resulted in enhanced pellicle formation with a hybrid polysaccharide matrix with

higher reactivity to GXM mAbs [71].
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5. Methods to determine the secretion-proteins across yeast wall

Numerous established techniques are already available in literature to detect, characterize and

demonstrate the phenomenon of secreting proteins, towards the extracellular medium, across

yeasts wall. At cellular level, usually, the proteins destined to secretion are always preserved

intact into the secretory vesicles of yeasts. Taking advantage of this nature, many fluorescent

methods detect the proteins presence througth the secretion route in cells by fluorescence. The

availability of several fluorescent proteins (FPs): Green-FP, Red-FP, Yellow-FP and Blue-FP has

made the detection process simple and effective [72]. To this end, tagging proteins of interest

with FPs, using genetic engineering techniques, will come handy and serve the purpose of

locating them into the cells. In the other hand, immunofluorescent technique makes use of

antibodies to demonstrate the integrity of secretion proteins inside vesicles [53]. For this

purpose, various temperature sensitive sec-mutant strains, with the ability to accumulate

vesicles, are highly recommended [73].

Once the proteins are secreted outside, they can be characterized by molecular techniques like

SDS-PAGE and Western blotting to identify specifically the proteins of interest in the extracel-

lular medium [53, 74]. By other hand enzyme activity studies are suitably advantageous to

determine the proper functioning of the secreted protein The design of such experiments

generally varies with respect to the enzymes and must be handled appropriately and the

experiments can be performed either by using the whole extracellular medium containing

secreted proteins or by using the purified proteins of interest (see protein purification section

in applications below). Combining all together, we conclude that one of the abovementioned

techniques could be suitable for realizing adequate studies on the proteins secretion.

6. Applications in biotechnology

This is an overview of the main trends reported within the last years in current research on

applications related to transport proteins in some yeast, which has not yet discussed in detail.

Major advances, of the role of different biological transporters in S. cerevisiae are focused in

carbohydrates related to obtain value-added bioproducts. Mainly discuss the expression of

carbohydrates transporters in yeast are focused to improve different substrates and in the

modification of specific aminoacides into transporters to regulate the affinity, order to alleviate

transport inhibition by sugar concentration. The capacity to co-transport glucose and xylose

into yeast has remained a technical challenge in the field [11, 29]. Due to the lack of an

endogenous xylose transporter in Saccharomyces cerevisiae, the xylose uptake depends on trans-

porter engineering to increase transport rates avoiding glucose-based inhibition, thus enhanc-

ing the potential of using lignocellulosic biomass as a feedstock for yeast [11, 29]. Besides of to

the generation of fuels, the production of value-added chemicals from renewable biomass has

been widely studied. According to [75], S. cerevisiae could be exploited for the production of

other non-ethanol fuels and chemicals from byproducts through metabolic engineering

expressing specific sugar transporter. Some other efforts to use S. cerevisiae strains as a cell
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factory to obtain valued-added products which no involves the use of genetic tools, but

metabolic activators [76] and ultrasound [77].

Some other works involves the study of trafficking mechanisms of small and large compounds

to regulate biosynthesis of appreciated biochemical products. Also, mitochondrial transport

mechanisms are relevant due to its use in future comparative studies aiding explorations of

human mitochondrial diseases and to improve biochemical process. Because energy is a

fundamental enabler of the economy, energy security and environmental safety are two major

issues in the current world that have boosted the demand for an alternative and eco-friendly

energy source.

6.1. Protein purification mediated by heterologous expression

Using genetic engineering techniques, recombinant proteins can be synthesized in anyone of

three compartments of heterologous hosts: cytoplasm, periplasm and the extracellular

medium. The natural ability of secreting proteins is captivated by many researchers as a

medium for the large-scale industrial production of foreign proteins and simplifying down-

stream processes [78]. The secretory expression requires a simple tagging of recombinant pro-

teins of interest with three essential components: (1). A signal peptide sequence targeting

secretion, followed by (2) a purification tag and (3) a protease cleavage site [78–80]. Some of

the examples of these three essential components are enlisted and the recommendable design

of a gene fusion cassette for recombinant protein secretion is shown in Figure 6. The expression

of this gene fusion cassette in the following hosts enables the secretion of protein towards

extracellular medium. The purification tag serves as an anchor and allows the recombinant

protein to separate from rest of the media culture, which is subsequently recovered by using

protease enzyme [80]. Some of the valuable hosts as recommended by Food and Drug Admin-

istration are S. cerevisiae, P. pastoris, Y. lipolytica, K. lactis, and H. polymorpha [78]. Though

technology ages 3 decades, the growth and value of applications are still increasing with

respective to the demand. Some of the recent heterologous expression and secretion of proteins

of biotechnological interest are presented in the Table 4. It is important to note that the α-MF

signal sequence has proven to be most effective in directing protein through the secretory

pathway in host organisms [81, 84–91, 93, 94]. Such expression and purification of recombinant

proteins are widely applied in the industries of textile, food processing, therapeutic applica-

tions. In the other hand, the natural ability of yeast hosts to provide, post translational modi-

fications was highly utilized to express, modify and further secrete eukaryotic proteins,

especially for therapeutic applications, in the extracellular medium [99]. The expression and

secretion of full length IgGs, insulin, glucagon, growth hormone, in yeast hosts is a proof-of-

concept in this context [52]. The glycolate form of antibodies and human glycoproteins with

fully complex terminally sialylated N-glycans were also synthesized in the engineered

Scchefersomyces stipitis (formerly P. pastoris) [97, 98].

6.2. Peroxisome production of valuable bioproducts

Here, we highlight the use of signal peptides and transporter system of Peroxisome for the

synthesis of valuable bioproducts. Mostly, researchers took advantage of the active fatty acid
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pathways and PTS1 signals to generate polyhydroxyalkanoates (bioplastics) and biofuels

(fatty-acid-derived fatty alcohols, alkanes and olefins) [99–106]. From literature, a simple

modification of polyhydroxyalkanoate synthase with PTS was sufficient for targeting and

Figure 6. Overview of genetic elements used for the recombinant secretion of proteins towards extracellular medium (a,

b, and c). The most significant elements are signal peptide sequence, protein tags and protease cleavage sites. Some

examples of well-recognized and highly used components are listed. (d). The design of a gene construct that is in practice

and essential for the heterologous expression and secretion of recombinant proteins in yeast hosts in presented.
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synthesizing PHAs in peroxisome of S. cerevisiae and P. pastoris [99–102]. The authors did an

addition of carboxyl 34 amino acids from the Brassica napus isocitrate lyase to Pseudomonas

aeruginosa PHAC1 synthase for peroxisome targeting, which was further expressed under the

Organism Protein Signal Applications Reference

S. cerevisiae

Human β-defensin-2,

(hBD2)

MFα1 (mating factor alpha)

leader

Antimicrobial activity [81]

Beta glucosidase Sed1, glucoamylase, alpha

mating leader

Cellulolytic activity [82]

endoglucanase II

Cel3A Native secretion signal Lignocellulosic [83]

Cel7A ethanol production

Cel5A

Pichias pastoris

Trx-HPV16-L2

immunogen

alpha-factor signal peptide Vaccine [84]

Horseradish peroxidase MATα prepro secretion signal [85]

Candida antartica

lipase

Human Pro-relaxin L2 alpha-factor signal peptide Therapeutic applications [86]

FSL2, Lipase S. cerevisiae α-factor signal

sequence

Lipolytic activity [87]

Endo-

polygalacturonase

alpha-factor signal peptide Textile scouring [88]

Camel Hepcidin S. cerevisiae α-factor signal

sequence

Antimicrobial activity,

Hormone

[89]

Human anti-αIIbβ3

antibody

alpha-factor signal peptide Atheroma Targeting [90]

Subtilisin QK alpha-factor signal peptide Thrombolytic activity [91]

Yarrowia

lipolytica

Glucoamylase preLip2, preXpr2, and preSuc2 Starch degradation [92]

Xylanase

Kluyveromyces

lactis

Fructosyltransferase alpha-factor signal peptide Hypocaloric sweeteners [93]

Arylsulfatase alpha-factor signal peptide Milk processing [94]

Interferon-Beta Glucoamylase signal sequence Therapeutic applications [95]

Table 4. Recent heterologous expression and secretion of recombinant proteins from mid2016–Feb2017.
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control of the promoter of the P. pastoris acyl-CoA oxidase gene [96, 97]. By this expression,

PHAs was accumulated as inclusions within the peroxisomes and synthesized up to 1%

medium-chain-length PHA per g dry weight was obtained using oleic acid as substrate in the

medium. In another study, a medium-chain-length-PHA (mcl-PHA) polymer was synthesized

in the cytosol of S. cerevisiae utilizing the ß-oxidation intermediates, key peroxisome proteins,

including Faa2p, Fox1p, and Fox2p, together with PHA synthase [101]. A Pex5p mutant was

made in S. cerevisiae to retain peroxisome proteins in the cytoplasm. This retention led the

peroxisome proteins to take part actively in the generating the mcl-PHA monomers. Accumu-

lated PHA up to approximately 7% of its cell dry weight with a monomeric composition of C12

(3-hydroxydodecanoic acid), C10 (3-hydroxydecanoic acid), C8 (3-hydroxyoctanoic acid), and

C6 (3-hydroxyhexanoic acid).

Another effective exploration is targeting synthetic pathways to peroxisomes to produce

medium fatty alcohols and long fatty alcohols [103–106]. The targeted expression of fatty

acyl-CoA reductase TaFAR to the peroxisome of S. cerevisiae has produced medium chain fatty

alcohols [103]. The genes Pex7p and acetyl-CoA carboxylase are overexpressed together with

targeted TaFAR enzyme in the peroxisome. The coexpression improved the synthesis of

decanol, dodecanol, tetradecanol and hexadecanol, which have extensive applications as

biofuels and detergents. Another heterologous expression of a fatty acyl-CoA reductase from

Arabidopsis thaliana in a Pex10p mutant Y. lipolytica had produced over 500 mg/L of 1-decanol

[104]. Likewise, Rhodospirillum toruloides was engineered to express a bifunctional fatty acyl-

ACP reductase (FaCoAR) from Marinobacter aquaeolei VT8 and produced up to over 8 g/L of

C16–C18 fatty alcohols in fed-batch condition using sucrose as carbon source [105]. A recent

study has shown enhanced the peroxisome production of fatty alcohols by targeting the

FaCoAR enzyme using signal per2 (GGGSAAVKLSQAKSKL) [100]. In the same study, the

expression of two FFA based enzymes, Mycobacterium marinum carboxylic acid reductase

(MmCAR)29 and its activation cofactor-40-phosphopantetheinyl transferase NpgA from Asper-

gillus nidulans in a Pex31p/Pex32p mutant strain have resulted in the high level of alkane

production.

6.3. Vesicles in therapeutic applications

The prime role of intercellular communication has motivated researchers to conceive EVs as

potential nano-vehicles for biodelivery applications. Recently in 2016, A patent entitled

¨Compositions and Methods for Yeast Extracellular Vesicles as Delivery Systems, US

20160331686¨ was filed and published [107]. The authors have proposed the use of native

and modified EVs from yeasts cells as practical drug delivery vehicles. In the case of modi-

fied EVs, an exosomal transmembrane peptide of mammalian origin is immobilized onto the

outer membrane of EVs for targeted biodelivery applications. Using these yeast EVs, various

therapeutic sources of cargoes: therapeutic RNAs (circular RNAs), autonomously replicating

cytoplasmic linear mammalian plasmid (express either therapeutic RNAs or proteins), ther-

apeutic peptides, have been tested for delivery applications. Once the cargo loaded EVs are

released from cells, they have been isolated from culture supernatants by either centrifuga-

tion or ultra/micro filtration. Authors conducted in vivo and in vitro studies to study the
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uptake of EVs by these cells and its effect in the delivery of cargoes. The purified vesicles are

recognized by mammalian target cells with the receptors specific for the targeting ligand and

take up the vesicles carrying the biologically active therapeutics via endocytosis. Following

this inspirational work, we believe that the combination of recombinant DNA techniques

and natural loading efficiency of cargoes into EVs would bring potential drug-targeting

properties in future.

7. Webserver

Mitochondria

• p://mitf.cbrc.jp/MitoFates/

• MitoII

Subcellular localization program

• PSORT

• TargetP

• NNPSL (neural network-based predictor)

• http://www.signalpeptide.de/

• SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP/)

• SPdb (http://proline.bic.nus.edu.sg/spdb)

Peroxisome

• PTS1 Predictor - http://mendel.imp.univie.ac.at/mendeljsp/sat/pts1/PTS1predictor.jsp

Peptidase Database

• http://merops.sanger.ac.uk/
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