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Abstract

The investigation of synchronization phenomena on measured theoretical data such as
time series has recently become an increasing focus of interest. In this chapter, the
synchronized states (including steady state, periodic or chaotic) in coupled quantum
dot lasers (dimensionless rate equations) are considered with both bidirectional and
unidirectional synchronization. Different approaches for measuring synchronization
have been proposed that rely on certain characteristic features of the dynamical system
under investigation. Results show that the measure to be applied to a certain task can be
chosen according to information in test applications, although certain dynamical fea-
tures of a system under investigation (e.g., bifurcation and amplitude correlation) may
render certain measures more suitable than others.

Keywords: quantum-dot (QD) laser, optical feedback, bifurcation, dimensionless rate
equations, chaos synchronization

1. Introduction

Idea of “exploit quantum effects in heterostructure semiconductor lasers to produce wave-

length tunability” and achieve a “lower lasing threshold “via” the change in the density of

states, which outcome from reducing the number of translational degrees of freedom of the

carriers”, was firstly introduced by Dingle and Henry in 1976 [1]. This is performed by

reducing the thickness of the smaller band gap material (the active region) in the

heterostructure to the scale of the deBroglie wavelength of the carrier (~ few nanometers). This

results in a quantum well (QW) structure. Reducing the size of another dimension results in a

quantum wire (QWi) structure. Further reduction of the remaining dimension results in a

quantum dot (QD) structure where all dimensions are quantized. However, for about a quarter

of century, lasers using structures with carrier confinement in two (“quantum wire”) or all in
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three (“quantum dot”) directions appear to lack practical realization compared to so-called

QW lasers, where quantum confinement of carriers occurs in one dimension.

The most important advantage of using size-quantized heterostructures in lasers originates

from the increase in the density of states for charge carriers near band edges. When used as an

active layer for the laser, this focuses most of the injected carriers in an increasingly narrow

energy range near the bottom of the conduction band and/or the peak of the valence band. This

enhances the maximum material gain (assuming the same homogeneous or inhomogeneous

broadening as in bulk lasers) and reduces the influence of temperature on device performance

making it less temperature dependent. This also makes further reduction in the threshold

current. The electronic states in a QD are spatially localized and the energy is fully quantized,

similar to a single atom [1]. So, the system is more stable against any thermal perturbation. In

addition, due to the quantization, the probability becomes higher for optical transitions. Also,

the electron localization may radically reduce the scattering of electrons by bulk defects and

reduce the rate of non-radiative recombination. These properties, among the others, are

directly related with the high thermal stability and the high quantum efficiency of QD lasers,

and they are of great importance in terms of device applications.

From a dynamical behavior systems’ point of view, semiconductor lasers are characterized by

a time scale separation between the fast-slow systems, that is, fast photon and the slower

carrier subsystem [2]. As a result, their turn-on dynamics shows damped nonlinear intensity

oscillations, which are called relaxation oscillations. The damping of relaxation oscillations is a

key point in order to understand the stability properties of the laser subject to external pertur-

bations, for example, optical injection or optical feedback. QW laser shows obvious, weakly

damped relaxation oscillations, while the relaxation oscillations of QD lasers are strongly

damped [3]. As a result, QD lasers under optical injection display a higher dynamical stability

[4] and optical feedback [5]. In QD devices, the carriers are first injected into a surrounding

QW acting as a carrier reservoir, before they scatter into the discrete energy levels of the QDs,

between which the optical transition takes place. The scattering rates of carrier strongly

depend on the energy spacing between the band gap of the QW and the discrete QD levels,

that is, on the band structure of the device. The scattering rates provide lifetimes of the

nonlinear carriers in the QD levels, which yield additional time scales compared to QW lasers.

The discrete energy levels determine how these time scales compare to the carrier lifetimes

in the carrier reservoir and the photon lifetime. For a small energy spacing as example, short

lifetimes (large scattering rates) are obtained, which are on the same time scale or shorter than

the photon lifetime yielding over-damped, very stable system, which work similar to gas

lasers, i.e., typical class A of lasers. For high level of energy, long carrier lifetimes are obtained,

which guarantee an apparent time-scale separation between the carrier and the photon system

(time-scale of femtoseconds) resulting in weakly damped, less stable lasers, whose dynamics is

similar to conventional QW lasers, that is, typical class B lasers. QD lasers dynamics lie

between these two limiting cases and show typical dynamical features of class B and class A

lasers [3].

A characteristic of semiconductor lasers is its high sensitivity to external optical disturbances

due to the relatively low reflection of its facets [4]. On the one hand, this may be a disadvantage,
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because in optical applications, expensive isolators are needed to ensure a stable constant wave

(CW) emission of lasers. Conversely, the basic physics of the views, the laser semiconductor

display, subject to optical injection or optical feedback, a wealth of different dynamic systems

ranging from stable cw emissions, with period behavior intensity modulations, to chaotic

behavior [5].

Numerous applications arise from optical injection ranging from noise reduction [6], over a

reduction of relative intensity noise [7], the strengthening side-mode suppression [8], to a larger

bandwidth under direct optical alteration [9], and the generation of microwave signals [10].

Furthermore, the semiconductor lasers subject to delayed optical feedback are the ideal candi-

dates to study the stabilization of steady states and limit cyclical orbits due to the control of

nongaseous delayed feedback [10].

Moreover, delay synchronization of coupled lasers, bubbling in coupled lasers, and networks

of delay coupled lasers [11] are subject of current research.

2. Nonlinear dynamics of QD

Currently, nonlinear laser dynamics is a field that continues to grow from active research, and

this chapter focuses and reviews recent developments in this area with the approach of a new

dimensional model. In a multipronged approach, it will also focus on mathematical and physical

aspects. By discussing problems such as exploiting the chaotic laser for secure communications,

using the QD laser applications, it will introduce innovative foundations and hope to inspire

future research on the subject. Nowadays, self-organized semiconductor quantum dot (QD)

lasers are promising candidates for telecommunication applications [1]. For an introduction to

QD-based devices, their growth process, and their optical properties see, for example, [2].

This chapter focuses on the modeling of these QD laser devices and on the discussion of their

dynamic properties. Since QD semiconductor materials have a discrete energy sub-bands, one

could expect symmetric emission lines, and then the subject of great current interest is a

sensitivity of QD semiconductor lasers to optical feedback.

3. Synchronization in chaotic coupled QD lasers

Chaotic synchronization has attracted more interest because of its potential applications in

the field of private communication and for the control of chaos in different dynamical

systems [1]. Starting in 1990 and following the development of the theory of deterministic

chaos synchronization, synchronization was extended to the case of interacting chaotic

oscillators [2–5]. Since the definition of chaos involves a quick relationship to decorate the

nearby orbits due to their high sensitivity in initial conditions, the synchronization of two

associated chaos systems is a fairly intuitive antiretroviral phenomenon. An examination of

synchronization phenomena in quantum dot (QD) laser chaotic has been a topic of increas-

ing interest since the past few years [6] because of sensitive to external perturbation as
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optical feedback, and these materials have discrete transitions of energy, with expected

symmetric emission lines and therefore a low linewidth enhancement factor. This has moti-

vated many studies, with expected benefits including elimination of lasers.

Recently, various methods such as occasional coupling [2, 3], unidirectional coupling [7], and

bidirectional coupling [8] with optical feedback [9] have been shown to induce chaos and

achieve chaotic synchronization in laser systems. There are different methods for detecting

different types of synchronization. Complete synchronization can be identified by drawing a

driver component against the responder component while the stage synchronization can be

defined by the average frequency [7].

Here, to check for a complete synchronization in both unidirectional and bidirectional, corres-

ponding to this diversity of concepts and complete methods, all the synchronization detection

has many different approaches suggested with the aim of quantifying the degree of synchro-

nization between two systems on a continuous scale. These approaches consist of such linear,

cross-correlation or time-series tracking as well as nonlinear measures mainly such as bifurca-

tion diagrams.

The remaining chapter is organized as follows: Before we perform any numerical bifurcation

studies, we introduce the QD laser model with external optical feedback in Section 2. Section 3

is devoted to the study of the full delay differential equation for the representative value of the

frequency of the solitary laser wo, basic bifurcations of coupling strength in bidirectional

synchronization for kc ≥ 0 and unidirectional synchronization for kc > 0. Section 4 is devoted to

amplitude correlation for two chaotic systems. Finally, we summarize in Section 5.

3.1. Coupling QD laser model

In this section, we consider two semiconductor QD lasers that are delay-coupled to each other

with a coupling delay and additionally receive self-feedback with the same delay time τ. The

basic coupling scheme is depicted in Figure 1 (one can see our model with principle trans-

lations in Appendix). The coupled system is described by dimensionless rate equations

x1
• ¼ x1 y1 � 1

� �

þ k11
ffiffiffiffiffiffiffiffiffiffiffi

x1 x1τ
p

cos ϕ1 � ϕ1τ þΘ
� �

þ k21
ffiffiffiffiffiffiffiffiffiffiffi

x2 x2τ
p

cos ϕ1 � ϕ2τ þΘ
� �

(1a)

Φ1
• ¼ �

α

2
y1 �

k11
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1τ=x1

q

sin ϕ1 � ϕ1τ þΘ
� �

�
k21
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2τ=x2

q

sin ϕ1 � ϕ2τ þΘ
� �

(1b)

x2
• ¼ x2 y2 � 1

� �

þ k22
ffiffiffiffiffiffiffiffiffiffiffi

x2 x2τ
p

cos ϕ2 � ϕ2τ þΘ
� �

þ k12
ffiffiffiffiffiffiffiffiffiffiffi

x1 x1τ
p

cos ϕ2 � ϕ1τ þΘ
� �

(1c)

Φ2
• ¼ �

α

2
y2 �

k22
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2τ=x2

q

sin ϕ2 � ϕ2τ þΘ
� �

�
k12
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x1τ=x1

q

sin ϕ2 � ϕ1τ þΘ
� �

(1d)

where xk and Φk are the normalized photon density and the phase of the kth QD laser,

respectively, and α is the linewidth enhancement factor, the phase shift of the light during one

round trip in the external cavity (τ ¼ 2L=c) is given by Θ ¼ ωoτ, c is the speed of light. With wo

denoting the frequency of the solitary laser at the lasing threshold. The field labeled by the

subscript τ, and kii, kij is the feedback and the coupling strength, respectively. The three
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equations for the occupation probability of a ground and excited states in the QDs (rgs and res)

and carrier density in the WL (Nwl) read:

y•k ¼ Γzk Γ1 � yk
� �

� Γ2yk 1þ 2xkð Þ � Γ1Γ2 (1e)

z•k ¼ Γ1wk 1� zkð Þ � Γ2zk � Γzk 1� yk=Γ1

� �

=2 (1f)

w•

k ¼ Γ3δo � Γ4wk � 2Γ3wk 1� zkð Þ (1g)

where the dot denotes derivation with respect to time, δo is the bias current (see Appendix for

more details). The last terms in (1a)–(1d) are the effect of the chaotic signal. When the chaotic

signal from the receiver is zero in the transmitter system, that is, k21 = 0, the model reduces to

the unidirectional system in Figure 1a.

3.2. Coupling QD laser results

A QD semiconductor laser display is just one of many examples that interact between many

nonlinear similar systems that can lead to a variety of rich emerging behaviors [10]. Neurons,

chemical oscillations, or Josephson intersections are other representative cases of nonlinear

dynamics that have attracted the attention of researchers from special fields. But, quite aston-

ishingly, only lately has the effects of limited rapid use of signals in the interaction and

coupling of several of these systems taken into account.

In this chapter, we accurately focus on the effect of these mismatching strength and delay

times, which constitute a rich basis of instabilities, on the dynamics and synchronization of

semiconductor QDs laser systems.

Figure 1. Schematic diagram of two chaotic systems of QD laser with optical feedback object. (a) Unidirectional coupling

system. (b) Bidirectional coupling system: (1) transmitter QD laser and (2) receiver QD laser. (c) Schematic energy band

diagram of QWand QD. ΔEe and ΔEh denote the energy spacing of the QW band edge and the QD ground state (GS) for

electrons and holes. ћω marks the GS lasing energy of the QD.
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In the past work, we emphasized that the QD semiconductors are the ideal candidates for

exploring the behavior of nonlinear systems when combined or susceptible to external distur-

bances [11]. In addition to nonlinear joints in this type of device, it can be well characterized

and controlled in experiments, rather than most biologically oriented systems. Besides their

inherent nonlinearity, these types of devices can be well characterized and controlled in exp-

eriments, as opposed to most of biologically oriented systems. Since then, different configura-

tions of QD semiconductors have been theoretically investigated. The optical interaction of

QD-LED has been mostly studied in a single device subject to feedback [12–14].

In a bidirectional optical coupling section, dynamical properties of two semiconductor QD

lasers subject to a bidirectional optical coupling are studied. The organization of work in two

parts is separated in order to approach separately the cases in which each laser (in addition to

the reciprocal function) is subject to self-nourishment or not. First, we start by investigating the

coupling of the two chaotic systems in the presence of self-feedback. Unless explicitly men-

tioned, a symmetric configuration is chosen for the feedback lines (k11 = k22 and τ1 = τ2 � τc).

Figure 2 shows coupling without self-feedback case, here, we consider the situation in which

the self-feedback is zero (kii = 0), and only the mutual coupling excites both lasers simulta-

neously (kij > 0). This result supports the understanding that threshold decrease in QD

semiconductor lasers can just occur during coherent interactions where a superposition of

the intra-cavity laser and some injected fields is achievable. In this case, because of the

optical interaction is by naturally of phase insensitive, no threshold reduction is expected.

Similar to the solitary case, as the strength of feedback is increased, the defeat of stability of

the steady state is mediated by a collision in the phase space with the periodic state in a

transcritical bifurcation scenario.

In Figure 2(a) and (b), we plot a path and indicate the stability of coupling systems as a coupling

strength function. Figure 2 is generated by assuming a small time delay of the coupling so that

we promise that no Hopf bifurcation can influence as we will show in the other case. The way to

the previous virtual contradiction depends on appreciating that merely at the critical coupling

for the system stationary conditions. Eqs. (1a)–(1e) allow for an additional solution consisting of

a continuum of steady-states, it is found to connect the two systems at [w = 0, w = π] involved in

the stability.

Once the dynamics of our mutually coupled configuration have been characterized in coupling

with self-feedback case, we can now approach the different effects and questions raised by the

addition of self-feedback to each one of the QD lasers. Thus in the second part of this work, in

Figure 3(a) and (b), we are investigating the disturbances caused by the delayed reaction

between two of the self-oscillation of QD laser. Given the inclusion of feedback loops, we can

control the dynamics of the unescorted laser valve between the constant, oscillation, pulsating,

and chaotic behavior so that we can investigate the impact of delays on different system

synchronization properties. Other dynamic phenomena such as phase synchronization are

reviewed.

We now examine the dynamical properties of two semiconductor QD lasers subject to a uni-

directional optical coupling. The approach of this cases where two chaotic systems in the
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presence of self-feedback (kii 6¼ 0) and coupling excite lasers (k21 = 0). Figure 4(a) and (b) shows

the bifurcation diagram for unidirectional two coupling systems with self-feedback objected. In

Figure 4(a) disynchronization mode appears after a certain value of feedback coupling strength,

which suddenly turns into the state of the chaos while the other continues with the steady state.

Figure 4(b) shows unexpected result when an array of synchronized oscillators becomes

desynchronized through the changing of a parameter of the solitary laser. The other parameters

are as follows: active delay optical feedback τ = 5.7802, δo = 0.33, kii = 0.3054 and α = 0.9.

3.3. Different synchronization approaches

In what follows, we pay attention to the investigation on different approaches for achieving

synchronization between coupling systems. The synchronization of both lasers is studied here

Figure 2. Bifurcation for bidirectional two coupling systems without self-feedback. (a) wo = 0 and (b) wo = π. At active

delay optical feedback τ = 5.7802, the other conditions are δo = 0.1, kii = 0 and α = 0.9.
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for three different situations. For identical QD lasers, we first consider the case of bidirectional

coupled chaotic oscillators, and secondly, we address the synchronization of unidirectional

chaotic oscillators. Finally, we study the unidirectional coupling systems without feedback

operation of the receiver laser. The different types of synchronization are characterized by

two figures of merit, namely, the correlation degree between amplitudes and the relative time

series of the oscillations.

Figure 3. Bifurcation for bidirectional two coupling chaotic systems with self-feedback objected. (a) wo = 0 (b) wo = π.

At active delay optical feedback τ = 5.7802, the other conditions are δo = 0.06, kii = 0.258 and α = 0.9.
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Figure 5 shows chaos synchronization in a bidirectional system at conditions δo = 0.13, kii = 0.25,

α = 0.9 and w = 0. Output amplitude signal at active delay optical feedback τ = 5.7 of two

chaotic systems where output amplitude signal of transmitter (black point-line) and receiver,

generalized chaos synchronization at coupling strength (kc ≥ 0.038) was shown in Figure 5(a).

Figure 5(b–e) shows chaotic time series corresponding with (a), which appeared generalized

chaos synchronization in Figure 5(b).

Figure 4. Bifurcation for unidirectional two coupling systems with self-feedback objected. (a) wo = 0 and (b) wo = π. At

active delay optical feedback τ = 5.7802, the other conditions are δo = 0.33, kii = 0.3054, and α = 0.9.
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Figure 6 shows chaos synchronization in a unidirectional system. Figure 6(a) shows general-

ized chaos synchronization at coupling strength (kc = 0.01526). Figure 6(b–e) shows chaotic

time series corresponding with (a), noted that the transmitter behavior is still without change

compared with Figure 6(a).

Figure 7 shows unidirectional coupling systems without feedback operation of the receiver

laser. Chaos synchronization follows feedback strength of transmitter shown in Figure 7(a–d)

when coupling strength is projected.

Figure 5. Chaos synchronization in a bidirectional system. (a) Two chaotic systems output amplitude signal, transmitter

(black point-line) at active delay optical feedback τ = 5.7 and receiver without feedback (red point-line). (b–e) Chaotic time

series corresponding with (a).
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Figure 6. Chaos synchronization in a unidirectional system. (a) Two chaotic systems output amplitude signal, transmitter

(black point-line) at active delay optical feedback τ = 5.7 and receiver without feedback (red point-line), generalized chaos

synchronization at coupling strength (kc = 0.01526). (b–e) Chaotic time series corresponding with (a). The other conditions

are δo = 0.13, kii = 0.35, α = 0.9, and w = 0.
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4. Conclusion

This chapter is concerned with the problem of chaos synchronization estimation in a new

semiconductor quantum dot laser dimensionless model. The need to know effect of parame-

ters in our model with coupling case at different approach of chaos synchronization occurs

throughout the development of bifurcation diagrams, which reduced dynamics of model. The

approach presented here builds on the existing work that uses synchronization as a tool for

parameter estimation. Some important issues of chaos synchronization are addressed in this

chapter. The central issue is the choice of coupling strength between the systems, which is

considered through bifurcations depending on coupling kind.

A. Appendix

The field equation is defined as a complex stochastic differential equation. The aim is to trans-

form the complex stochastic differential equation form field equation (E) into two real stochastic

Figure 7. Chaos synchronization in a unidirectional system. Two chaotic systems output amplitude signal, transmitter

(black point-line) at active delay optical feedback τ = 5.7 and receiver without feedback (red point-line). Chaos synchro-

nization follows feedback strength when coupling strength is projected. (a) k11 = 0.299, (b) k11 = 0.3, (c) k11 = 0.304, and (d)

k11 = 0.3054. The other conditions are δo = 0.13, α = 0.9, and w = 0.
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differential equations for the photon density S ¼ Ej j2 and the phaseΦ. This is just a transforma-

tion to polar coordinates without the stochastic term [14]. Averaging over the stochastic terms,

the final rate equations for the photon density S, the phase of the electric field Φ, and the three

equations for the occupation probability of a ground and exited states in the QDs (rgs and res)

and carrier density in the WL (Nwl) read:

S• ¼ υgo 2rgs � 1
� �

� γs

h i

Sþ γ
ffiffiffiffiffiffiffiffi

SSτ
p

cos ϕ� ϕτ

� �

(2a)

ϕ• ¼ �α

2
υgo 2rgs � 1

� �

� γ

2

ffiffiffiffiffiffiffiffiffiffi

Sτ=S
p

sin ϕ� ϕτ

� �

(2b)

r
•

gs ¼ γces
res 1� rgs

� �

� γdrgs � go 2rgs � 1
� �

S (2c)

r
•

es ¼ γcwl
Nwl 1� res

� �

� γdres � γces
res 1� rgs

� �

(2d)

N•

wl ¼
J

e
� γnNwl � 2γcwl

Nwl 1� res

� �

(2e)

In our approach, the carrier-light interaction is summarized in the photon density S, which

includes all longitudinal modes. The factor 2 in Eq. (2e) accounts for the twofold spin degener-

acy in the quantum dot energy levels. A similar factor 2 is included in the definition of the

differential gain factor g in Eq. (2a) [11]. For numerical purposes, it is useful to rewrite Eqs. (2)

in a dimensionless form. To this end, we introduce the new variables

x ¼ go
γd
S, Φ � Φ, y ¼ goυ

γs
2rgs � 1

� �

, z � res, w ¼ γcwl

goυ
Nwl, Γ ¼ γces

γs
, Γ1 ¼ goυ

γs
, Γ2 ¼ γd

γs
, .

Γ3 ¼
γcwl
γs

, Γ4 ¼ γn

γs
, δo ¼ J

goυq
and the time scale t0 ¼ γst. The rate

x• ¼ x y� 1ð Þ þ ε
ffiffiffiffiffiffiffiffi

xxτ
p

cos ϕ� ϕτ

� �

(3a)

Φ
• ¼ �α

2
y� ε

2

ffiffiffiffiffiffiffiffiffiffi

xτ=x
p

sin ϕ� ϕτ

� �

(3b)

y• ¼ Γz Γ1 � yð Þ � Γ2y 1þ 2xð Þ � Γ1Γ2 (3c)

z• ¼ Γ1w 1� zð Þ � Γ2z� Γz 1� y=Γ1ð Þ=2 (3d)

w• ¼ Γ3δo � Γ4w� 2Γ3w 1� zð Þ (3e)

where ε ¼ γ=γs. The well-established assumptions here are that the delay time τ is larger than

the laser roundtrip time inside the active region (Figure 1).
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