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Abstract

In robotics, there have been proposed methods for locomotion of nonwheeled robots
based on artificial neural networks; those built with plausible neurons are called spiking
central pattern generators (SCPGs). In this chapter, we present a generalization of
reported deterministic and stochastic reverse engineering methods for automatically
designing SCPG for legged robots locomotion systems; such methods create a spiking
neural network capable of endogenously and periodically replicating one or several
rhythmic signal sets, when a spiking neuron model and one or more locomotion gaits
are given as inputs. Designed SCPGs have been implemented in different robotic con-
trollers for a variety of robotic platforms. Finally, some aspects to improve and/or
complement these SCPG-based locomotion systems are pointed out.

Keywords: central pattern generators, spiking neural networks, reverse engineering,
metaheuristic, locomotion patterns

1. Introduction

Since its beginning, robotics has been a research field strongly influenced by nature. For robotic

platforms where wheels to displace themselves are not used, researchers have taken inspiration

not only in the physical form of living beings as archetypes of their designs (e.g., legged, finned

or winged robotic platforms), but also in the mechanisms to allow their locomotion (e.g., walk-

ing, swimming or flying), mainly known as central pattern generators (CPGs) [1]. In biology, the

basis of CPGs was settled down in Brown’s studies about how the rhythmic movements of

locomotion in living beings are created [2]. In [3], Brown experimentally discovered that neurons,

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



which inhibiting each other, generate periodically rhythmic activities that control bending

and tension of muscles involved in locomotion. Moreover, GPGs have been linked to other

unconscious activities besides locomotion such as swallowing, digestion, heart beating and

breathing [4, 5].

Furthermore, CPGs have become a suitable alternative to nonbiologically inspired methods for

locomotion systems of nonwheeled robotic platforms [6]; this is due to several and interesting

features of CPGs such as adaptability, rhythmicity, stability and variety [7]. The CPG-based

locomotion systems have been successfully designed and implemented at software and/or

hardware levels for different nonwheeled robotic platforms [8] such as walking robots (biped [9],

quadruped [10], hexapod [11] and octopod [12]), swimming robots [13], flying robots [14]),

among others (i.e., snake robots [15] and salamander robots [16]). Although vast amount of

works made and reported in the state of the art about CPG-based locomotion systems, there is

not a general and standard methodology to build CPGs [6]; however, working with CPGs

commonly involves the following three phases [7]: (1) choosing the processing unit model, the

coupling type and the connectivity topology (modeling and analysis), (2) dealing with param-

eter tuning, usually solved by optimization methods and gait transition, to handle variation on

gaits as type or frequency (modulation) and (3) executing the designed CPG at the software

and/or hardware level (implementation).

In this chapter, we focus on locomotion systems for legged robots, which are based on spiking

central pattern generators (SCPGs) and reverse engineering methods for automatically design

them. The study and implementation of SCPGs as locomotion systems have been barely

explored and compared with other CPGs, which are built with oscillators or low-plausible

neuron models (see [6, 7, 17] as reference). The SCPGs are built with plausible neuron models

known as spiking neurons, models that define the third generation of artificial neural networks

[18]; these neuron models naturally receive and send spatio-temporal information as generating

rhythmic patterns are required for CPGs. The SCPGs have been designed and implemented as

locomotion systems for robotic platforms such as bipeds [19–21, 25], quadrupeds [23, 25] and

hexapods [22, 24–27], where the design methodologies used in [19–21, 27] tend to follow the

phases proposed in [7], while in [22–26] reverse engineering methods are used. Basically, a

reverse engineering method to design SCPG-based locomotion systems for robotic platforms

uses either deterministic or stochastic optimization methods, which, given an input set of

discretized rhythmic signals and a fixed spiking neuron model, are capable of defining a

spiking neural network (SNN), including both synaptic connections and weights, that endog-

enously and periodically replicates the input set of discretized rhythmic signals, which con-

tribute to locomotion of a robotic platform. Herein, we present a generalization of reverse

engineering methods to design SCPG-based locomotion systems for robotic platforms based

on details of implementations of reviewed works.

2. Robotic platforms and controllers

Nowadays, there are a variety of robotic platforms, and each of them has particular technical

specifications in design, displacement ways and so on. In reviewedworks, for real implementations
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of SCPG-based locomotion systems, three types of legged robotic platforms have been particularly

used such as hexapod, quadruped and biped robots. Particularly, the used robotic platforms have

3 degrees of freedom (DOFs) or servomotors per leg, that is, the hexapod has 18 DOFs, the quad-

ruped has 12 DOFs and the biped has 6 DOFs. Although for the hexapod and the quadruped, just

two DOFs per leg were used; the two are closer to the body of robots and directly related to the

movement of the robot. Figure 1 shows the robotic platformswith a specific label for identifying the

position of their respective servomotors.

Servomotors in the robotic platforms are handled by a processing unit, which in reviewed

works, a SCPG is embedded into them to provide a locomotion mechanism to the robots. In

Figure 2, we present the electronic boards, which have been used as processing units such as

Figure 1. Robotic platforms from Lynxmotion company. (a) Phoenix hexapod robot model, (b) symmetric quadruped

robot model and (c) Brat biped robot model. In ovals are marked and labeled the servomotors used in their locomotion

where letters C, F and a stand for Coxa, femur and ankle, respectively, letters L and R represent left and right sides, and

numbers mark the number according to their position (taken from [25]).

Figure 2. Boards for robot control. Processing units: (a) Arduino board, BotBoarduino for Lynxmotion robots, (b) FPGA

Spartan 6 XEM6310-LX45 board from OpalKelly, and (c) Raspberry Pi 3 Model B board. Servo controller: (d) SSC-32

board.

Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns
http://dx.doi.org/10.5772/intechopen.72348

43



Arduino (Figure 2a), Field Programmable Gate Array (FPGA) (Figure 2b) and a Raspberry Pi 3

Model B (Figure 2c) boards. Also, a servo controller board (Figure 2d) is required to send the

output of the processing units to the servomotors of the robotic platforms.

Basically, the integration of the processing boards and platforms works as follows: an embed-

ded SCPG into a processing board generates rhythmic signals, which are sent to the legs

through a servo controller. This converts the spiking activity generated by the SCPGs into a

control signal (voltage). The transmission process is carried out by using the RS-232 commu-

nication protocol. Figure 3 shows a block diagram of this integration.

Thus, an important aspect to achieve locomotion in robotic platforms is to design a SCPG

according to the capabilities of the processing board, which, for reviewed works, must exactly

replicate and periodically generate specific rhythmic patterns. In Section 3, we describe in

detail the functionality of SCPGs and methods used for designing them.

3. SCPG-based locomotion system

The SCPGs, reviewed in this chapter, can generate endogenously discrete rhythmic signals; in

other words, each periodical signal of a locomotion gait is represented by means of a spike

train with spike times occurring periodically. This idea was firstly presented by Rostro-

Gonzalez et al. in [22], where SCPGs built with discrete spiking neurons (Section 3.2.1) were

automatically designed by using a deterministic reverse engineering method (Section 4.1) to

imitate walking forms of a stick insect; based on steps sketches of walking forms of stick insect

reported in [28], Rostro proposed three sets of discrete rhythmic signals as locomotion gaits

(Section 3.1) to achieve hexapod robot locomotion by means of designing one SCPG for each of

them.

In Figure 4, Rostro-Gonzalez’s approach to achieve locomotion for six-legged robots through

discrete events over time by means of SNNs is schematized. In Figure 4a, a walking form of

stick insect reported in [28] is presented; black rectangles represent a leg on ground, while

white ones represent a leg in the air. The L1 row is marked with dotted rectangle to exemplify

Figure 3. System block diagram of robotic controller coupled with servomotors of robotic platforms through a servo

controller.
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how a step of real hexapod insect is interpreted and extended to a step of robot hexapod.

Notice in Figure 4b that leg sketch coincides with a black rectangle in Figure 4a as leg is on the

ground, and at this point the leg displacement that contributes to whole walking action occurs.

Figure 4c shows the rhythmic signals over time to move a leg according to locomotion gait in

Figure 4a; the coxa moves to front with spike events and to back without spike events, while

the femur moves to down with spike events and to up in the absence of spike events. Finally,

the combination of such movements according to the presence and absence of spikes of all legs

provokes locomotion of legged robot.

Later, Espinal et al. generated SCPG-based locomotion systems for quadruped and hexapod

robots based on Rostro-Gonzalez’s idea by using the same discrete spiking neuron model

(Section 3.2.1) and a stochastic reverse engineering (Section 4.2) for designing them. There

were designed and implemented SCPG-based locomotion systems for quadruped robots in

[23] and hexapod robots in [24]; the difference with the Rostro’s work is that more compact

SNN topologies were achieved, and it was achieved to design a single SCPG capable of

generating the three original locomotion gaits for hexapod robots and was extended for

quadruped ones as well.

Lately, SCPG-based locomotion systems for hexapods, quadrupeds and bipeds were designed

by Guerra-Hernandez et al. in [25]. In his work, there was proposed a locomotion gait for

biped robots following the Rostro’s idea, and SNNs were designed by using the discrete

spiking neuron model and a variant of stochastic reverse engineering (Section 4.2) proposed

by Espinal et al.

Figure 4. Representation of extrapolation of steps observed of hexapod insect into discrete rhythmic signals for SCPG-

based locomotion design. (a) Walking form of stick insect reported in [28], (b) extrapolation of a step into position of a leg

over time and (c) proposal of a step (femur row) with additional information (coxa row) represented as spike trains, in

each row, darker rectangles represent a spike and lighter ones indicate the absence of spike.
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Lately, in [26], Perez-Trujillo et al. designed SCPG-based locomotion systems for hexapod

robots based on Rostro-Gonzalez’s, Espinal’s and Guerra-Hernandez’s works. The contribu-

tion of Perez-Trujillo’s work was to create SCPG-based locomotion systems built with a

nondiscrete spiking neuron model (Section 3.2.2), and the reverse engineering method was a

variant stochastic one (Section 4.2).

The reviewed works are summarized in Table 1, including robotic platforms and processing

boards as well as reverse engineering method and spiking neuron model used.

Following subsections complement the description of SCPG-based locomotion systems. In

Section 3.1, the different rhythmic signal sets reported for each locomotion gait to robotic

platforms are shown. Section 3.2 describes the spiking neuron models that have been used to

define SNN as SCPGs on robot locomotion.

3.1. Locomotion patterns

The locomotion patterns contain the discrete rhythmic signals for each servomotor of a robotic

platform. Each of them serves to define a specific locomotion gait that a SCPG must replicate

endogenously and periodically. Besides, they are used for engineering reverse methods

(Section 4) to design SCPGs. In Figures 5–7, show the different designed discrete rhythmic

signals for hexapod, quadruped and biped robots, respectively; for each row corresponds a

servomotor with the same label according to the robotic platform.

3.2. Spiking neuron models

3.2.1. Beslon-Mazet-Soula neuron model

The Belson-Mazet-Soula (BMS) neuron [29] is a discrete-time model derived from a well-

known spiking neuron, that is, the integrate-and-fire [30] model. The BMS neuron model is

defined by Eqs. (1) and (2), and they describe the behavior of the i-th neuron over time k; former

equation models its membrane potential V i, and the last equation defines its firing state Zi.

Author/Work Robotic platform Robotic controller Spiking neuron model Reverse engineering method

Rostro et al. [22] Hexapod FPGA BMS Neuron Deterministic

Espinal et al. [23] Quadruped Arduino BMS Neuron Stochastic

Hexapod FPGA

Espinal et al. [24] Hexapod FPGA BMS Neuron Stochastic

Guerra et al. [25] Hexapod FPGA BMS Neuron Variant stochastic

Quadruped FPGA

Biped FPGA

Perez et al. [26] Hexapod Raspberry Pi 3 LIF Neuron Variant stochastic

Table 1. Summary of Legged Robot Locomotion System Configurations and reverse engineering methods.
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Figure 5. Hexapod robot locomotion gaits proposed in [22] (figures taken from [26]). (a) Walk gait, (b) jog gait and (c) run

gait.

Figure 7. Biped walking locomotion gait proposed in [26].

Figure 6. Quadruped robot locomotion gaits proposed in [23] (figures taken from [26]). (a) Walk gait, (b) jog gait and (c)

run gait.
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V i k½ � ¼ γV i k� 1½ � 1� Zi k� 1½ �ð Þ þ
X

N

j¼1

W ijZj k� 1½ � þ Iexti (1)

In Eq. (1), γ∈ 0; 1½ � represents the leaky factor. The number of spiking neurons into the neural

network is given by N. The synaptic strength weights are given by W ij. The Iexti is either a

varying or constant external stimuli; due to that, CPGs endogenously produce periodic pat-

terns Iexti ¼ 0:

Zi k½ � ¼
1 if V i k½ � ≥θ

0 otherwise

(

(2)

For Eq. (2), the fixed firing threshold is given by θ. Eq. (2) is used in Eq. (1) for tracking spike

occurrence (Zi k½ �Þ and resetting the membrane potential of i-th neuron 1� Zi k½ �ð Þ.

3.2.2. Integrate-and-fire neuron model

The integrate-and-fire (I&F) neuron [30], basically, models the evolution of its membrane

potential’s state over time as a resistor-capacitor (RC) circuit. In particular, the current-based

leaky integrate-and-fire (LIF) model, or “if_curr_exp” model in the PyNN library [31], is a LIF

neuron with a fixed firing threshold and exponentially decaying postsynaptic conductance

given in Eq. (3); besides, the model requires of tau_refrac to define the refractory value and

v_thresh to set the fixed firing threshold.

dv

dt
¼

ieþ iiþ i_offsetþ i_inj

c_m
þ
v_rest� v

tau_m
(3)

In Eq. (3), the membrane potential is represented with v. The excitatory and inhibitory current

injections ie and ii are modelled by differential equations in Eqs. (4) and (5), respectively. The

i_offset stands for a base input current, and i_inj is an external current injection; both added

each timestep, but i_inj ¼ 0 due to the nature of CPGs.

die

dt
¼ �

ie

tau_syn_E
(4)

dii

dt
¼ �

ii

tau_syn_I
(5)

Finally, tau_syn_E and tau_syn_I, in Eqs. (5) and (6), are excitatory and inhibitory input

current decay time constant.

4. Reverse engineering methods for designing SCPGs

In this section, we describe reverse engineering methods for automatically design SNNs by

defining both their topology and synaptic weights. The reviewed methods can be generalized

in diagram shown in Figure 8.
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Basically, the generalization defines an input-process-output system where its inputs are a

fixed spiking neuron model (Section 3.2) and one or more sets of discrete rhythmic signals

(Section 3.1), and the process is defined according to an optimization method, which can be

deterministic (Section 4.1) or stochastic (Section 4.2). Finally, the output is generally a par-

tially connected, directed and weighted graph that defines all aspects of a SNN to behave as

a SCPG.

Next, the optimization is briefly described, and their strengths and weaknesses are pointed

out.

4.1. Deterministic method: Simplex method

This method, originally proposed by Rostro in [34], was created to build SNNs to replicate

recorded biological neural dynamics. It was developed to work with the BMS spiking neuron

model (Section 3.2.1). It is described in [22] as follows:

First, Eq. (1) must be rewritten in form expressed in Eq. (6).

V i k½ � ¼
XN

j¼1

W ij

Xτik

τ¼0

γτZj k� τ� 1½ � þ Iikτ (6)

where Iikτ ¼
Pτik

τ¼0 γ
τI

extð Þ
i k� τ½ �with: τik ¼ k� arg minl>0 Zi l� 1½ � ¼ 1f g; see [34] for derivation

details. With Eqs. (1) and (2), a linear programming system can be formulated to determine the

synaptic connections and weights of SNNs, which replicates locomotion gaits represented as

rhythmic spiking dynamics through the evolution of all V i k½ � (the membrane potential of each

spiking neuron into the network), which are not known. Now, we define the expression:

Zi k½ � ¼ 0⇔V i k½ � < θ and Zi k½ � ¼ 1⇔V i k½ � ≥θ; where θ ¼ 1 for simplification. Last expression

can be written as next inequality: Zi k½ � ¼ 0⇔V i k½ � < θ.

By substituting Eq. (6) in the last expression, we can get a linear programming system [35],

given the expression in Eq. (7).

Figure 8. Diagram of reverse engineering method for designing SCPG.
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ei ¼ Aiwi þ bi ≥ 0 (7)

where

• Ai ¼

⋯ ⋯ ⋯

⋯ 2Zi k½ � � 1ð Þ
X

τik

τ¼0

γ
τZj k� τ� 1½ � ⋯

⋯ ⋯ ⋯

0

B

B

@

1

C

C

A

• bi ¼ ⋯ 2Zi k½ � � 1ð Þ Iikτ � 1ð Þ ⋯ð Þt

• wi ¼ ⋯ W ij ⋯

� �t

• ei ¼ ⋯ 2Zi k½ � � 1ð Þ V i k½ � � 1ð Þ ⋯ð Þt

Solving the aforementioned formulated linear programming problem in Eq. (7), by using a

simple method (or any existing linear programming solver), we obtain the synaptic weights of

all neurons and, indirectly, a SNN topology.

Next, the features of this method are listed as follows:

• Strengths:

• The definition of whole SNN is made by executing the method once.

• It has been successfully used as a reverse engineering method for designing SNNs,

which replicate recorded biological neural dynamics.

• Weaknesses:

• It can design SNN by using only BMS spiking neuron models.

• It generates one SNN for replicating just one neural dynamic pattern.

4.2. Stochastic method: Grammar-based genetic programming

For stochastic reverse engineering methods, evolutionary algorithms have been used; particu-

larly, a variant of well-known genetic programming [36] called grammatical evolution (GE)

[37]. Practically, GE is an optimization tool that searches approximated optimal solutions by

representing them indirectly for a given problem; thus, working with GE to solve a specific

problem requires four components: problem instance(s), representation of solutions, a fitness

function to evaluate solution’s quality and a search engine.

For the SCPG design problem, two types of representations have been proposed: one as a

Context-Free Grammar (CFG) in Backus-Naur Form (BNF) and another as a Christiansen Gram-

mar (CG) to use GE (in [25, 26]) and a variant called Christiansen Grammar Evolution (CGE) [38]

(in [23, 24]), respectively. In general, both representations describe languages that define the

presynaptic connectivity (including weights) of a specific spiking neuron; the common structure
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of expected words of two grammars is as follows: id1, weight1

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

1st configured synapse

∣⋯∣ idn, weightn

zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{

n�th configured synapse

.

The connectivity defined by a word has at least one connection and a maximum of connections

according to number of neurons into the SNNs. The main difference between both representa-

tions is that words of CG representation are syntactically and semantically correct, this means

that any generated word is valid and there are not repeated indexes, while words of CFG BNF

are just syntactically correct or any generated word is just valid.

The fitness function is usually defined by the problem; to solve this, three fitness functions

based on SPIKE [39] (used in [23, 24, 26]) and Victor-Purpura distances [40] (used in [25]) to

compare similarity between generated spike train and target spike train to guide the search

process have been proposed. Basically, first and second distance-based fitness functions are for

generating one SCPG per locomotion gait; the difference is that the second one looks for

minimal presynaptic connectivity and the first one does not care about number of presynaptic

connections. The third distance-based fitness function allows to generate a single SCPG, which

can replicate different locomotion gaits.

The search engine in GE is usually a metaheuristic algorithm, which tries to improve the

quality of solutions. For reviewed works, three different algorithms have been used: Univari-

ate Marginal Distribution Algorithm [40] (used in 23), (1 + 1)-Evolution Strategy [41] (used in

[24]) and Differential Evolution [42] (used in [25, 26]).

For implementation details, see [23–25]. Next, the features of this method are listed:

• Strengths:

• It can design SNNs which use either BMS spiking neuron model or LIF neuron model.

• It can handle design criteria to design compact SNN topologies or SNN, which can

replicate different neural dynamics or locomotion gaits.

• Weaknesses:

• The process must be executed several times to build a single SNN; due to that, it

defines synaptic connection and weights one neuron at time.

• It has not been tested on other design problems than design SCPGs.

5. Discussion and conclusion

Nowadays, autonomous robot locomotion is still a valid problem that has been partially

solved in robotics. Particularly, locomotion of nonwheeled robotic platforms is a problem

highly susceptible for trying to be solved by means of bioinspired algorithms known as CPGs.

However, sometimes working with CPGs may represent a problem itself since its design; this

is due to the different choices that must be made before implement the CPG according to [7]. In

Spiking Central Pattern Generators through Reverse Engineering of Locomotion Patterns
http://dx.doi.org/10.5772/intechopen.72348

51



this chapter, we have explored researches made on SCPG field, a particular type of CPGs,

which have been barely explored to date. The SCPGs are built with spiking neurons, a plausi-

ble neuron model, which handle similar information as such observed in biological neural

systems. We specifically focus on SCPG designed by approaches that allow to dispense with

human experts for explicitly define each CPG design phase. These kinds of works use reverse

engineering methods to solve de SCPG design problem as an optimization one. By means of

these methods, there are generated weighted and directed graphs as SNNs, which endoge-

nously generate rhythmic discrete signals to allow locomotion of legged robots.

Biological CPGs do not work in isolation; they depend on the information interaction with

other parts of the central nervous system [32]; even, external afferent inputs are used to shape

their outputs [33]. Based on the aforementioned, the next step of SCPG-based locomotion

systems could be their integration in navigation systems to endow them with sensors and can

build more robust and plausible bioinspired algorithms.

Finally, there are other reasons to keep studying and implementing SCPGs, which go far

beyond the locomotion of nonwheeled robots, their possible application in other areas, like

medicine in developing prosthetic robotic devices for patients with spinal damage or ampu-

tated limbs [20].
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