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Abstract

Arsenic in drinking water poses serious potential health risks in more than 30 countries
with total affected population of around 100 million people. Natural and synthetic
zeolites can be tailored in order to obtain improved sorption of As(V) making them a
relatively cheap and efficient material for water remediation. The chapter is concen-
trated on the zeolitic materials for water remediation, and reports new findings regard-
ing modification methods and comparison of such materials for the use in As(V)
sorption applications. Methods of modification of zeolites are developed and explained.
On the experimental and novel scale, using developed methods, 11 novel materials are
synthesized and studied. Initial and modified materials are characterized by optical
microscopy, SEM and EDX, as well as by metal content in those which are determined
using dissolution in acids and FAAS.

Keywords: zeolites, water remediation, As(V), adsorption, sorbents, arsenic,
environmental remediation, equilibrium, kinetics, heavy metals, metalloids

1. Introduction

Groundwater contamination with arsenic compounds is an everyday problem for millions of
people as water resources are crucial for use as drinking water, as well as in food production
and agriculture [1-3]. Accumulation of arsenic in the body poses significant health risks and
may lead to arsenicosis [3]. USA Environmental Protection Agency (EPA) in 2006 has dimin-
ished acceptable maximum contaminant level (MCL) for arsenic in drinking water from 50
down to 10 ug/L, and stricter norms have been set in headquarters of Peoples Republic of
China, United Nations Health Organization, and European Union [4-6]. Arsenic contamina-
tion is both natural and due to anthropogenic sources. Weathering of rocks and minerals is a
typical example of a natural process, while pesticides, metal waste, fertilizers and fossil fuel
combustion are due to industrial and agricultural activities [7-9].
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Sorption is considered as one of the most reasonable water remediation techniques because of
its lower costs [10-13]. Zeolites are crystalline, microporous, hydrated aluminosilicate minerals
containing alkali or alkaline cations. These materials are often praised for their efficient sorp-
tive properties. Zeolite surface modification is a possible route for substantially improving
oxyanion sorption [12]. Zeolites generally possess high values of specific surface area, which
can be larger than 700 m?/g [14]. This parameter is an extremely important one for adsorptive
properties. Most of zeolitic water remediation technologies are based on cation exchange
principles; however, there are cases when zeolites are used and useful for anion removal, such
as cases of arsenate and arsenite sorption [15, 16]. Advantages of zeolitic sorbents are as
follows: Generally, they are environmentally friendly, relatively cheap and can be treated for
secondary use. Considering affinity of metalloids to interact with Fe and Mn-containing
compounds [17], studies of As(V) sorption can be promoted in direction of using iron- and
manganese-modified zeolites.

1.1. Clinoptilolite

Clinoptilolite is a high silicate content heulandite group mineral (Na,K,Cay 5,51 5,Bag 5,Mgo 5)6
[Al¢SizpO7,] 20H,O — HEU, often main component of natural zeolites. Its effective pore diam-
eter is in range from about 4.5 up to 6.0 A. Such clinoptilolite’s properties as chemical stability
in basic environments, thermostability and high sorption rate make it a useful material in
chemical research and industry [15].

1.2. Zeolite A

Zeolite A is one of the most widely used synthetic zeolites. It has a Linde Type A (LTA)
structural type as defined by International Zeolite Association (IZA). Most commonly used in
its sodium form (4A), its chemical formula in dehydrated form is [Na;»Al;5Si1204s]s [18].
Potassium (3A) and calcium (5A) forms are also widely used. These zeolite names roughly
represent pore opening diameters in angstroms (A). It is possible to convert one form into
another one via ion exchange [18].

1.3. Zeolite X

Zeolites X contain 12 rings or pore openings with a diameter of 7.4 A (8.1 A when completely
empty). Diameter of the central cavity is 13.7 A [19].

1.4. Iron oxides

Iron oxides and hydroxides are known for their use in wastewater treatment [20]. Natural iron
oxides (without using zeolites as the host material) have affinity for arsenic compounds but
show low sorption efficiency of treating aqueous solutions contaminated with As compounds
(0.02-0.4 mg/g) due to low specific surface area [5, 21-23]. Thus it is important to introduce a
host material with high specific surface area, i.e. zeolite, which can be modified with iron
compounds, such as FeOOH. Fe(IIl) ionic radius is 0.67 A [24], small enough in order to use it
for modification of zeolites.
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1.5. Manganese oxides

As(V) is sorbed more easily onto solid surfaces than As(Ill), and thus oxidation of As(III)
followed by adsorption is a potentially effective route for the removal of arsenic compounds
[25, 26]. It has been reported that clinoptilolite modification with MnO, significantly enhances
sorption capacity of As(V) and is believed to be independent of pH [27]. MnO, can oxidize As
(III) to As(V) based on sources [24, 28], which is backed up with the following red-ox reactions,
shown in Egs. 1 and 2:

HAsO; + 2H,O < H3AsO, +2H' +2e™ (¢ = —0.56 €) (1)

MnO, +4H" +2e” < Mn*" +2H,0O (¢ = +1.23e) )

The summary red-ox reaction is represented by Eq. 3:

HAsO, +MnO; +2H" « H3AsOy +Mn*" (¢ = +0.67 ) (3)

The value of standard potential (¢p° = +0.67 e) is positive, which indicates that equilibrium is
shifted towards right of Eq. 3, in direction of As(V) as a product [24].

Mn(II), Mn(IV) and Mn(VII) ionic radii are 0.80-0.91 A, 0.50-0.52 A and 0.46 A, respectively
[24]. Mn-O bond in a permanganate ion is 1.629 A, and Mn is in the tetrahedron’s centre [29].
This is small enough in order to use it for modification of zeolites.

1.6. Sorption models

Langmuir and Freundlich isotherms are the most popular models in describing sorption in
water environments; however, other models are also known and widely used such as Dubinin-
Radushkevich, Temkin and Redlich-Peterson models [18, 30].

1.7. Langmuir model

The model is based on assumption that each sorption active centre is equivalent, and it is
energetically irrelevant whether adjacent sorption centres are empty or already occupied [20].
Langmuir sorption model [31]:

K. C
q, = M/ (4)
1+ K,.C,
where g, [mg/g] is equilibrium concentration in adsorbent which corresponds to initial con-
centration in solution Cy [mg/L]; q,, [mg/g] is maximum monolayer coverage capacity; C, [mg/
L] is equilibrium concentration in solution; K, [L/mg] is Langmuir constant.

Linearized form of Eq. 4 is represented with Eq. 5:
G 1., .1

— Ce + (5)
Do 7., Kr
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In order to compare experimental data’s fit with the model, linearized form is used, plotting

data in coordinates % — C, and obtaining determination coefficient R?[30].

1.8. Freundlich model

Freundlich model is based on assumption that sorption occurs on nonequivalent sorption
centres, which is due to repulsion between the sorbed particles. It is assumed there is an
infinite number of sorption centres [20]. Freundlich sorption model [32]:

q. = KeCe, ©6)

where Kr [mgl_l/ nLY "/g] is Freundlich coefficient; n [—] is Freundlich constant.

Linearized form of Eq. 6 is represented with Eq. 7 [30]:

Ing, :anF—F%lan (7)

In order to compare experimental data’s fit with the model, linearized form is used, plotting
data in coordinates Ing, — InC, and obtaining determination coefficient R* [30].

1.9. Dubinin-Radushkevich model

Usually the model is used to differentiate between physisorption and chemisorption. Initially
it was used to describe physisorption. Dubinin-Radushkevich sorption model [33]:

g, = q.elKonehn) &)
1
epr = RTIn (1 + E) )
F—_ | (10)
- V2KpR|

where ¢pr [kJ/mol] is Dubinin—-Radushkevich isotherm variable; E [k]/mol] is mean free energy
of adsorption; g, [mg/g] is theoretical Dubinin-Radushkevich saturation sorption capacity;
Kpr [mol?/kJ?] is Dubinin-Radushkevich constant.

Linearized form of Eq. 8 is represented with Eq. 11 [30]:
Ing, = Ing, — Kprepg (11)

In order to compare experimental data’s fit with the model, linearized form is used, plotting
data in coordinates Ing, — ¢2; and obtaining determination coefficient R* [30].

1.10. Temkin model

The model is based on assumption that heat of adsorption (function of temperature) decreases
linearly with increasing amount of sorbed particles. Temkin sorption model [33]:
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q, = I;—ZIHKTCE, (12)

where R [8.314 J/(mol'K)] is universal gas constant; T [K] is temperature; Kr [mg/L] and

br [m] ok L} are parameters describing adsorbate-adsorbent interactions.

Linearized form of Eq. 12 is represented with Eq. 13 [30]:

RT RT
q, :EmKT +E1nce (13)

In order to compare experimental data’s fit with the model, linearized form is used, plotting
data in coordinates g, — [nC, and obtaining determination coefficient R? [30].

1.11. Redlich-Peterson model

The model is a hybrid between Langmuir and Freundlich models. When value of coefficient
is equal to 1, the model becomes equivalent with Langmuir model. Often this three-parameter
model is able to explain experimental data more precisely. Redlich-Peterson sorption model [34]:

KrpCe
g =— (14)
14 arpCe®®
where agp {(#g) %] , Brp [—] and Kgp [L/g] are Redlich-Peterson isotherm parameters.
Linearized form of Eq. 14 is represented with Eq. 15 [30, 34]:
Ce
In <KRP q— — 1) = :BRPIH C. +Inagp (15)

Kgp is optimized by finding the closest fit to the model via the highest determination coefficient.
In order to compare experimental data’s fit with the model, linearized form is used, plotting data

in coordinates In <K RP g— — 1) - InC, and obtaining determination coefficient R? [30, 34].

1.12. Purpose and aim of this work

The purpose of this work is to present zeolites as potential sorbents for As(V) sorption for
water remediation as well as to present novel modification methods and materials. The aim of
the study is to provide and interpret results of As(V) sorption onto raw and modified zeolites.

2. Materials

2.1. Slovakian natural clinoptilolite (Slov)

Clinoptilolite natural zeolite from Slovakian deposit Nizny Hrabovec was used. Its specific
weight is 22002440 kg/m?; porosity 24-32%; clinoptilolitic content fluctuates in range from 86
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to 94%; according to manufacturer, it also contains cristobalite, clay mica, plagioclase, rutile,
quartz; Si:Al ratio is in range 4.80-5.40; fraction of 1-2.5 mm was used [35].

2.2. Ukrainian natural clinoptilolite (Ukr)

Clinoptilolite natural zeolite from Ukrainian Zakarpattian deposit Sokirnicke (ukr. CoknpHauiiske
poaosuitie). Specific weight 2370 kg/m’; porosity 44%; clinoptilolitic content 77%; fraction 1—
3 mm [36].

2.3. Russian natural clinoptilolite (Khol)

Clinoptilolite natural zeolite from Russian Zabaykalsky Krai deposit Kholinskoe (rus. Xoamnxckoe
MecTopoxenne). Specific weight 1900-2800 kg/m®, bulk density 1.02-1.20 g/cm®. Porosity is in
range of 20-23% [37]. Zeolite was crushed and sieved using vibro sieve FRITSCH analysette 3
SPARTAN (Germany; International), collecting fraction from 0.8 up to 1.4 mm.

2.4. Synthetic zeolite A (4A)

SYLOSIV A 4 was used (purchased from Grace Davison, USA), zeolite 4A in fine powder form
(particle size 6-9 um). According to manufacturer, this material is chemically stable in basic,
neutral and weak acidic environments; specific surface area 800 m?/g; effective pore volume
0.25-0.30 cm®/g; specific weight 1900-2300 kg/m? [38].

2.5. Synthetic zeolite X (13X)

Zeolite 13X was used (purchased from Hong Kong Chemical Corp.). Bulk density 0.601 g/cm?;
porosity 0.55%; fraction 4-5 mm.

2.6. Reagents

All compounds used were of analytical grade (= 98%) and were used without further purification.
Sodium hydroxide, potassium chloride and 65% nitric acid were obtained from Sigma-Aldrich
(Riedel-de Haén, Germany). Iron(Ill) chloride hexahydrate, calcium chloride dihydrate and 30%
hydrogen peroxide were obtained from Enola (Riga, Latvia). Manganese(II) chloride tetrahydrate
was obtained from Firma Chempur (Piekary Slaskie, Poland). All aqueous solutions were pre-
pared using high purity deionized water (10-15 M(Q2:-cm), produced via water purification system
Millipore Elix 3 (Billerica, USA). Arsenate stock solution was prepared using disodium hydro-
genarsenate heptahydrate Na,HAsO,-7H,0O obtained from Alfa Aesar (Haverhill, USA).

3. Zeolite modification methods

Zeolites Ukr, Slov, Khol, 4A and 13X were modified using 6 different methods. Altogether,
using these methods, 11 novel materials were synthesized and are described in this chapter.
Additionally, FFOOH-modified zeolites A were obtained and described in the following source
[17]. It should be also noted that another aluminosilicate, clay montmorillonite was modified
using a similar approach and described in another work [39].
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3.1. First method

First method is based on the method described in source [40]. The basis for FefOOH-modified
sorbent synthesis is the iron oxohydroxide precipitation on the raw material. Description of
modification is the following: 0.25 mol FeCl;-6H,0 is dissolved in 250 mL DI water, adding
250 mL 3 M NaOH solution and aged for 3 h. Obtained Fe(OH); precipitates are decanted.
100 g of raw material are mixed in the Fe(OH); dispersion. The mixture is then carefully mixed
and filtered under vacuum and washed with 250 mL DI water. The filtered and washed

material is then dried in air atmosphere for 1 h at room temperature and then dried in the
oven Gallenkamp Plus II (London, UK) for 4 h at 60°C.

Materials obtained using this method: Fe-Ukr(1); Fe-Slov.

3.2. Second method

Second method is based on the first method, modified based on the idea that the material is
first soaked with a respective metal salt, followed by the reaction (FeOOH synthesis) inside the
zeolite structure. The developed method is the following: 1 M FeCl;-6H,O solution is prepared
and 100 g of zeolite are placed into it. The mixture is aged for 24 h. The mixture is then filtered,
and without washing, 250 mL of 3 M NaOH solution are added to the soaked material and
aged for 24 h. The mixture is filtered under vacuum and washed with 250 mL DI water. The
filtered and washed material is dried in air atmosphere for 1 h at room temperature and
subsequently dried in the oven Gallenkamp Plus II (London, UK) for 4 h at 60°C.

Materials obtained using this method: Fe-Ukr(2); Fe-13X; Fe-KHol.

3.3. Third method

Third method is based on the first method, adapted to be applicable for efficient modification of
powders (as in case of Fe-4A and Fe-5A described in another work [17]). The idea is to conduct a
reaction in the wet FeOOH mass, simplifying and accelerating modification process. The devel-
oped method is the following: 0.25 mol FeCl;-6H,O is dissolved in 250 mL DI water, 250 mL of
3 M NaOH is added and the mixture is aged for at least 3 h. Synthesized Fe(OH); precipitates are
decanted. The mass is filtered under vacuum, mixing in 100 g of raw material into the Fe(OH);
precipitates, while carefully mixing. Porridge-consistency mixture is washed with 250 mL DI
water. The filtered and washed material is then dried in air atmosphere for 2 h at room temper-
ature, and further dried in the oven Gallenkamp Plus II (London, UK) for 4 h at 110°C.

Materials obtained using this method: Fe-Ukr(3); in combination with other methods, FeMn-
Slov with fourth method.

3.4. Fourth method

Fourth method is based on methods described in sources [27, 41] which are natural zeolite
modification methods with manganese oxides. Concentrations used are the same as described
in source [27]. 100 g of zeolite is weighted in the beaker and dried in air atmosphere from
initial moisture in air atmosphere in the oven for 1 h at 70°C. 2.5 M MnCl, solution and 10 M
NaOH solution are prepared. 100 mL of prepared 2.5 M MnCl, solution is added, while
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mixing, to the zeolite in the beaker. 1 mL of prepared 10 M NaOH solution is added and
mixed. Solution is aged for 24 h. Without filtering, the mixture is placed in the oven for 3 h at
150°C. The result is densified zeolite granule/pellet mass, covered with precipitates. This mass
is then placed into the crucibles. Crucibles with the obtained mass are placed in the muffle
furnace and are held there for 5 h in air atmosphere at 550°C. Crucibles are then taken out and
cooled down in air at room temperature. After cooling, modified zeolite is washed with
300 mL of DI water. Material is dried in air for 1 h at room temperature, and further dried in
the oven Gallenkamp Plus II (London, UK) for 4 h at 60°C.

Materials obtained using this method: Mn-Slov(1); in combination with other methods, FeMn-
Slov with third method, CaMn-Slov with sixth method.

3.5. Fifth method

Fifth method is based on fourth method, but, while fourth method is rooted in Mn(II) oxidation
at elevated temperature, this method is based on Mn(VII) reduction reaction using ethanol. The
reaction as represented by Eq. 16 is conducted at room temperature [42]:

2KMnOy + 3C,H;0H — 2MnO, + 3CH3;CHO + 2KOH + 2H,0 (16)

This modification method is developed and chosen in order to perform modification of zeolites
with MnQO, in softer conditions at room temperature. Concentration and volume of potassium
permanganate solution is chosen based on KMnO, solubility in water at room temperature (if
limited by) and in order to introduce the same amount of Mn atoms as in fourth method (0.25 mol
Mn). The amount of ethanol is chosen such so that C;HsOH and KMnQO, are in molar ratio 1:1
(stoichiometrically). 100 g of zeolite is weighted in the beaker. Then, 1.5 L 0.17 M KMnOj, solution
is prepared and added into the beaker with the zeolite. The aging proceeds for 96 h in the solution.
Then, 24.3 mL 60% C,HsOH is added to the mixture in order to reduce KMnO,. Acetaldehyde is
obtained and characteristic smell can be felt. Modified zeolite is filtered under vacuum and
washed with 300 mL DI water. Material is then dried in air atmosphere at room temperature for
1 h, and further dried in the oven Gallenkamp Plus II (London, UK) for 4 h at 60°C.

Materials obtained using this method: Mn-Slov(2), Mn-4A.

3.6. Sixth method

The sixth method is a Ca®" ion-exchange reaction used in combination with previously described
methods. It is based on a principle that one can tailor the effective micropore diameter in zeolites
by exchanging the cations. Divalent Ca** cations are used to increase the effective pore opening
[18]. 20 g of zeolite are placed in 100 mL glass vessels. 4.5 M CaCl, solution is prepared and
50 mL is added to the material. The vessels are then placed on the orbital shaker Biosan Multi-
functional Orbital Shaker PSU-20i (Riga Latvia), setting frequency to 150 rpm for 96 h. The mass
is decanted and then washed with 100 mL DI water. Afterward, the material is dried for 2 h at
room temperature in air atmosphere, and then subsequently dried at 110°C in the oven for 4 h.

Materials obtained using this method: in combination with other methods, CaMn-Slov with
fourth method.
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4. Material characterization

Modified and raw zeolites were characterized using optical microscopy, scanning electron
microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX, EDS), by analysis of Fe and
Mn content, which was performed by dissolution in acids followed by flame atomic absorption
spectrometry (FAAS). Bulk density of all sorbents was determined.

4.1. Optical microscopy

Optical microscopy allows to study the surface of the material and to evaluate homogeneity.
Optical microscope Leica was used with a digital camera Leica DFC480, ocular Leica 10X/21B,
which enables magnification from x7.1 up to x115. Additional lighting was used: Leica Fluores-
cent Ringlight and Leica CLS150X (Germany; International) [43]. Software used for obtaining
images was Leica Application Suite v4.1.0. A square of 1 cm was cut out of millimetre paper,
which was placed adjacent to the sample as a scale. In order to obtain qualitative images, 11
micrographs were used on average using focus stacking (pyramid) approach. Software used for
stacking was Helicon Focus (Kharkiv, Ukraine).

4.2. SEM and EDX

Materials were covered with a thin layer of gold in order to prevent charging due to electron
beam. Gold sputtering was performed using Quorum Technologies Emitech K550X (Laughton,
UK). Methods were performed using Tescan Mira/LMU (Brno, Czech Republic) in backscattered
electron regime with working voltage of 15 kV.

4.3. FAAS

Fe and Mn content was obtained using dissolution in acids followed by flame atomic absorption
spectrometry (FAAS). 1 g of each material was weighed in a beaker, using analytical scales
(£ 0.1 mg). 25 mL 65% HNO3; and 5 mL 35% H,O, were then added in each beaker. Beakers
were placed in a thermostat Biosan MyLab Thermo-Block TDB 400 (Riga, Latvia) and heated up
to 160°C. When half of the solution had evaporated, 25 ml 65% HNO; was added while heating
the sample. The solutions were allowed to cool down in air at room temperature, filtered into a
graduated vessel and diluted with DI water to a total volume of 60 mL each. Furthermore, a
blank sample was prepared for background correction. 10 mL of each solution were moved in
test tubes, using pipettes. Prepared samples were analysed using PerkinElmer AAnalyst 200
(Waltham, USA) with flame atomization. Mn and Fe content measurements were performed
using background correction in air-acetylene flame. Fe and Mn content in samples was calcu-
lated using Eqs. 17 and 18:

wre = Cre* (17)

II<

II<

Whn = CMn' ’ (18)
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where wge and wy, are Fe and Mn mass fractions in materials, respectively [mas%]; Cr. and
Cmn are Fe and Mn ion concentartions in solution, respectively [mg/L]; V is volume of the
solution (0.060 L) [L]; m is mass of sorbent (1000 mg) [mg].

4.4. Determination of bulk density

The method of bulk density determination is based on a standard method, which is described in
literature [44—46]. An empty 250 mL graduated cylinder was weighted, using analytical scales
Kern ALJ 220—4 (£ 0.1 mg). Approximately, 100 g of powder or granules/pellets were placed in
the graduated cylinder, while determining the total mass of material and the cylinder. Deducing
cylinder’s mass from the total, the mass of the material was obtained. The cylinder was gently hit
on the flat surface until the material became compacted and the change in volume was not
observable. The volume of the material was determined using the closest mark on the graduated
cylinder. The bulk density was determined as the ratio of obtained mass and volume.

5. Sorption experiments

Sorption experiments were conducted using batch system. Na,HAsO,7H,O was used for pre-
paring arsenic stock solutions at various concentrations (300, 200, 100, 50, 25, 10 and 5 mg/L).
0.5000 £ 0.0001 g of each sorbent was weighed in every 100 mL glass vessel using analytical
scales Kern ALJ 2204 (Balingen, Germany). 30.00 £ 0.05 mL of an As(V) solution was then
added to every vessel with the adsorbent. Vessels were then shaken for 24 h at room temperature
(23 £ 1°C) at 150 rpm using orbital shaker Biosan Multi-functional Orbital Shaker PSU-20i (Riga,
Latvia) to ensure sorption equilibrium was achieved. Suspensions were filtered into 50 mL test
tubes, and concentration of As(V) in the filtrate was then analysed using PerkinElmer A Analyst
200 with flame atomization. Absorption was measured using background correction in N,O-
C,H, flame. A spectral line of 193.7 nm was used. FAAS spectrometer was calibrated with
1000 mg As/L standard solutions obtained from Scharlau (Barcelona, Spain) (As,O5; in 0.5 M
HNO;). Each measurement was performed 3 times. In order to ensure arsenic analysis quality
control, experiments were performed systematically; accurate As(V) concentration of respective
stock solutions was measured 3 times and standard deviation was determined, which then was
taken into account when describing sorption capacity of the materials.

6. Experimental results

6.1. Homogeneity and bulk density

Homogeneity of materials was evaluated using optical microscope. All studied materials were
homogeneous except Fe-Ukr(1), Fe-Ukr(2), Fe-Ukr(3) and Fe-Slov. Due to inhomogeneities,
these materials were not further analysed with SEM and EDX. Obtained information about
bulk density and homogeneity is summarized in Table 1.

6.2. Metal ion content

Fe and Mn content by weight in all materials is summarized in Table 2 as an average of three
repeated measurements with standard deviation. Material with highest Fe content is FeMn-Slov
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Material Bulk density (:57) Form Homogeneity
4A 0.46 + 0.02 Powder Homogeneous
Mn-4A 0.77 +£0.03 Powder Homogeneous
13X 0.75 £ 0.03 Granules/Pellets Homogeneous
Fe-13X 0.74 +0.03 Granules/Pellets Homogeneous
Ukr 1.04 £ 0.04 Granules/Pellets Homogeneous
Fe-Ukr(1) 1.05 + 0.04 Granules/Pellets Non-homogeneous
Fe-Ukr(2) 1.01 £ 0.04 Granules/Pellets Non-homogeneous
Fe-Ukr(3) 1.00 £+ 0.04 Granules/Pellets Non-homogeneous
Slov 0.91 + 0.04 Granules/Pellets Homogeneous
Fe-Slov 0.92 £ 0.04 Granules/Pellets Non-homogeneous
Mn-Slov(1) 1.12 £ 0.04 Granules/Pellets Homogeneous
Mn-Slov(2) 0.97 £0.04 Granules/Pellets Homogeneous
FeMn-Slov 0.91 +0.04 Granules/Pellets Homogeneous
CaMn-Slov 1.11 £ 0.04 Granules/Pellets Homogeneous
Khol 0.90 £ 0.04 Granules/Pellets Homogeneous
Fe-Khol 0.96 £ 0.04 Granules/Pellets Homogeneous

Table 1. Material bulk density, form and homogeneity.

Material Fe content (mas%) Mn content (mas%)
4A 0.19 £ 0.01 0.00 £ 0.01
Mn-4A 0.03 £ 0.00 0.57 +0.02
13X 0.34 +0.01 0.01 £ 0.01
Fe-13X 292 £0.11 0.02 + 0.00
Ukr 0.53 + 0.02 0.01 +£0.01
Fe-Ukr(1) 1.37 £ 0.05 0.02 £ 0.01
Fe-Ukr(2) 1.67 £ 0.06 0.01 +0.01
Fe-Ukr(3) 1.70 £ 0.06 0.05 + 0.01
Slov 0.45 + 0.02 0.01 +0.01
Fe-Slov 8.75 + 0.33 0.05 + 0.01
Mn-Slov(1) 0.47 +0.02 458 +0.17
Mn-Slov(2) 0.43 £ 0.02 0.33 £0.01
FeMn-Slov 19.22 + 0.73 2.80 £ 0.10
CaMn-Slov 0.35 + 0.01 3.68 £0.13
Khol 0.33 + 0.01 0.03 + 0.01
Fe-Khol 1.43 £0.05 0.06 £+ 0.01

Table 2. Fe and Mn content of materials obtained using FAAS.
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(19.22 £+ 0.73 mas%). Materials with highest Mn content are Mn-Slov(1) (4.58 + 0.17 mas%),
CaMn-Slov (3.68 + 0.13 mas%) and FeMn-Slov (2.80 + 0.10 mas%).

6.3. Optical microscopy

All raw and modified materials were studied using optical microscopy. Optical micrographs
were obtained at different magnifications: x7.1, x20 and x80; and x115 for some materials. Optical
micrographs with magnification of x80 for all studied materials are summarized in Figure 1.

Optical micrographs (Figure 1) indicate that obtained materials FeMn-Slov, Fe-Khol, Fe-13X,
Fe-Ukr(1), Fe-Ukr(2), Fe-Ukr(3) and Fe-Slov are modified with an iron compound. Further-
more, also in x80 magnification materials look homogeneous, except Fe-Ukr(1), Fe-Ukr(2), Fe-
Ukr(3) and Fe-Slov, where iron compound covers only parts of the materials” surface. Optical
micrographs (Figure 1) also indicate that obtained materials Mn-4A, Mn-Slov(1), Mn-Slov(2),
FeMn-Slov and CaMn-Slov are modified with manganese compounds.

6.4. Scanning electron microscopy

All raw and modified materials, except for nonhomogeneous Fe-Ukr(1), Fe-Ukr(2), Fe-Ukr(3)
and Fe-Slov are studied with scanning electron microscopy (SEM). SEM micrographs are
summarized in Figure 2.

SEM micrographs (Figure 2) indicate that obtained materials FeMn-Slov, Fe-Khol and Fe-13X
are modified with an amorphous compound, which is also further proved using EDX (for
more details, also see source [17]). SEM micrographs (Figure 2) indicate that obtained mate-
rials Mn-4A, Mn-Slov(1), Mn-Slov(2), FeMn-Slov and CaMn-Slov are modified with manga-
nese compounds. In case of Mn-4A and Mn-Slov(2), manganese compound is amorphous,
while for Mn-Slov(1), FeMn-Slov and CaMn-Slov a new crystalline phase (MngO;0Cls) is
obtained (more details can be found in source [17]).

6.5. Energy-dispersive X-ray spectroscopy

All raw and modified materials, except nonhomogeneous Fe-Ukr(1), Fe-Ukr(2), Fe-Ukr(3) and
Fe-Slov were studied with energy-dispersive X-ray spectroscopy (EDX). EDX results are sum-
marized in Table 3. Elements with probability >95% are shown as an average of 6 repeated
measurements at different locations.

Analysing amorphous iron compounds with EDX, it was deduced that it consists of 65.28 4 3.91
mas% Fe and 34.72 £ 2.08 mas% O. This result is in agreement with elemental content of FeFOOH
(62.85 mas% Fe, 36.01 mas% O and 1.14 mas% H).

Analysing manganese crystals with EDX, it was deduced that it consists of 54.58 £ 3.27 mas
% Mn, 30.27 + 1.82 mas% O and 15.15 £ 0.91 mas% Cl. This result is in agreement with
elemental content of MngO;(Cl; (62.26 mas% Mn, 22.67 mas% O, 15.07 mas% Cl). Elevated
oxygen content can be explained with signal from zeolite oxygen and/or with other manga-
nese oxide presence.
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Figure 1. Optical micrographs with x80 magnification of all studied materials: (A) 4A; (B) Mn-4A; (C) Ukr; (D) Slov; (E)
Mn-Slov(1); (F) Mn-Slov(2); (G) FeMn-Slov; (H) CaMn-Slov; (I) Khol; (J) Fe-Khol; (K) 13X; (L) Fe-13X; (M) Fe-Ukr(1); (N)
Fe-Ukr(2); (O) Fe-Ukr(3); (P) Fe-Slov.
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Figure 2. SEM micrographs of studied materials: (A) 4A; (B) Mn-4A; (C) Ukr; (D) Slov; (E) Mn-Slov(1); (F) Mn-Slov(2); (G)
FeMn-Slov; (H) CaMn-Slov; (I) Khol; (J) Fe-Khol; (K) 13X; (L) Fe-13X.
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Material Elemental content [mas%]
Al Si (0} Fe Mn Cl Na Ca
4A 1476 £ 091 1571 +£095 5559 £1.89 — — — 1394 + 053 —
Mn-4A 1990 +1.22 20.62 +1.26 46.55+£2.85 — 1.74 +£011 — 11.19 £ 0.68 —
Ukr 6.43 +0.39 3594 +£220 52.10+3.19 2.80+0.17 — — — 2.74 +0.17
Slov 527+ 0.32 31.70+£1.94 5994 +3.67 150+0.09 — — — 1.58 +£0.10

Mn-Slov(1) 3.86 £0.24 31.66 £194 47.33+290 0.71+0.04 8404051 597+037 0.24+£001 1.83+0.11
Mn-Slov(2) 4.05+ 025 2251 £1.38 59.66 £3.65 137 +0.08 10.64 +0.65 — — 1.76 £0.11
FeMn-Slov 3.16+£0.17 19.38+1.05 4328 +234 6.31 £0.34 11.10+0.60 6.15+1.04 9.24+0.50 1.38 £0.07

CaMn-Slov 348 +£0.22 24.69 £151 4837 +3.06 1.80+0.11 7.86+048 741+045 — 6.40 +0.39
Khol 896 £0.55 36.15+221 51.25+3.14 250+0.15 — — 042 £0.03 0.73 +0.04
Fe-Khol 520+£0.31 1743 +1.05 64.08+3.80 738 +057 — 153 £0.09 428 +0.26 0.10+0.01
13X 14.56 +£0.89 2297 +141 5215+3.19 195+£0.12 — — 795+048 0.41 £ 0.03
Fe-13X 16.67 £1.02 2359 £1.44 51.00+3.12 5.62+034 — — 291+0.18 0.20+0.01

Table 3. EDX results (elements with probability >95%).

6.6. As(V) sorption experiments

Experimental data is compared with sorption models: Langmuir, Freundlich, Dubinin-
Radushkevich, Temkin and Redlich-Peterson isotherm linearized forms comparing obtained
determination coefficients (R?). As(V) sorption experimental results and determination coeffi-
cients of fit with the sorption models are reported in Table 4.

As(V) sorption on raw zeolites is most precisely characterized by Freundlich’s sorption model in
all cases. As(V) sorption on iron oxohydroxides indicates that for these materials physisorption is
dominant [3]. As(V) on Fe(Ill)-modified clinoptilolite and synthetic zeolites is most precisely
characterized by Langmuir model [17, 20], which is also consistent with experimental data in
this work, except for Fe-Ukr(2). Inconsistency in case of Fe-Ukr(2) can be explained by material’s
inhomogeneity, leaving large areas of zeolite unmodified.

As(V) sorption on Mn-modified zeolites is most precisely characterized with Freundlich model
in cases of Mn-Slov(1), FeMn-Slov and CaMn-Slov and with Redlich—Peterson model in cases
of Mn-4A and Mn-Slov(2).

Obtained As(V) equilibrium sorption capacities and Langmuir monolayer coverage (where
applicable) are systematized in Table 5. Improvement shows how much material’s equilibrium
sorption capacity (at the highest studied As(V) solution concentration of 300 mg As(V)/L)
increased after modification. Each sorption experiment was performed 3 times and obtained
results represent average with standard deviation.

As(V) sorption isotherms for each respective material group (raw and modified, from top to
bottom: Slov, Ukr, Khol, A and X) are shown in Figure 3.
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Material Determination coefficient R
Langmuir Freundlich Dubinin-Radushkevich Temkin Redlich-Peterson

4A 0.0586 0.8401 0.2180 0.7655 0.3729
Mn-4A 0.9911 0.9935 0.5360 0.9629 0.9990
Ukr 0.3874 0.9724 0.4559 0.7704 0.7768
Fe-Ukr(1) 0.9853 0.8693 0.6305 0.8840 0.9342
Fe-Ukr(2) 0.9062 0.9872 0.6655 0.8849 0.9635
Fe-Ukr(3) 0.9990 0.9342 0.8974 0.9452 0.9875
Slov 0.7607 0.9801 0.4944 0.8226 0.9314
Fe-Slov 0.9936 0.9299 0.8849 0.9404 0.8459
Mn-Slov(1) 0.9896 0.9932 0.6416 0.8834 0.7678
Mn-Slov(2) 0.9625 0.9838 0.4748 0.9015 0.9938
FeMn-Slov 0.9704 0.9722 0.7660 0.9174 0.3561
CaMn-Slov 0.5771 0.9750 0.5346 0.6840 0.8770
KHol 0.6213 0.9379 0.3429 0.7111 0.8379
Fe-KHol 0.9968 0.8968 0.9726 0.9599 0.8998
13X 0.5236 0.9610 0.5364 0.7113 0.6179
Fe-13X 0.7705 0.9720 0.4454 0.8207 0.9271

Table 4. As(V) sorption data and comparison with sorption models. Values marked in bold signify a respective model
with the highest fit.

6.7. As(V) equilibrium sorption capacity correlation with Fe and Mn content

A correlation analysis was performed using obtained sorption data and Fe and Mn content of
materials. The analysis was performed using Microsoft Excel Data Analysis toolpack (USA;
International). Three different As(V) equilibrium concentrations were chosen — at initial As(V)
solution concentration of 300, 100 and 5 mg/L. Correlation coefficients are summarized in
Table 6. Correlation analysis was performed using all studied materials, as well as separate
material groups (where applicable).

Correlation between material’s As(V) equilibrium sorption capacity g, and Fe content is strong
(correlation strength >0.67 by absolute value) for all groups and for all materials altogether at
all studied concentrations.

Correlation between material’s As(V) equilibrium sorption capacity g, and Mn content is strong
(correlation strength >0.67 by absolute value) only for Ukrainian natural zeolites at initial As(V)
solution’s concentration of 5 and 100 mg/L. Medium correlation (correlation strength between
0.33 and 0.67 by absolute value) is observed for Ukrainian and Slovakian natural zeolites at
initial As(V) solution’s concentrations of 300 mg/L. For studied materials altogether at all con-
centrations and for Slovakian zeolite group at initial As(V) solution’s concentration of 5 and
100 mg/L correlation is weak (correlation strength <0.33 by absolute value).
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Material Equilibrium Equilibrium Equilibrium Langmuir Improvement Water
sorption sorption sorption monolayer [times] remediation
capacity qe 300 capacity qe 100 capacity qes coverage ¢4, [%]
[mg/g] [mg/g] [mg/gl] [mg/g]

4A 0.15 + 0.01 0.06 + 0.00 0.01 + 0.00 — - 4.2

Mn-4A 0.39 £ 0.02 0.30 & 0.02 0.13 +0.01 0.40 2.6 43.0

Ukr 0.43 +0.02 0.14 £ 0.01 0.02 £ 0.00 — — 6.6

Fe-Ukr(1) 1.08 £ 0.06 0.96 & 0.07 0.17 4+ 0.02 1.19 2.5 57.2

Fe-Ukr(2) 0.87 £ 0.05 0.40 £+ 0.03 0.05 + 0.01 — 2.0 174

Fe-Ukr(3) 0.92 +0.05 0.83 +0.04 0.24 +0.01 0.93 2.1 80.2

Slov 0.36 4 0.02 0.14 +0.01 0.02 + 0.00 — - 8.2

Fe-Slov 4.74 £0.29 4.08 £0.29 0.29 £ 0.03 4.92 13.2 >98.0

Mn-Slov(1) 4.92 +0.30 221+0.13 0.12 £ 0.01 10.50 13.7 41.2

Mn-Slov(2) 0.66 + 0.04 0.41 +0.02 0.13 +0.01 0.71 1.8 443

FeMn-Slov  6.96 + 0.49 3.79 £0.27 0.30 + 0.02 6.82 19.3 >98.0

CaMn-Slov  1.32+0.10 0.51 +0.04 0.06 + 0.00 — 3.7 21.3

KHol 0.24 £+ 0.02 0.10 +0.01 0.02 + 0.00 — - 7.9

Fe-KHol 1.25 +0.06 1.18 = 0.06 0.30 £ 0.02 1.28 52 >98.0

13X 0.30 & 0.02 0.12 +£0.01 0.01 4 0.00 — — 3.2

Fe-13X 1.05 + 0.05 0.42 +0.02 0.08 + 0.00 — 3.5 26.0

Table 5. As(V) equilibrium sorption capacities.

7. Conclusion

Natural and synthetic zeolites were modified and tailored for As(V) sorption using novel
methods. Based on optical microscopy, SEM, EDX and FAAS results, it was proved that zeolites
were modified with amorphous Fe(IlI) oxohydroxide, amorphous Mn(IV) oxide and crystalline
mixed oxidation state manganese oxide-chloride MngO;Cl;. FeOOH, and MngO;Cl;-modifi-
cation improves As(V) sorption capacities of these aluminosilicates. Granulated material with
the highest As(V) sorption capacity is MngO;(Cl3-FeOOH-modified Slovakian clinoptilolite
natural zeolite (6.96 £ 0.49 mg/g). These materials are effective and potential As(V) sorbents,
able to remove >98% As(V) in water environments. Sorption capacity of granulated materials
(per unit volume) was improved up to 26.5 times. As(V) sorption on FeOOH-modified zeolites
follows Langmuir model most precisely, while sorption on unmodified zeolites is described by
Freundlich isotherm. In case of MngO;Cls-modified and MnO,-modified zeolites, Freundlich
and Redlich-Peterson models show the most precise fit, respectively. There is a strong and
positive correlation between As(V) sorption capacity and Fe content among all zeolites. Among
studied materials, Mn content showed a strong positive correlation only among Ukrainian
clinoptilolite natural zeolites.
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Figure 3. As(V) sorption experimental data and constructed isotherms.
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As(V) equilibrium sorption capacity Correlation with Fe content Correlation with Mn content

All studied materials

e300 0.76 0.20
e 100 0.84 0.17
q, 5 0.71 0.05

Ukrainian zeolites

4., 300 0.83 0.50
9e,100 0.68 0.70
q, 5 0.67 0.94
Slovakian zeolites

e, 300 0.80 0.40
4,100 0.80 0.09
o5 0.86 —0.07

Table 6. As(V) equilibrium sorption capacities, Fe and Mn content correlation.
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