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Nonlinear Adaptive Tracking-Control Synthesis 
for General Linearly Parametrized Systems 

Zenon Zwierzewicz 
Department of Applied Mathematics  

Szczecin Maritime University  
Poland 

1. Introduction  

A common problem of engineering practice is to cope with mathematical models of objects 
with only partly known structure. The model may e.g. involve some unknown (linear or 
nonlinear) functions that depend on the kind of object (of a given class to which the model 
refers) and/or of its operation conditions. As an example we take an affine model of SISO 
system 
 

                                                       u⋅+= )()( xβxαx$                                 (1a) 

                                                               )(xhy =                                                            (1b) 
 

where y, x, u denote output, state and control variables respectively, α and β are smooth 

vector fields on nR  and RRh n →:  a smooth function. It is assumed here also that the 

functions α and β  are unknown or may be estimated with a considerable inaccuracy.  
Considering the system (1) it is possible (under certain conditions (Fabri & 
Kadrikamanathan, 2001; Sastry & Isidori,  1989)) to obtain a direct input-output relation 
between u and y, by successive differentiation y with respect of time having  

 ugfy r )()()(
xx +=  (2)  

where r denotes a system relative degree. The whole approach could be well systematized 
and explained using the concept of Lie derivatives (Isidori, 1989) .  
In this chapter the system (1) is uncertain in the sense it is linearly parametrized, or in other 

words, the unknown functions αi and βi  are assumed to be linear combinations of some 
known model related functions which represents our elementary knowledge on the model. 

It is easy to prove (see appendix) that if the functions  αi and βi  of system (1a) are of the 

form of linear combinations of some known functions αi and  βi  i.e. 
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where ai, bi are real unknown parameters then the scalar functions f , g  of system (2) may 

be represented in similar form: 

 )()()( 0
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1
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xxx fff i
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i += ∑
=

θ   ;     )()()( 0

1

2
2

xxx ggg i

n

i

i += ∑
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θ  (4) 

with 1

iθ , 2

iθ unknown parameters and 
if , 

ig  (called here model basis functions) again  

known trough the αi  and βi  (see appendix). 
There are a huge amount of nonlinear systems that might be modeled in general form (1),(3).  
Using described above model transformation one can obtain a parametric model of the form 
(2),(4) in relative easy way (see section 3.2). The model in this form, referred below as a 
transformed model, was considered in many papers. One of the known method of tracking 
control synthesis in the case when we have a rough estimate of the model (2) functions, is a 
sliding mode control law (Slotine & Li, 1991). The alternative is to use adaptation (for model 
in the form (2),(4)) which offers more subtle policy but requires more advanced theory.  
In our approach the unknown functions f and g of the transformed model are,  as it turned 
out, linear combinations of some known model related basis functions i.e. some elementary 
knowledge of the model is assumed. The assumption above may, however, be substantially 
relaxed via applying, as basis functions, some sort of known approximators (Fabri & 
Kadrikamanathan, 2001; Tzirkel-Hancock & Fallside, 1992).  As an example one may adopt a 
neuro-approximator with Gaussian radial basis functions (Sanner & Slotine, 1992). Systems 
of this sort are referred to as functional adaptive (Fabri & Kadrikamanathan, 2001) and 
represent a new branch of intelligent control systems. In the real-world applications, 
however, it seems purposeful to assume that we have at our disposal some (often very 
limited) knowledge, on the considered plant or process, that should be exploited in 
reasonable way. In this paper the accent is put-on the later issue. 
This chapter is concerned with the problem of adaptive tracking system control synthesis for 
the described above class (1),(3) of uncertain systems. It has been proven that proportional 
state feedback plus parameters adaptation via the model basis function concept are able to 
assure system asymptotic stability. This form of controller permits on-line compensation of 
unknown model nonlinearities which leads to satisfactory tracking performance. The 
presented theory is illustrated by the example of ship path-following control system 
(Zwierzewicz, 2007ab). 
It is worth to observe that affine model description (1) is taken here without loss of 
generality.  The general nonlinear system  
 

                                                          ),( uxFx =$                                                (5a) 

                                                             )(xhy =                                                                (5b) 
 

may be easy expressed in this form by augmenting it with input integrator vu =$  which 

leads to new state [ ]TT

a uxx = . Now considering v as a new input the above system is in 

the form (1).  
The chapter is organized as follows. In section 2., an appropriate portion of the theory is 
shortly presented, which utility (in the next section) is then verified via an example of ship 
path-following control system. The next sections contain results of the relevant system 
simulations, remarks and conclusion.  
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2.  Adaptive tracking control synthesis 

The control objective is to force the plant (1) output vector 
Tryyy ],,,[ )1( −= A$y to follow a 

specified desired trajectory 
Tr

dddd yyy ],,,[ )1( −= A$y  with state vector x remaining 

bounded. It is moreover assumed that reference input dy  and its r derivatives are bounded 

and known as well as that the system zero dynamics is globally exponentially stable 
(minimum phase condition) .  
As the model (1),(3) can be transformed to the form (2),(4) thus, in what follows, our 
considerations will be referred to the later form.  

2.1 The case of exact model 
It is assumed in this section that the nonlinear functions f and g of model (2) are known and 

nRg ∈∀≠ xx    ,0)( . A substitution of control law  

 
)(

)(

x

x

g

vf
u

+−
=  (6) 

in the system (2)  results in exact cancellation of both nonlinearities ( f(x) and g(x) ) which 
yields 

 vy r =)(
 (7) 

To find control v(t) stabilizing this linear system, a standard poles location technique can be 
used. If v is chosen as  

 eeyv r

r

r

d 1

)1()( μμ −−−= − A  (8) 

where yd denotes the reference input which y is required to track,   dyye −=:    denotes 

the output tracking error and coefficients 
iμ  are chosen such that 

0:)( 1

1 =+++=Γ − ssss r

r

r μμ A  is Hurwitz polynomial in the Laplace variable s, then the 

tracking error and its derivatives converge to zero asymptotically, because the closed-loop 
dynamics reduce to the equation  

 01

)1()( =+++ − eee r

r

r μμ A  (9) 

which, by virtue of the choice of coefficients 
iμ  is asymptotically stable (Fabri & 

Kadrikamanathan, 2001; Sastry & Isidori,  1989; Tzirkel-Hancock & Fallside 1992). 

2.2 The case with functional uncertainty 

Let us consider now the case when functions  f and g are unknown but have the form (4) 

with  ,1   , 1

1 nii A=θ ,  ,1   , 2

2 nii A=θ unknown ‘true’ parameters and the )(xif , )(xig  

known model basis functions. At time t our estimates of the functions f and g are 
respectively 
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with 1ˆ
iθ , 2ˆ

iθ standing for the estimates of the parameters 1

iθ , 2

iθ respectively at time t. 

Since substitution in the system (2) the control law  

 
)(ˆ

)(ˆ

x

x

g

vf
u

+−
=  (12) 

no longer guarantees exact cancellation and whereby a resulting system linearity (like in the 
former case (6)), we will proof  below a useful here theorem. Prior to its formulation let us 
define a sliding surface (Slotine & Li, 1991) which represents some (aggregate) measure of 
the tracking error 

 )(:)( )1()2(

11 eeeet rr

r Ψ=+++= −−
−ηηε A  (13) 

as well as introduce some notations  
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where  

 [ ]Tnfff
1211 A=w ;             [ ] uggg

T

n2212 A=w   (15)  

are model basis functions and  
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22
θθθθ −−= Aθ  (16)  

are vectors of parameters. 

Moreover   [ ]TTT 21 θθθ =  ;     TTT ][ 21   www =   . 

Theorem 
The closed-loop system (2), (12) and (8) after introduction of parameter update law,  

 wθ ε−=$  (17) 

yields bounded y(t) asymptotically converging to yd(t). 
Proof: 

Differentiating (13) and multiplying by a scalar dk we have 

 
vyyyeee

eekekektkt

rr

d

rr

r

rr

ndddd

−=−+++=

=++++++=+
−

−
−

)()()()1(

21

)()1(

1121 )()()()(

μμμ

ηηηηεε

A$
A$$

 (18) 

The coefficients ηi as well as 
dk  should be selected so that μi should have the property 

mentioned earlier, i.e. that they should ensure an asymptotically stable solution to equation 
(9). 
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Transforming now (12) and substituting in (2) yields 

 vgufvy r −+=−)(
 (19) 

 uggffugfgufvy r )ˆ(ˆˆˆ)( −+−=−−+=−  (20) 

so we get the following error equation 

 uggfftkt d )ˆ(ˆ)()( −+−+−= εε$  (21) 

Making use of (14) the error equations (21) will take a form 

 wθwθwθ TTT

d tkt =+=+ 2

2

1

1)()( εε$  (22) 

We prove that the error equation (22) along with the update law (17) yields a bounded y(t) 
asymptotically converging to yd(t). 
Let us take the Lapunov–like (Slotine & Li, 1991) function of the form  

 θθθ TV
2

1

2

1
),( 2 += εε  (23) 

hence  

 0)( 2 ≤−=−+−=+⋅= εεεεεε d

TT

d

T kkV wθwθθθ $$$  (24) 

If we assume that 0>dk  we have proved that Lapunov function is decreasing along 

trajectories of (22); thereby establishing bounded ε  and θ . However, to verify that 0→ε  

as  ∞→t  we use Barbalat’s lemma (Slotine & Li, 1991) To check the uniform continuity of 

V$ it is enough  to prove that the second derivative of  V i.e. 

 )(22 wθT

ddd kkkV +−−=−= εεεε $$$  (25) 

is bounded. This in turn needs w , a continuous function of x  to be bounded. Note that if 

ε and 
dy  are bounded, it is implied that y  is bounded. These facts and assumed stable 

zero dynamics imply that the state x  is bounded. Now (if we could guarantee that )(ˆ xg of 

(12) is bounded away from zero) it follows that w is bounded.                                                    
Remarks: 
Note that, although ε converges to zero the system (22), (17) is not asymptotically stable 

because θ  is only guaranteed to be bounded. 

Prior bounds on the parameters 2

iθ  are frequently sufficient to guarantee that )(ˆ xg  is 

bounded away from zero (Sastry & Bodson, 1989). 
One can now observe that adaptive reconstruction of functions f  and g  in the formula (11) 

may be interpreted as an extra control leading to much more exact cancellation of system (2) 
nonlinearities, which in turn make the resulting system closer to linear (see Fig. 1)   
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Fig. 1. Model basis functions adaptive control scheme. 

3. Adaptive ship path-following control synthesis 

Prior to introduction a model that represents further a base for controller synthesis we 
define some preliminary notions. 

3.1 Path-following errors definition 
Assume that a path to be followed (preset) is composed of broken line segments defined by 
a sequence of vertexes (turning points) P1(x1,y1), P2(x2,y2), ... , Pi(xi,yi) , ..., Pn(xn,yn). Let us 
introduce also the following coordinate systems (Fig.2): 
earth-fixed coordinate system (Xg,Yg)  (these coordinates can be measured directly via GPS). 
relative (transformed) coordinate system (Xr,Yr) whose center is located at the point Pi(xi,yi) 
and with the axis OXr  directed along a segment  PiPi+1  (i=1,2,...,n)  
The relative ship position (xr,yr)  as well as its relative heading ψr can be obtained through 
the following simple transformation: 
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 (26) 

which express the successive translation and then rotation of the earth-fixed system where 
ϕro is an angle of its rotation  

 

ii

ii
ro

xx

yy

−
−

=
+

+

1

1tan ϕ  (27) 

Now it is reasonable to treat the coordinate yr and the heading ψr as the path-following 
errors corresponding to the given segment. 
For curvilinear reference path the local (relative) coordinate system should be tangent to the 
path at the point that is closest to the actual ship position. This system has to be then shifted 
and rotated from time step to time step in such a way, that it remains tangent to the 
reference path and that the x-coordinate represents the arc length along the path. 
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Fig. 2. Earth-fixed and relative coordinate systems 

3.2 The case with functional uncertainty 

In order to synthesize a path-following controller we apply the adaptive control concepts, 
presented in the section 2., to the following  (partially known), ship motion model presented 
in the form of so-called error equation 

⎪
⎩

⎪
⎨

⎧

+Φ=
=

+=

δ
ψ

ψψ

crr

r

vuy

r

rrr

)(

cossin

$
$
$

 

)c28(

)b28(

)a28(
 

with the output  

  ryy =  (28d) 

where 

ry – relative abscissa of the ship position (cross-track    error) 

rψ  – relative heading (course-error) 

r  –  angular velocity 
u – longitudinal velocity  
v  – transversal velocity 
y – system output 

δ – rudder deflection as a control variable   
c – unknown model parameter  

)(⋅Φ  -  unknown function  

The equation (28a) is a second equation of the ship kinematical model (compare the first two 
equations of model (39)) while (28b) and (28c) are in fact the Norrbin ship model (Fossen, 
1994; Lisowski, 1981) whose standard form  
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 δψψ kFT =+ )( $$$  (29) 

can be transformed into the relevant equations of (28) via definition rr =ψ$  and 

substitution of  

 
T

F )(⋅
−=Φ   and  Tkc /=  (30) 

The first equation of kinematics, in the model (28), is omitted as 
rx  represents movement 

along the path - which is irrelevant here. It is also assumed, for simplicity, that transversal 

velocity v is of the form rrv 1−=  (compare the last equation of model (39)) where r1  is 

unknown. 
The double differentiation (which in fact represents a formalism delivered in appendix) of 
output y with respect to time leads to  

 δ)()( xx gfy +=$$  (31) 

where  

 )(cossincos)( 1

2

1 rrrrruf rrr Φ⋅−+= ψψψx  (32a) 

 
rcrg ψcos)( 1=x  (32b) 

and the state vector T

rr ry ]    [ ψ=x is assumed to be accessible to measurement. 

Simple analysis of this system as well as physical limitations indicate its stable internal 
(zero) dynamics. 
Remark:  
In the 'classical’ approach to ship control the structure of function F is (according to Norrbin 
model) often adopted in  different ways. Generally it may be assumed in the form  

  01

2

2

3

3)( aaaaF +++= ψψψψ $$$$  (33) 

or ignoring the terms of third or second degree we have for example 

  01

3

3)( aaaF ++= ψψψ $$$  (34) 

 Now, assuming that a structure of the function F has been predetermined, the coefficients ai 
are usually identified via sea trials (Lisowski, 1981).  
Owing to that as well as taking into account that Φ  has  a similar structure as  F (below we 
take the case (33)), it is natural to estimate the (partially) unknown functions (32) of model 
(31) as follows 
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2∑
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=+=x  (35b) 

defining thereby a set of model basis functions fi , gi. 
It can be seen from (35) that to implement our algorithm besides of the state vector 
measurements the longitudinal velocity u  is also required.   
To complete the employing of the theory introduced earlier to our specific case we also 
need:  
the measure of the error  

 rr yyeet βηε +=+= $$)(  (36) 

rudder control law 

 
)(ˆ

)(ˆ

x

x

g

vf +−
=δ  (37) 

where   

 rrd yyeeytv 1212)( μμμμ −−=−−= $$$$  (38) 

and the parameter update law (17).  

Note that in our setting above (coordinate transform) 0=dy , so a main task for our 

controller is to bring output i.e. cross-track error to zero. In fact bringing at the same time 

rψ  to zero, in presence of disturbances (e.g. transversal current), is (for the considered here 

ship (39)) not always possible (Zwierzewicz, 2003) This way the path-following process may 
be, in our case, accomplished  only in the presence of a course error (nonzero drift angle). 

4.  Ship model and simulations 

4.1. Ship motion model 
As a simulation model that represents further a real ship dynamics we adopt here the 
following de Wit-Oppe’s (W-O) ship dynamical model (Wit & Oppe, 1979-80). 

 

     rr rr v =

S  Wrf u =u 

cδbra r =r 

                 = r      ψ 
ψ vψ = uy 

ψ  vψ = ux 
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31
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+
−

$
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$
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 (39) 

where  
(x , y) - Cartesian coordinates 

ψ  - course (heading) 
r - angular velocity 
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u - longitudinal velocity  
v - transversal velocity 

δ - rudder deflection as a control variable   
S - propelling force 
Compared to the model (28) one can see that the structure of function Φ  adopted there 

takes the form  arbrr −−=Φ 3)( . Note that this ship characteristic is obviously unknown 

to the control system designer and has to be adaptively reconstructed. 
As the ship model parameters the dynamic maneuvering parameters of the m.s. Compass 
Island model are adopted. The units of time, length and angle are respectively one minute, 
one nautical mile and one radian. The parameters were determined as follows a = 1.084 
/min, b=0.62min,  c = 3.553 rad/min, r1 = -0.0375 nm/rad,  r2=0,  f = 0.86 /min, W= 0.067 
nm/rad2,  S=0.215 nm/min2.  The maximum speed of rudder and rudder angle are 3.8 
deg/s, and 35 deg, respectively. The ship has got the following characteristics, gross register 
tonnage  9214 t, deadweight, 13498 t, length, 172 m, draught,  9.14 m, one propeller, and 
maximum speed, 20 knots. Notice that the adopted parameters make the ship directionally 
stable (Fossen, 1994; Lisowski, 1981) and that other ship dynamic model (parameters) could 
be used here as well. 

4.2 Simulation results 

The Simulink  simulations are based on the nonlinear W-O model of ship dynamics (34)  
including the controller (37) together with the main feedback linear control component (38), 
while the adaptation mechanism is realized by aggregate tracking error (36), model basis 
functions (35) as well as parameters update law (17)  (Fig. 1). 
In Fig. 3 the path to be followed (preset) is a broken line defined by the way points (0,0); 
(0,10); (4,12) and (4, 20). The original ship position, its heading and  angular velocity are (0,-
0.5), 60° and 0 rad/min respectively. The adopted distance scale is 1 nm while the nominal 
ship velocity is 0.25 nm/min. In the simulation a transversal current has been, as a load 
disturbance, introduced (dy=0.04 nm/min). 
To evaluate the accuracy of adaptive process control there is depicted here also a trajectory 
(blue) driven by controller (37) with fully known dynamics (exact model functions). As we 
can see the differences are practically negligible. 
Fig. 4. describes plots of ship heading versus time. The blue line refers to the case of the fully 
known ship dynamic model. As one can observe the ship heading, during straight line path 
segments, is about -10 deg, which in fact indicate a course-error. Such a behavior is, on the 
other hand, necessary to compensate an effect of currents action. These simulations comply 
thereby with the relevant comment of section 3.2.  
In Fig. 5. it can be seen, that in the case of limited ship model knowledge, the rudder action 
is substantially more intensive (red line), as compared to the case of full model familiarity.    
The last Fig. 6. depicts the plots of cross-track errors versus time. As before the red plot 
refers to the limited knowledge of the ship dynamics. It proves once more that the 
differences are relatively small. 
An interesting feature of the adaptation process is that the steering process is performed 

without asymptotic convergence of parameters errors [ ]TT 21 θθθ =  to zero (we have 

proved, at the most, their boundedness). This fact reflects an idea that the main goal of the 

adaptive system is to drive the error 
dyye −=:  to zero which does not necessarily imply 
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that the controller parameters approach their correct values. In fact, the input signal must 

have certain properties, for the parameters to converge, related to the notion of persistent 

excitation (Astrom & Wittenmark, 1995). This concept, in reference to the closed-loop signals, 

may be formulated as a requirement of sufficient richness of functions w (15). It is, however, 

impossible to verify this condition explicitly ahead of time (Sastry & Isidori,  1989; Wang & 

Hill, 2006). 

-1 0 1 2 3 4 5

0

2

4

6

8

10

12

14

16

18

20

Y Axis

X
 A

x
is

original ship position

ship trajectories

current

 

Fig. 3.  Ship trajectories, constant current. 
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Fig. 4.  Ship headings versus time. 
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Fig. 5.  Rudder deflections versus time. 
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Fig. 6.  Cross-track errors versus time.  

As a reference input comprises stepwise signals (path) changes, to fulfill the assumptions of 
its differentialability it has been initially prefiltered. Similarly the wave disturbances were 
modeled in the form of a white noise driven shaping filter (Fossen, 1994; Zwierzewicz, 
2003). 
During conducted here simulations, the system performance turned out to be especially 

sensitive for initial guess of parameter 2

1θ  that had to be picked up in some vicinity of its 

true value ( true value 0.133; picked up 0.5). In this respect, to ensure robustness for the 
disturbances that arise due, e.g., to the initial guess of parameters and thus inherent 
approximation errors the system should be additionally augmented with a sliding mode 
control. This technique is often applied to force the system global stability (Fabri & 
Kadrikamanathan, 2001; Sanner & Slotine, 1992; Tzirkel-Hancock & Fallside, 1992).  

5.  Conclusion 

In the paper a general class of uncertain, linearly parametrized, nonlinear SISO plants was 
considered. It has been proven that proportional state feedback plus adaptation via model 
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basis functions are able to assure their asymptotic stability. As a result of presented theory an 
adaptive ship path-following system has been proposed. The presented simulations confirm 
that the system is insensitive for object (ship) model unfamiliarity. 
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 7. Appendix 

We will prove that the system (1),(3) may be easy transformed to the form (2),(4). To this end 
we recall to the concept of Lie derivative. 
Lie derivative of scalar function )(xh with respect to a vector )(xα , denoted by )(xαhL  is 

defined  as: 

 )()()( xαxxα hhL ∇=  (40) 
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where h∇  denotes the gradient of  h(x)  i.e.  [ ]n1 /.../ xhxh ∂∂∂ ∂ . Lie derivative is scalar so 

the process of taking Lie derivatives could be chained and is denoted as follows 

 )())(()( 1
xαxx αα hLhL ii −∇=  (41) 

 )())(()( xβxx ααβ hLhLL ii ∇=  (42) 

Differentiating  y in eqation (1) with respect to time and using Lie derivatives we get e.g. 

 uhLhL
y

y )()()1(
xxx

x
βα +=

∂
∂

= $  (43) 

where )(iy  denotes te ith derivative of y with respect to time. 

Assume that the system (1) has relative degree equal to r  i.e. after r differentiations the 
following conditions are satisfied 

 0)(1 =−
xαβ hLL i

        for   i = 1,…, (r - 1) (44a) 

 0)(1 ≠−
xαβ hLL r

 (44b) 

Calculating  now the Lie derivatives of r-th order  to the system (1),(3) yields 
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and  
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So the system (1) can be written in the form  

 ugfuhLLhLy i

n

i

ii

n

i

i

rrr )()()()(
21

1

2

1

11)(
xxxx ∑∑

==

− +=+= θθαβα  (47) 

which is in fact system (2), (4). 
Observe that the free terms )(0 xf   and )(0 xg  in formula (4) may be easy obtained by 

treating one of the coefficients in each sum of (3) as equal to one e.g. 11 =a  and 11 =b . This 

way one of the terms in the formula (45)  will take a form   )()( 01
xxα fhLr =  or respectively  

)()( 0

1

11
xxαβ ghLL r =−   -  in relation to ( 46). 
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