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Abstract

Liquid crystals (LC) are the materials characterized by extremely high optical nonlinearity.
Their physical properties such as temperature, molecular orientation, density, and elec-
tronic structure can be easily perturbed by an applied optical field. In particular, in smectic
A LC (SALC), there is a specific mechanism of the cubic optical nonlinearity determined
by the smectic layer normal displacement. The physical processes related to this mecha-
nism are characterized by a comparatively large cubic susceptibility, short time response,
strong dependence on the optical wave polarization and propagation direction, resonant
spectral form, low scattering losses as compared to other LC phases, and weak tempera-
ture dependence in the region far from the phase transition. We investigated theoretically
the nonlinear optical phenomena caused by this type of the cubic nonlinearity in SALC. It
has been shown that the light self-focusing, self-trapping, Brillouin-like stimulated light
scattering (SLS), and four-wave mixing (FWM) related to the smectic layer normal dis-
placement are strongly manifested in SALC. We obtained the exact analytical solutions in
some cases and made the numerical evaluations of the basic parameters such as the optical
beam width and SLS gain.

Keywords: smectic liquid crystals, second sound, nonlinear optics, cubic nonlinearity,
stimulated scattering of light, four-wave mixing, surface plasmon polariton

1. Introduction

Liquid crystals (LC) are characterized by the physical properties intermediate between ordinary

isotropic fluids and solids [1]. LC flow like liquids but also exhibit some properties of crystals [1, 2].

The various phases in which such materials can exist are called mesophases [1, 2]. The LC

molecules are large, anisotropic, and complex [2]. Dielectric constants, elastic constants, viscosities,
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absorption spectra, transition temperatures, anisotropies, and optical nonlinearities of LC are

determined by the structure of these molecules [1, 2]. There exist three different types of LC:

lyotropic, polymeric, and thermotropic [1, 2]. Lyotropic LC are obtained when an appropriate

concentration of a material is dissolved in a solvent [2]. They can demonstrate a one-, two-, or

three-dimensional positional order [2]. Liquid crystalline polymers are built up by the joining

together the rigid mesogenic monomers [2]. Thermotropic LC exhibit different mesophases

depending on temperature [1, 2]. Typically, they consist of organic molecules elongated in one

direction and represented as rigid rods [2]. There are two types of LC sample orientation with

respect to the boundary: (i) a homeotropic orientation when the long molecular axes are perpen-

dicular to the boundary and (ii) a planar orientation when the long molecular axes are parallel to

the boundary [1].

In this work, we consider only thermotropic LC, which are divided into three groups according

to their symmetry: nematic LC (NLC), cholesteric LC (CLC), and smectic LC (SLC) [1, 2]. NLC

are characterized by some long-range order in the direction of the molecular long axes, while the

centers of gravity of the molecules do not have any long range order [1, 2]. The general direction

of the molecules is defined by a unit vector function n
!

x; y; z; tð Þ; n
!

x; y; z; tð Þ
�

�

�

�

�

�
¼ 1 called director

[1, 2]. NLC molecules are centrosymmetric such that the n
!

and � n
!

directions are equivalent;

NLC are optically uniaxial media with a comparatively large birefringence of about 0.2 [1, 2]. LC

consisting of chiral molecules yield CLC phase with the helical structure [1, 2]. The molecule

centers of gravity in CLC do not have a long range order like in NLC, while the direction of the

molecular orientation rotates in space about the helical axis Z with a period of about 300 nm [1,

2]. The smectic LC (SLC) are characterized by the positional long range order in the direction of

the elongated molecular axis and exhibit a layer structure [1, 2]. The layer thickness d ≈ 2nm is

approximately equal to the length of the constituent molecule [1, 2]. SLC can be considered as

natural nanostructures. Inside a layer the molecules form a two-dimensional liquid [1, 2]. The

layers can easily move one along another because the elastic constant B ≈ 106 � 107Jm�3 related

to the layer compression is two orders of magnitude less than the elastic constant related to the

bulk compression [1]. There exist different phases of SLC: (i) smectic A LC (SALC) where the

molecule long axes are perpendicular to the layer plane; (ii) smectic B LC with the in-layer

hexagonal ordering of the molecules; (iii) smectic C LC where the molecules are tilted with

respect to the layers; (iv) smectic C* LC consisting of the chiral molecules and possessing the

spontaneous polarization; (v) different exotic smectic mesophases [1]. In this work, we consider

only SALC. The SALC layered structure can be described by the one-dimensional mass density

wave characterized by the complex order parameter. The modulus of this order parameter

describes the mass density and its phase is related to smectic layer displacement u x; y; z; tð Þ along

the direction perpendicular to the layer plane [1]. SALC is an optically uniaxial medium [2].

LC are highly nonlinear optical materials due to their complex physical structures, and their

temperature, molecular orientation, mass density, electronic structure can be easily perturbed

by an external optical field [2–4]. Almost all known nonlinear optical phenomena have been

observed in LC in time scale range from picoseconds to hours, involving laser powers from 106

Watt to 10�9 Watt, in different configurations such as bulk media, optical waveguides, optical

resonators and cavities, and spatial light modulators [3]. For instance, a typical LC slab optical

Liquid Crystals - Recent Advancements in Fundamental and Device Technologies132



waveguide is a thin film of LC with a thickness of about 1μm sandwiched between two glass

slides of lower refracted index than LC [2]. Stimulated light scattering (SLS), self-phase modula-

tion (SPM), self-focusing, spatial soliton formation, optical wave mixing, harmonic generation,

optical phase conjugation, and other nonlinear optical effects in LC have been investigated [3].

NLC is the most useful and widely studied type of LC [2–4]. However, the practical integrated

electro-optical applications of NLC are limited by their large losses of about 20 dB/cm and

relatively slow responses [2]. The scattering losses in SALC are much lower, and they can be

useful in nonlinear optical applications [2]. Recently, the LC applications in plasmonics attracted

a wide interest due to the combination of the surface plasmon polaritons (SPP) strong electric

fields and the unique electro-optical properties of LC [4].

We investigated theoretically the nonlinear optical phenomena in SALC related to the specific

mechanism of the cubic nonlinearity, which is determined by the smectic layer normal dis-

placement u x; y; z; tð Þ in the electric field of optical waves and SPP [5–13]. This mechanism

combining the properties of the orientational and electrostrictive nonlinearities [2] occurs

without the mass density change, strongly depends on the optical wave polarization and

propagation direction, and has a resonant form of the frequency dependence. It is character-

ized by a comparatively short response time similar to acousto-optic processes [2, 14].

The theoretical analysis of the nonlinear optical phenomena in SALC related to the layer

displacement was based on the simultaneous solution of the Maxwell equations for the optical

waves propagating in SALC and the equation of motion for the SALC layers in the electric field

of these waves. We used the slowly varying amplitude approximation (SVAA) [14]. We inves-

tigated the following nonlinear optical effects in SALC based on the layer displacement

nonlinearity: self-focusing and self-trapping, SLS, and four-wave mixing (FWM) [5–10]. We

applied the developed theory of the nonlinear optical phenomena in SALC to the SPP interac-

tions in SALC [11–13]. The SPP stimulated scattering in SALC and the metal/insulator/metal

(MIM) plasmonic waveguide with the SALC core are theoretically studied [11–13]. The

detailed calculations and complicated explicit analytical expressions can be found in Refs [5–

13]. In this chapter, we describe the general approach to the theoretical analysis of the

nonlinear optical phenomena in SALC and present the main results.

The chapter is constructed as follows. The equation of motion for the smectic layer normal

displacement u x; y; z; tð Þ in the electric field is derived in Section 2. The self-focusing and self-

trapping of the optical wave in SALC are considered in Section 3. The SLS in SALC is

investigated in Section 4. The FWM in SALC is analyzed in Section 5. The SPP interaction in

SALC is discussed in Section 6. The conclusions are presented in Section 7.

2. The smectic layer equation of motion

The structure of the homeotropically oriented SALC in an external electric field E
!

x; y; z; tð Þ is

presented in Figure 1.

The hydrodynamics of SALC is described by the following system of Eq. [1]
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div v
!
¼ 0 (1)

r
∂vi
∂t

¼ �
∂Π

∂xi
þ Λi þ

∂σ
0
ik

∂xk
(2)

Λi ¼ �
δF

δui
(3)

σ
0
ik ¼ α0δikAll þ α1δizAzz þ α4Aik þ α56 δizAzk þ δkzAzið Þ þ α7δizδkzAll (4)

Aik ¼
1

2

∂vi
∂xk

þ
∂vk
∂xi

� �

(5)

vz ¼
∂u

∂t
(6)

Here, v
!

is the hydrodynamic velocity, r is the mass density, Π is the pressure, Λ
!

is the

generalized force density, σ0ik is the viscous stress tensor, αi are the viscosity Leslie coefficients,

δik ¼ 1, i ¼ k; δik ¼ 0, i 6¼ k, and F is the free energy density of SALC. Typically, SALC is sup-

posed to be incompressible liquid according to Eq. (1) [1]. For this reason, we assume that the

pressure Π ¼ 0 and the SALC-free energy density F do not depend on the bulk compression

[1]. The normal layer displacement u x; y; z; tð Þ by definition has only one component along the

Z axis. In such a case, the generalized force density Λ
!

has only the Z component according to

Eq. (3): Λ
!
¼ 0; 0;Λzð Þ. Eq. (6) is specific for SALC since it determines the condition of the

smectic layer continuity [1]. The SALC free energy density F in the presence of the external

electric field E
!

x; y; z; tð Þ has the form [1]

F ¼
1

2
B

∂u

∂z

� �2

þ
1

2
K

∂
2u

∂x2
þ

∂
2u

∂y2

� �2

�
1

2
ε0εikEiEk (7)

Figure 1. Homeotropically oriented SALC in an external electric field E
!

x; y; z; tð Þ.
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where K is the Frank elastic constant associated with the SALC purely orientational energy, ε0
is the free space permittivity, and εik is the SALC permittivity tensor including the nonlinear

terms related to the smectic layer strains. It is given by [1]

εxx ¼ εyy ¼ ε⊥ þ a⊥
∂u

∂z
; εzz ¼ ε∥ þ a∥

∂u

∂z
;

εxz ¼ εzx ¼ �εa
∂u

∂x
; εyz ¼ εzy ¼ �εa

∂u

∂y
; εa ¼ ε∥ � ε⊥

(8)

Here, ε⊥, ε∥ are the diagonal components of the uniaxial SALC permittivity tensor perpendic-

ular and parallel to the optical axis Z, respectively, and a⊥ � 1; a∥ � 1 are the phenomenologi-

cal dimensionless coefficients. For the smectic layer displacement u x; y; z; tð Þ depending on z,
the purely orientational second term in the free energy density F (7) can be neglected. Indeed,

for the typical values of B and K � 10�11N [1], the following inequality is valid: Kk2S⊥ ≪Bwhere

kS⊥ is the in-plane component of the smectic layer displacement wave vector. The contribution

of the first term containing the normal layer strain is dominant. We consider the smectic layer

normal displacement with kSz 6¼ 0. Taking into account the assumptions mentioned above and

combining Eqs. (1)–(9), we obtain the equation of motion for the smectic layer normal displace-

ment u x; y; z; tð Þ [5, 6, 10]

�r∇2 ∂
2u

∂t2
þ α1∇

2
⊥

∂
2

∂z2
þ
1

2
α4 þ α56ð Þ∇2∇2

� �

∂u

∂t
þ B∇2

⊥

∂
2u

∂z2

¼
ε0

2
∇2

⊥

∂

∂z
a⊥ E2

x þ E2
y

� �

þ a∥E
2
z

� �

� 2εa
∂

∂x
ExEzð Þ þ

∂

∂y
EyEz

	 


� �� �

:

(9)

.Here, ∇2
⊥ ¼ ∂

2u=∂x2 þ ∂
2u=∂y2. If the external electric field is absent and the viscosity terms

responsible for the decay of the smectic layer displacement are neglected, Eq. (10) coincides

with the equation of the so-called second sound (SS) [1]

r∇2 ∂
2u

∂t2
¼ B∇2

⊥

∂
2u

∂z2
: (10)

Generally, for an arbitrary direction of the wave vector k
!

S in SALC, there exist two practically

uncoupled acoustic modes: (i) the ordinary longitudinal sound wave caused by the mass

density oscillations; (ii) SS wave caused by the smectic layer oscillations [1]. The SS propaga-

tion may be considered separately from ordinary sound since B is much less than the elastic

constant of the mass density oscillations [1]. The SS dispersion relation corresponding to

Eq. (11) has the form [1]

ΩS ¼ s0
kS⊥kSz
kS

; s0 ¼

ffiffiffi

B

r

s

(11)

Here, ΩS, k
!

S, s0 are SS frequency, wave vector and phase velocity, respectively. It is seen from

Eq. (11) that SS is neither longitudinal, nor purely transverse, and it vanishes for the wave

vectors k
!

S perpendicular or parallel to the layer plane. SS represents the oscillations of the
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SALC complex order parameter phase [1]. If we take into account the viscosity terms in

Eq. (10), then we can obtain the SS relaxation time τS given by

τS ¼ 2r α1

k2Sx þ k2Sy

� �

k2Sz

k2S
þ
1

2
α4 þ α56ð Þk2S

2

4

3

5

�1

(12)

SS has been observed experimentally [15–17].

3. Self-focusing and self-trapping of optical beams in SALC

We first consider the self-action effects of the optical waves propagating in an anisotropic

inhomogeneous nonlinear medium. The light beam propagation through a nonlinear medium

is accompanied by the intensity-dependent phase shift on the wavefront of the beam [2]. Self-

focusing of light results from the wavefront distortion inflicted on the beam by itself while

propagating in a nonlinear medium [14]. In such a case, the field-induced refractive change Δn

has the form Δn ¼ n2 Ej j2 where n2 ¼ const [14]. A light beam with a finite cross section also

diffracts [14]. At a certain optical power level, the beam self-focusing and diffraction can be

balanced in such a way that the beam propagates in the nonlinear medium with a plane

wavefront and a constant transverse intensity profile [1]. This phenomenon is called self-

trapping of an optical beam [1]. The optical wave propagation in a nonlinear medium is

described by the following wave equation for the electric field E
!

x; y; z; tð Þ [14]

curlcurl E
!
þμ0

∂
2D
!

L

∂t2
¼ �μ0

∂
2D
!

NL

∂t2
(13)

Here, μ0 is the free space permeability, D
!L

and D
!NL

are the linear and nonlinear parts of the

electric induction. In SALC as a uniaxial medium two waves with the same frequency ω can

propagate: an ordinary wave with the wave vector k
!

o and an extraordinary one with the wave

vector k
!

e [2, 18]. Taking into account the SALC symmetry, we can choose the xz plane as a

propagation plane. Then, the ordinary wave is polarized along the Y axis, and its electric field

is given by

Eoy ¼ Aoexp i koxxþ kozz� ωtð Þ½ � þ c:c: (14)

The extraordinary wave is polarized in the XZ plane having a component along the optical

axis Z. The electric field of the extraordinary wave has the form

E
!

e ¼ e
!

eAeexp i kexxþ kezz� ωtð Þ½ � þ c:c: (15)

Here, e
!

e ¼ a
!

xeex þ a
!

zeez is the polarization unit vector of the extraordinary wave, a
!

x,z are the

unit vectors of the X,Z axes, and c.c. stands for complex conjugate. The propagation direction

and polarization of the ordinary and extraordinary waves in SALC are shown in Figure 2.
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The corresponding linear electric induction vectors D
!L

o , D
!L

e are given by [7, 18]

DL
oy ¼ ε0ε⊥Ey; D

!L

e ¼ ε0 a
!

xε⊥eex þ a
!
zε∥eez

� �

Aeexp i kexxþ kezz� ωtð Þ½ � þ c:c: (16)

In the linear approximation, substituting Eqs. (14)–(16) into the wave Eq. (13) we obtain the

dispersion relations for the ordinary and extraordinary waves, respectively [7, 18]

k2o ¼ ε⊥
ω

2

c2
;
k2ex
ε∥

þ
k2ez
ε⊥

¼
ω

2

c2
(17)

It should be noted that the ordinary and extraordinary beams in the uniaxial medium propa-

gate in different directions and the vectors E
!

e and D
!L

e are not parallel [18]. The extraordinary

wave propagates in the direction of the beam vector s
!
⊥E
!

e, which is determined by the angle

θe ¼ arctan ε⊥=ε∥
	 


tanθ1

� 

with respect to the Z axis [18]. Here, θ1 is the angle between k
!

e and

the Z axis.

We consider separately the self-focusing and self-trapping of the ordinary and extraordinary

beams [7]. We start with the analysis of the slab-shaped ordinary beam with the dimension in

the Y direction much greater than in the incidence XZ plane. In such a case, the dependence on

the coordinate y may be neglected [7, 9]. Substituting expression (14) into the equation of

motion (9), we obtain [7, 9]

∂u

∂z
¼

ε0a⊥
B

Aoj j2; DNL
o ¼ ε0a⊥

∂u

∂z
Eo (18)

Expression (18) shows that the nonlinearity related to the smectic layer normal strain is the

Kerr-type nonlinearity [14]. We introduce now the coordinates x0; z0ð Þ parallel and normal to

the ordinary beam propagation direction, respectively [7, 9]

Figure 2. Propagation direction and polarization of the ordinary wave E
!

o and extraordinary wave E
!

e in SALC.
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x0 ¼ xsinθo þ zcosθo; z
0 ¼ �xcosθo þ zsinθo (19)

Here, θo is the angle between k
!
o and the Z axis. We use the SVAA for the ordinary beam

amplitude Ao [14]

∂
2
Ao

∂x02

�

�

�

�

�

�

�

�

≪ ko
∂Ao

∂x0

�

�

�

�

�

�

�

�

� ∂
2
Ao

∂z02

�

�

�

�

�

�

�

�

(20)

We are interested in the spatially localized solutions with the following boundary conditions [7, 9]

lim
z0!∞

Ao z0ð Þj j ¼ 0;
∂ Ao z0ð Þj j

∂z0

�

�

�

�

z0¼0

¼ 0; Ao z0 ¼ 0ð Þj j ¼ Aoj jmax (21)

Then, substituting expressions (14), (18), (19) and the first ones of Eq. (16), (17) into Eq. (13) and

taking into account the SVAA conditions (20), we obtain the truncated equation for the SVA

Ao x0; z0ð Þ, which has the form [7]

i
∂Ao

∂x0
þ 1

2ko

∂
2
Ao

∂z02
þ ω

2

c2
ε0a

2
⊥

2Bko
Aoj j2Ao ¼ 0 (22)

Eq. (22) is the nonlinear Schrodinger equation (NSE) [19]. The coefficient of the last term in the

left-hand side (LHS) of Eq. (22) is positive definite ω
2
ε
2
0a

2
⊥= 4c2Bko
	 


> 0, which corresponds to

the stationary two-dimensional self-focusing of the light beam. The solution of Eq. (22) with

the boundary conditions (21) has the form [7]

Ao x0; z0ð Þ ¼ Aoj jmaxexp i
ε0a

2
⊥ Aoj j2max

4Bε⊥
kox

0
 !

cosh

ffiffiffiffiffi

ε0
p

a⊥ Aoj jmax
ffiffiffiffiffiffiffiffiffiffiffi

2Bε⊥
p koz

0
� �� ��1

(23)

The self-trapped beam (23) is the so-called spatial soliton with the width wo ¼
ffiffiffiffiffiffiffiffiffiffiffi

2Bε⊥
p

ffiffiffiffiffi

ε0
p

a⊥
	

Aoj jmaxkoÞ
�1 [7].

The self-trapped ordinary beam normalized intensity spatial distribution is shown in Figure 3.

The self-trapping of the extraordinary beam (15) can be realized only when the anisotropy

angle θ1 � θeð Þ is small enough: tan θ1 � θeð Þ≪ kewoð Þ�1 [7]. For the typical values of ε⊥, ε∥ [2],

the following condition is valid: 0 ≤ tan θ1 � θeð Þ ≤ 0:12, and the self-trapping condition for the

extraordinary beam can be satisfied [7]. Then, using the procedure described above for the

ordinary beam, we obtain the spatial soliton of the extraordinary beam. It has the form [7, 10]

Ae ¼ Aej jmaxexp i
ε0h

2
e Aej j2maxω

2

4Ble∥ 1þ εa

ε⊥
eezsinθe

� �

c2sin2
θe

x00

2

6

6

4

3

7

7

5

cosh
z00

we

� �� ��1

(24)

Here, x00 ¼ xsinθe þ zcosθe; z
00 ¼ �xcosθe þ zsinθe are the coordinates parallel and perpendic-

ular to the beam vector, respectively,
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he ¼ a⊥e
2
ex þ a∥e

2
ez

	 


sinθe þ 2εaeexeezcosθe, le∥ ¼ ke∥ 1þ εa=ε⊥ð Þsinθeð Þ�1, and ke∥ is the wave vec-

tor component parallel to the beam vector. The width we of the extraordinary beam spatial

soliton is given by [7, 10]

we ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2B 1þ εa

ε⊥
eezsinθe

� �

s

sinθeð Þc
ffiffiffiffiffi

ε0
p

he Aej jmaxω
(25)

For the typical values of the SALC parameters [1, 2], the optical beam electric field Ao, ej jmax

� 105V=m, ω � 1015s�1 and small angle θe the spatial soliton width is wo, e � 10�4m [7]. SALC

samples with a thickness of 10�4m have been demonstrated experimentally [2, 17].

The optical wave self-trapping can occur also at the interface between the linear medium in the

region z < 0 with the permittivity εs and the SALC cladding z > 0ð Þ. For the light wave

Ey ¼ A zð Þexpi kox� ωtð Þ propagating along the interface parallel to the X axis, the self-trapped

solution represents a bright surface wave with the amplitude A zð Þ given by [7]

A zð Þ ¼ Amax cosh
z� z0
wo

� �� ��1

; Amax ¼ A z0ð Þ (26)

The cubic susceptibility of SALC χ
3ð Þ
SALC related to the smectic layer compression is larger than χ 3ð Þ

related to the Kerr nonlinearity in organic liquids [14], but it is much less than the giant orienta-

tional nonlinearity (GON) in NLC [2]. However, the optical beam intensity in SALCmay bemuch

greater than in NLC, which are extremely sensitive to the strong optical fields [2]. In such cases,

the approach based on the purely orientational mechanism of the optical nonlinearity is invalid.

Figure 3. The self-trapped ordinary beam normalized intensity for the maximum amplitude Aoj jmax ¼ 105V=m and

θo ¼ π=6.
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4. Stimulated light scattering (SLS) in SALC

SLS is a process of parametric coupling between light waves and the material excitations of the

medium [14]. We consider the SLS in SALC related to the smectic layer normal displacement

and SS excited by the interfering optical waves [5, 6, 8–10]. We have taken into account the

combined effect of SALC layered structure and anisotropy. It should be noted that SS propa-

gates in SALC without the change of the mass density in such a way that the SS wave and the

ordinary sound wave are decoupled [1].

In general case when the coupled optical waves have arbitrary polarizations and propagation

directions, each optical wave in SALC z > 0ð Þ splits into the extraordinary and ordinary ones

with the same frequency and different wave vectors due to the strong anisotropy of SALC [6,

10, 18]. The polarizations of these waves are shown in Figure 4. The XZ plane is chosen to be

the propagation plane of the waves E
!o, e

1 . In such a case, the extraordinary wave E
!e

1 is polarized

in the XZ plane, while the ordinary wave E
!o

1 is parallel to the Y axis [18]. The ordinary wave E
!o

2

is polarized in the XY plane perpendicular to the optical Z axis, and the extraordinary wave E
!e

2

possesses a three-dimensional polarization vector e
!e

2 [18]. The wave vectors k
!o

1,2 and k
!e

1 of

these waves satisfy the dispersion relations (17) while the three-dimensional wave vector k
!e

2

satisfies the dispersion relation ke2x
	 
2

þ ke2y

� �2
� �

ε�1
∥ þ ke2z

	 
2
ε�1
⊥ ¼ ω2=cð Þ2 [18]. The funda-

mental ordinary and extraordinary waves have the form, respectively

E
!o, e

1 ¼ e
!

o, e

1 Ao, e
1 zð Þexpi k

!o, e

1 � r
!

� �

� ω1t

� �

þ c:c:

� �

E
!o, e

2 ¼ e
!

o, e

2 Ao, e
2 zð Þexpi k

!o, e

2 � r
!

� �

� ω2t

� �

þ c:c:

� �

(27)

Here, ω1 > ω2 and Δω ¼ ω1 � ω2 ≪ω1. Each pair of the waves (27) has the same frequency,

and for this reason, we define the nonlinear mixing of these waves as partially frequency

degenerate FWM [6]. We assume that the complex amplitudes Ao, e
1,2 zð Þ ¼ Ao, e

1,2 zð Þ
�

�

�

�

�

�expiγo, e
1,2 zð Þ

are slowly varying along the optical axis Z: ∂
2Ao, e

1,2=∂z
2

�

�

�

�

�

�≪ ko, e1,2z∂A
o, e
1,2=∂z

�

�

�

�

�

�. As a result, the

nonlinear two-wave mixing analyzed in Ref. [5] transforms into a partially degenerate FWM

[6, 10]. We substitute the waves (27) into equation of motion (9). The interfering optical waves

(27) with close frequencies ω1,2 create a dynamic grating of the smectic layer normal displace-

ment u x; y; z; tð Þ consisting of four propagating harmonics with the same frequency and differ-

ent wave vectors. It has the form [6]

u x; y; z; tð Þ ¼
iε0
r

X

4

j¼1

Δkj⊥
	 
2

hjMj

Δkj
	 
2

Gj Δω;Δ k
!

j

� � expi Δ k
!

j� r
!

� �

� Δωt
h i

þ c:c: (28)
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Here,Δ k
!

1 ¼ k
!e

1 � k
!o

2;Δ k
!

2 ¼ k
!e

1 � k
!e

2;Δk
!

3 ¼ k
!o

1 � k
!o

2;Δk
!

4 ¼ k
!o

1 � k
!e

2;

h1 ¼ a⊥Δk1ze
e
1xe

o
2x � εa Δk1xe

e
1ze

o
2x þ Δk1ye

e
1ze

o
2y

h i
,

h2 ¼ a⊥Δk2ze
e
1xe

e
2x þ a∥Δk2ze

e
1ze

e
2z � εa Δk2x ee1xe

e
2z þ ee1ze

e
2x

	 

þ Δk2ye

e
1ze

e
2y

h i
; h3 ¼ a⊥Δk3ze

o
2y;

h4 ¼ a⊥Δk4ze
e
2y � εaΔk4ye

e
2z; M1 ¼ Ae

1 Ao
2

	 
∗
;M2 ¼ Ae

1 Ae
2

	 
∗
M3 ¼ Ao

1 Ao
2

	 
∗
, M4 ¼ Ao

1 Ae
2

	 
∗
, and

Gj Δω;Δ k
!

j

� �
¼ Δωð Þ2 þ iΔωΓj �Ω

2
j

Γj ¼
1

r
α1

Δkj⊥
	 
2

Δkjz
	 
2

Δkj
	 
2 þ

1

2
α4 þ α56ð Þ Δkj

	 
2
" #

;Ω2
j ¼ s20

Δkj⊥
	 
2

Δkjz
	 
2

Δkj
	 
2

(29)

The parametric amplification of the fundamental optical waves E
!o, e

2 with the lower frequency

ω2 by the other pair of optical waves E
!o, e

1 with the higher frequencyω1 occurs in SALC due to the

SLS on the light-induced smectic layer dynamic grating (28) [6, 10]. It is actually the Stokes SLS

[14]. The fundamental optical waves also create Stokes and anti-Stokes small harmonics with the

combination frequencies and wave vectors. The analysis of SLS in SALC is based on the simul-

taneous solution of the smectic layer equation of motion (9), the wave Eq. (13) for ordinary waves

(14) and extraordinary waves (15) with the permittivity tensor (8). The nonlinear part of the

permittivity tensor (8) εNik in the three-dimensional case can be written as follows [6]

ε
N
ik ¼

bN
ik
u x; y; z; tð Þ; bNxx ¼ bNyy ¼ a⊥

∂

∂z
; bNxy ¼ bNyx ¼ 0;

bNxz ¼ bNzx ¼ �εa
∂

∂x
; bNyz ¼ bNzy ¼ �εa

∂

∂y
; bNzz ¼ a∥

∂

∂z

(30)

Figure 4. The polarizations of the fundamental ordinary waves E
!o

1,2 and extraordinary waves E
!e

1,2 in SALC (z > 0).
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Combining Eqs. (27)–(30), we obtain the nonlinear part of the electric induction, or the

nonlinear polarization DNL
i ¼ ε0ε

N
ikEk [6]. This nonlinear polarization consists of two types of

terms: (i) four harmonics, which are phase-matched with fundamental waves (27); (ii) all other

terms with the combination frequencies and wave vectors, which give rise to the small

scattered Stokes and anti-Stokes harmonics similar to the Brillouin scattering [6, 10, 14]. The

combination of the anisotropy and nonlinearity also results in the creation of the small addi-

tional components of the waves E
!o, e

1 and E
!o

2 polarized in the XZ plane and XY plane, respec-

tively [6].

We start with the analysis of the parametric coupling among the waves (27). Substituting

expressions (27)–(30) and the phase-matched part of D
!NL

into wave Eq. (13), taking into

account SVAA for the complex amplitudes A
o, e
1,2 zð Þ, and separating the real and imaginary

parts, we obtain the truncated equations for the magnitudes A
o, e
1,2 zð Þ

�

�

�

�

�

� and phases γ
o, e
1,2 zð Þ of

these SVA [6]

2lo, e1

∂ A
o, e
1

�

�

�

�

∂z
¼ �

ω1

c

� �2

�
ε0Δω

r

h
2
3,2 Δk3,2⊥ð Þ2Γ3,2

G3,2j j2 Δk3,2ð Þ2
A

o, e
2

�

�

�

�

2
þ
h
2
4,1 Δk4,1⊥ð Þ2Γ4,1

G4,1j j2 Δk4,1ð Þ2
A

e,o
2

�

�

�

�

2

( )

A
o, e
1

�

�

�

�

(31)

2lo, e2

∂ A
o, e
2

�

�

�

�

∂z
¼

ω2

c

� �2

�
ε0Δω

r

h
2
3,2 Δk3,2⊥ð Þ2Γ3,2

G3,2j j2 Δk3,2ð Þ2
A

o, e
1

�

�

�

�

2
þ
h
2
1,4 Δk1,4⊥ð Þ2Γ1,4

G1,4j j2 Δk1,4ð Þ2
A

e,o
1

�

�

�

�

2

( )

A
o, e
2

�

�

�

�

(32)

2lo, e1

∂γ
o, e
1

∂z
¼ �

ω1

c

� �2 ε0

r

�
h
2
3,2 Δk3,2⊥ð Þ2 Δωð Þ2 �Ω

2
3,2

h i

G3,2j j2 Δk3,2ð Þ2
A

o, e
2

�

�

�

�

2
þ
h
2
4,1 Δk4,1⊥ð Þ2 Δωð Þ2 �Ω

2
4,1

h i

G4,1j j2 Δk4,1ð Þ2
A

e,o
2

�

�

�

�

2

8

<

:

9

=

;

(33)

2lo, e2

∂γ
o, e
2

∂z
¼ �

ω2

c

� �2 ε0

r

�
h
2
3,2 Δk3,2⊥ð Þ2 Δωð Þ2 �Ω

2
3,2

h i

G3,2j j2 Δk3,2ð Þ2
A

o, e
1

�

�

�

�

2
þ
h
2
1,4 Δk1,4⊥ð Þ2 Δωð Þ2 �Ω

2
1,4

h i

G1,4j j2 Δk1,4ð Þ2
A

e,o
1

�

�

�

�

2

8

<

:

9

=

;

(34)

Here, lo1,2 ¼ k
o
1,2z; l

e
1,2 ¼ k

e
1,2z 1� ee1,2z k

!e

1,2 � e
!e

1,2

� �

k
e
1,2z

� ��1
� �

.

Eqs. (31) and (32) describe the parametric energy exchange between the fundamental waves,

Eqs. (33) and (34) describe the cross-phase modulation (XPM) of these waves [6]. Combining

Eqs. (31) and (32), we obtain the Manley-Rowe relation, which expresses the conservation of

the total photon number [14]. In our case, it has the form [6]
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ω1

c

� ��2
lo1 Ao

1

�

�

�

�

2
þ le1 Ae

1

�

�

�

�

2
h i

þ
ω2

c

� ��2
lo2 Ao

2

�

�

�

�

2
þ le2 Ae

2

�

�

�

�

2
h i

¼ const ¼ I0 (35)

The solution of the system of Eqs. (31)–(34) can be written in the integral form [6, 10]

wo, e
1 ¼ wo, e

1 0ð Þexp �

ð

z

0

β3,2w
o, e
2 þ β4,1w

e,o
2

� �

dz0

8

<

:

9

=

;

(36)

wo, e
2 ¼ wo, e

2 0ð Þexp

ð

z

0

β3,2w
o, e
1 þ β1,4w

e,o
1

� �

dz0

8

<

:

9

=

;

(37)

γo, e
1 � γo, e

1 0ð Þ ¼ �
1

2

ð

z

0

δ3,2w
o, e
2 þ δ4,1w

e,o
2

	 


dz0 (38)

γo, e
2 � γo, e

2 0ð Þ ¼ �
1

2

ð

z

0

δ3,2w
o, e
1 þ δ1,4w

e,o
1

	 


dz0 (39)

Here, the dimensionless variables are given by [6]:

wo, e
1,2 ¼

1

I0

ω1,2

c

� ��2
lo, e1,2 Ao, e

1,2

�

�

�

�

�

�

2

; wo
1 þ we

1 þ wo
2 þ we

2 ¼ 1 (40)

βj ¼ CjΓjΔω, δj ¼ Cj Δωð Þ2 �Ω
2
j

h i

, j ¼ 1, 2, 3, 4,

Cj ¼
ω1ω2

c2

� �2 ε0I0 Δkj⊥
	 
2

r Gj

�

�

�

�

2
dj Δkj
	 
2

; d1 ¼ le1l
o
2, d2 ¼ le1l

e
2, d3 ¼ lo1l

o
2, d4 ¼ lo1l

e
2 (41)

Comparison of Eq. (36), (37), and (40) shows that for z ! ∞ wo, e
1 ! 0 and wo

2 þ we
2 ! 1. Hence,

the pumping waves with the larger frequency ω1 are depleted, the signal waves with smaller

frequency ω2 < ω1 are amplified with the saturation at the sufficiently large distances, and the

system is stable. The gain terms βj reach their maximal values close to the SS resonance

condition Δω ≈Ωj , which can be satisfied for Δω � ω1s0=c≪ω1 [6]. In such a case, βj ≫ δj, the

parametric amplification process is dominant while XPM can be neglected.

In general case, the exact analytical solution of Eqs. (31)–(34) is hardly possible. However, the

explicit expressions for the coupled wave SVA have been obtained when both waves are

propagating in the same XZ plane [5, 6]. For instance, assume that the pumping extraordinary

wave with the frequency ω1 > ω2 is mainly polarized in the XZ plane, the signal ordinary

wave with the frequency ω2 is mainly polarized along the Y axis, and the intensities of the

components with other polarizations are small in such a way that we
1 ≫wo

1; w
o
2 ≫we

2. Then, in

the first approximation, the normalized intensities we
1, w

o
2 of the main components have the

form [6, 10]
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we
1 ¼

1

2
J1 1� tanh η� η0

	 
� �

; wo
2 ¼

1

2
J1 1þ tanh η� η0

	 
� �

(42)

Here, we
1 þ wo

2 ¼ J1 ¼ const ¼ we
1 0ð Þ þ wo

2 0ð Þ, η ¼ β1J1z=2. It is seen from Eq. (42) that for η ! ∞

we
1 ! 0; wo

2 ! J1, and the crossing point z0 ¼ β1J1
	 
�1

ln we
1 0ð Þ=wo

2 0ð Þ
	 


exists only for

we
1 0ð Þ=wo

2 0ð Þ > 1. The coordinate dependence of the normalized intensities we
1, w

o
2 is presented

in Figure 5. The numerical estimations show that for the typical values of SALC parameters [1–3]

in the resonant case the coupling constant per unit optical intensity β1=Popt � 0:01ð �10Þcm=MW

[6]. For the optical intensity Popt � 106 � 107Wcm�2
, the SLS gain β1max � 102cm�1

, which is at

least an order of magnitude larger than the gain at Brillouin SLS in isotropic organic liquids [14].

Such optical intensities are feasible [20, 21].

The explicit expressions of the small component intensities wo
1 and we

2 can be obtained in the

second approximation. They have the form [6]

wo
1 ¼ wo

1 0ð Þ
exp �ηð Þcosh η0ð Þ

cosh η�η0ð Þ

� �β3=β1

we
2 ¼ we

2 0ð Þ
exp ηð Þcosh η0ð Þ
cosh η�η0ð Þ

� �β2=β1
(43)

It is easy to see from Eq. (43) that for η ! ∞ wo
1 ! 0 and we

2 ! we
2 0ð Þ 1þ we

1 0ð Þ=wo
2 0ð Þ

� �β2=β1

¼ const.

The evaluation of the phases γo, e
1,2 shows that the pumping wave phases γo,e

1 rapidly increase

that results in the fast oscillations of the depleted amplitudes Ao, e
1 zð Þ [6]. The phases γo,e

2 of the

signal waves tend to the constant values at sufficiently large η [6].

Figure 5. The dependence of the normalized pumping and signal intensities we
1=J1; w

o
2=J1 on the dimensionless coordinate

η for the pumping-to-signal ratio we
1 0ð Þ=wo

2 0ð Þ ¼ 1:5; 5 (curves 1 and 2, respectively).
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The Brillouin-like SLS also results in the generation of six Stokes small harmonics with the

frequency ω2 � Δωð Þ and combination wave vectors, six anti-Stokes small harmonics with the

frequency ω1 þ Δωð Þ and combination wave vectors, and eight small harmonics with the funda-

mental frequencies ω1,2 and combination wave vectors [6].

5. The nondegenerate FWM in SALC

Consider now the nondegenerate FWM in SALC [8–10]. Assume that four coupled fundamen-

tal optical waves have different close frequencies ωn such that Δωmn ¼ ωm � ωn � s0ωn=c≪ωn.

For the sake of definiteness, we suppose that ω1 < ω2 < ω3 < ω4. These fundamental waves

have the form [8–10]

E
!

m ¼ e
!

m Am zð Þexpi k
!

m� r
!

� �

� ωt

h i

þ c:c:
n o

, m ¼ 1,…, 4 (44)

The interfering waves (44) create a dynamic grating of the smectic layer normal displacement

of the type (28), but this time each harmonic has a different frequency Δωmn ¼ ωm � ωn,

m, n ¼ 1,…, 4. We discuss two cases: (i) all waves (44) are polarized in the directions perpen-

dicular to the propagation plane and propagate as ordinary waves; (ii) all waves (44) are

polarized in the propagation plane and behave as extraordinary waves [8–10]. Using the SVAA

and the theory developed in the previous section, we obtain the truncated equations for the

slowly varying magnitudes Am zð Þj j and phases γ
m
zð Þ similar to Eqs. (31)–(34). The analysis of

these equations shows that the wave with the lowest frequency ω1 is amplified up to the

saturation level determined by the integral of motion I0 similar to the one from Eq. (35) [8–10]

I0 ¼
X

4

m¼1

lm
ωm

c

� ��2
Amj j2 ¼ const (45)

Here, the factors lm are defined above for the ordinary or extraordinary wave, respectively.

Three other waves with the higher frequencies ω2,3,4 undergo the depletion like the pumping

waves [8–10]. The depletion of the waves E
!

2,3,4 is accompanied by the XPM with the rapidly

increasing phases while the phase of the signal wave E
!

1 saturates at large distances. The

analytical solution of the type (42) and (43) has been obtained for the case when the pumping

wave E
!

4 and the signal wave E
!

1 are much stronger than the idler waves E
!

2,3 with the

intermediate frequencies ω2,3 [8–10].

In the special case when some ordinary optical waves (44) have perpendicular polarizations

vectors e
!

m⊥⊥ e
!

n⊥ the polarization-decoupled FWM is possible [8–10]. Such waves do not excite

the dynamic grating since the corresponding coupling constants h
o
mn ¼ a⊥Δkmnz e

!
m⊥ � e

!
n⊥

� �

vanish [8–10]. In the case of the extraordinary wave mixing, the polarization-decoupled FWM

is impossible because of the SALC anisotropy. If the electric field of the signal ordinary wave

E
!

1 is perpendicular to the fields of all other waves than this wave propagates though SALC
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without any change of its SVA: Ao
1 ¼ const. If E

!o

1⊥E
!o

2,3 and E
!o

1∥E
!o

4, then FWM is divided in two

separate two-wave mixing processes between the waves E
!o

1,4 and the waves E
!o

2,3 with the

solutions similar to solution (42) [8].

In the important case when the pumping wave E
!

4 and the signal wave E
!

1 are much stronger

than the idler waves E
!

2,3, the approximate solution can be obtained similarly to the solution

(42) and (43) in the case of SLS [8–10]. It has been shown that this solution is stable in the case

of FWM [8].

In the particular case when the fundamental waves (44) are counter-propagating, the phase

conjugation is possible as a result of the nondegenerate FWM in SALC [8–10]. Optical phase

conjugation (OPC) is the wavefront reversion property of a backward propagating optical

wave with respect to a forward propagating wave [22]. The optical waves are phase conju-

gated to each other if their complex amplitudes are conjugated with respect to their phase

factors [22]. Typically, OPC results from nonlinear optical processes such as FWM and SLS [20].

LC are commonly used for FWM and OPC [22].

Suppose that the waves E
!

1,4 are phase-conjugate while the waves E
!

2,3 are forward-going and

backward-going pumping waves, which have the form [8]

E
!

1 ¼ e
!

1 A1expi k
!

4� r
!

� �

þ ω1t
h i

þ c:c:
n o

E
!

2 ¼ e
!

2 A2expi k
!

2� r
!

� �

� ω2t
h i

þ c:c:
n o

E
!

3 ¼ e
!

3 A3expi k
!

2� r
!

� �

þ Δ k
!

� r
!

� �

þ ω3t
h i

þ c:c:
n o

E
!

4 ¼ e
!

4 A4expi k
!

4� r
!

� �

� ω4t
h i

þ c:c:
n o

(46)

Here, Δ k
!

¼ Δ k
!

32 is the wave vector mismatch of the FWM process. In the case of OPC caused

by SLS the frequency balance condition between the waves with the same vectors is necessary.

We assume that ω3 � ω1 ¼ ω4 � ω2. Suppose that the pumping waves E
!

2,3 are much stronger

than the probe wave E
!

4 and the phase-conjugate wave E
!

1 propagating in the negative direc-

tion as it is seen from Eq. (46). In such a case, using the constant pumping approximation

(CPA) [14] where A2,3 ¼ const, we obtain the following solution for the probe wave and the

phase-conjugate wave SVA A1,4 [8–10]

A1,4 ¼ A01,4exp gr�
i

2
Δ k

!

� r
!

� �

� �

(47)

Analysis of the truncated equations for A1,4 shows that there exists the solution with the gain

Reg < 0 corresponding to the amplification of the phase-conjugate wave E
!

1 [8–10]. Such a case

can be characterized as a kind of the Brillouin-enhanced FWM (BEFWM) based on the optical

nonlinearity related to the smectic layer normal displacement [8–10]. Numerical estimations

show that the amplification of the phase-conjugate wave E
!

1 is possible for the typical values of
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SALC parameters and for the pumping wave intensity of about 100 MWcm�2 [9], which is

feasible [20, 21]. OPC in the homeotropically oriented SALC film with the thickness of 250 μm

had been demonstrated experimentally [20].

The components of the nonlinear electric induction D
!NL

, which are not phase matched to the

fundamental waves (46) give rise to 12 doubly degenerate combination harmonics of the type.

AmApA
∗

nexpi k
!

m þ k
!

p � k
!

n

� �

� r
!

� �

� ωm þ ωp � ωn

	 


t
h i

and 12 harmonics of the type A2
mA

∗

nexp

i 2 k
!

m� r
!

� �

� ωmt
� �

� k
!

n� r
!

� �

þ ωnt
h i

[8–10].

6. Nonlinear interaction of surface plasmon polaritons (SPP) in SALC

Integration of strongly nonlinear LC with plasmonic structures and metamaterials would

enable active switching and tuning operations with low threshold [4]. LC may be also used in

reconfigurable metamaterials for tuning the resonant frequency, the transmission/ reflection

coefficient, and the refractive index [23]. Combination of metamaterials and active plasmonic

structures with NLC has been investigated [4, 23]. In this section, we discuss the nonlinear

optical effects caused by the SPP mixing in SALC, which is characterized by low losses and a

strong nonlinearity related to the smectic layer normal displacement without the change of the

mass density [11–13]. Consider the interface z ¼ 0 between a homeotropically oriented SALC

z > 0ð Þ and a metal z < 0ð Þ shown in Figure 6 [11, 12]. The SALC optical Z axis and the X axis

are chosen to be perpendicular and parallel to the interface z ¼ 0, respectively.

SPP from the metal penetrate into SALC. The permittivity of the metal εm ωð Þ determined by

the Drude model is given by εm ωð Þ ¼ 1� ω
2
pω

�1
ωþ i=τð Þð Þ�1 where ωp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n0e2= ε0mð Þ
p

is the

plasma frequency, n0 is the free electron density in the metal, e, m are the electron charge and

mass, respectively, ω, τ are the SPP angular frequency and lifetime, respectively [24, 25]. The

efficient SLS in SALC takes place for the counter-propagating SPP with close frequencies

Figure 6. The counter-propagating SPP at the interface between a metal z < 0ð Þ and a homeotropically oriented SALC

z > 0ð Þ.
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ω1 > ω2 such that Δω ¼ ω1 � ω2 ≪ω1 [12]. The spatially localized electric fields of these SPP in

SALC have the form [24, 25]

E
!

1,2 ¼
1

2
e
!

1,2A1,2 x; tð Þexp �ikx x� dð Þ � kSz z� iω1,2t
� �

þ c:c:
n o

(48)

The SPP are polarized as transverse magnetic (TM) waves with the electric field components Ex,z

and the magnetic field component Hy [23, 24]. In an optically uniaxial SALC, SPP propagate as

extraordinary waves [18]. The numerical estimations show that for the optical frequency range

and the small frequency difference Δω ≈ 10�7 � 10�5
	 


ω1 the SPP1,2 wave vectors are practically

equal [11, 12]. They have the form [11, 12]

kSz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x ε⊥=ε∥
	 


� ω2
1ε⊥=c

2

q

kx ¼ ω1=cð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

εm ω1ð Þ 1� εm ω1ð Þ=ε⊥ð Þ½ � 1� ε2m ω1ð Þ= ε⊥ε∥
	 
	 
� ��1

q (49)

Numerical estimations show that for the typical values of ω1,2,ωp, τ the following relations are

valid: RekSz ≫ ImkSz ,Rekx ≫ Imkx [11, 12, 24, 25]. For the optical wavelength λopt ≈ 0:6� 1:33ð Þμm,

the SPP propagation length Lx and the wavelength λs are given by, respectively:

Lx ¼ Imkxð Þ�1
≈ 84� 550ð Þμm, λs ¼ 2π= Rekxð Þ ≈ 0:33� 0:77ð Þμm≪ Lx [12]. The SPP localization

length Lz ¼ RekSz
	 
�1

� 10�6m belongs to the subwavelength scale: ImkSz � 10m�1 ≪RekSz and

can be neglected [12].

Substituting the SPP fields (48) into the smectic layer equation of motion (9), we obtain the

dynamic grating u x; z; tð Þ given by [11, 12]

u x; z; tð Þ ¼ 0:5 U exp i 2Rekxð Þx� 2 Imkxð Þd� 2RekSz
	 


z� iΔωt
� 

þ c:c:
� �

(50)

Here,

U ¼ �
ε0 2Rekxð Þ2hA1 x; tð ÞA∗

2 x; tð Þ

r � 2Rekxð Þ2 þ 2RekSz
	 
2

h i

G kx; k
S
z ;Δω

	 


(51)

h ¼ � 2RekSz
	 


�a⊥ e1xj j2 þ a∥ e1zj j2
� �

� 4εa 2Rekxð ÞIm e1ze
∗
1x

	 


;

G kx; k
S
z ;Δω

	 


¼ Δωð Þ2 �
B 2Rekxð Þ2 2RekSz

	 
2

r � 2Rekxð Þ2 þ 2RekSz
	 
2

h i

�i
Δω

r
�α1

2Rekxð Þ2 2RekSz
	 
2

� 2Rekxð Þ2 þ 2RekSz
	 
2

h iþ
α4 þ α56ð Þ � 2Rekxð Þ2 þ 2RekSz

	 
2
h i

2

2

4

3

5

(52)

Unlike the dynamic grating (28) created by the interfering optical waves, the grating (50)

caused by SPP is spatially localized both in the X and in the Z directions [11, 12]. The localized

Liquid Crystals - Recent Advancements in Fundamental and Device Technologies148



grating (50) can be characterized as an enhanced Rayleigh wave of SS [26]. Analysis of

G kx; k
S
z ;Δω

	 


(52) shows that the resonant case ReG kx; k
S
z ;Δω

	 


¼ 0 cannot be achieved for the

frequency difference Δω � 107 � 108
	 


s�1, and the spontaneous SS surface wave can be

neglected [12]. The cubic susceptibility of the SALC-metal system χ
3ð Þ
ijkl Δωð Þ; i, j, k, l ¼ x, z related

to the localized grating (50) is essentially complex. For the typical values of the SALC param-

eters, SPP in silver, ω1 ¼ 1:4� 1015s�1 and Δω � 107 � 108
	 


s�1 the numerical estimations

yield χ
3ð Þ
xxxx

�

�

�

�

�

� ≈ χ
3ð Þ
zzzz

�

�

�

�

�

� � 10�20 � 10�19
	 


m2=V2 [11], which is larger by one-two orders of magni-

tude than the cubic susceptibilities of some organic liquids and solid materials [27].

We substitute the localized layer displacement u x; z; tð Þ (50) into the expression of the SALC

nonlinear permittivity (30), evaluate the nonlinear part of the electric induction DNL
!

for SPP

(48), and by using the standard procedure, we obtain from Eq. (13) the truncated equations for

the SPP SVA A1,2 tð Þ ¼ A1,2 tð Þj jexpiγ1,2 tð Þ. The dependence of SVA A1,2 on the x coordinate can

be neglected in the central part of the dynamic grating (50) for the distances of several SPP

wavelengths [12]. Integrating the SPP electric field and nonlinear electric induction over

z∈ 0;∞½ �, we obtain the following truncated equations for the normalized SPP intensities

I1,2 ¼ A1,2j j2=ω1,2

� �

I�1
0 .

∂I1,2
∂t

¼ ∓ gI1I2 (53)

Here, A1j j2=ω1

� �

þ A2j j2=ω2

� �

¼ I0 ¼ const is the integral of motion obtained from the Manley-

Rowe relation [14], and the gain g has the form [12]

g ¼
ε0 2Rekxð Þ2hbIm G kx; k

S
z ;Δω

	 
� 

I0ω1ω2exp �2ð Þ

6r ε⊥ exj j2 þ ε∥ ezj j2
� �

2Rekxð Þ2 � 2RekSz
	 
2

h i

G kx; k
S
z ;Δω

	 
�

�

�

�

2
> 0 (54)

Here, b ¼ �2RekSz �a⊥ e1xj j2 þ a∥ e1zj j2
� �

þ 4εa Rekxð ÞIm e1ze
∗
1x

	 


. Solution of Eq. (53) has the

form [12]

I1 tð Þ ¼
I1 0ð Þ

I1 0ð Þ þ 1� I1 0ð Þ½ �exp �gtð Þ
; I2 tð Þ ¼

1� I1 0ð Þ½ �exp �gtð Þ

I1 0ð Þ þ 1� I1 0ð Þ½ �exp �gtð Þ
(55)

It is easy to see from Eq. (55) that I1 tð Þ þ I2 tð Þ ¼ 1.

Expressions (55) show that the energy exchange between SPP takes place. In the limiting

case t ! ∞, we obtain: I1 tð Þ ! 1; I2 tð Þ ! 0 [12]. The time dependence of the normalized SPP

intensities I1 tð Þ, I2 tð Þ (55) is presented in Figure 7. The phases γ1,2 0ð Þ of the SPP SVA have the

form
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γ1 tð Þ � γ1 0ð Þ ¼
Re G kx; k

S
z ;Δω

	 
� 

2Im G kx; k
S
z ;Δω

	 
�  ln 1� I1 0ð Þð Þexp �gtð Þ þ I1 0ð Þ
� �

(56)

γ2 tð Þ � γ2 0ð Þ ¼ �
Re G kx; k

S
z ;Δω

	 
� 

2Im G kx; k
S
z ;Δω

	 
�  ln I1 0ð Þexp gtð Þ þ 1� I1 0ð Þ
� �

(57)

It is easy to see from Eqs. (56) and (57) that for t ! ∞ the phase γ1 tð Þ of the amplified SPP I1

tends to a constant value γ1 tð Þ � γ1 0ð Þ !
Re G kx;k

S
z ;Δωð Þf g

2Im G kx;k
S
z ;Δωð Þf g

ln I1 0ð Þ½ �, while the phase of the

depleted SPP I2 γ2 tð Þ � γ2 0ð Þ for large time intervals such that gt≫ 1 takes the form

γ2 tð Þ � γ2 0ð Þ ! �
Re G kx ;k

S
z ;Δωð Þf g

2Im G kx;k
S
z ;Δωð Þf g

gt and γ2 tð Þ ! �∞ for t ! ∞. The SVA of the depleted SPP I2

undergoes strong XPM and rapidly oscillates in the time domain. The results (55)–(57) show

that the Rayleigh stimulated scattering [27] of SPP on the smectic layer normal displacement

localized grating is accompanied by XPM and the parametric energy exchange between SPP

[12]. The rise time of the amplified SPP is about 1� 2μs as it is seen from Figure 7. It is much

faster than the thermal response time τR ¼ 100μs and the purely orientational response time

≈ 25ms in NLC [4]. Numerical estimations show that for the SPP electric field of 107V=m the

rise time of about 10 ns can be achieved, which is much less than the Brillouin relaxation time

τB ≈ 200 ns [4, 12].

Structures consisting of alternative conducting and dielectric thin films are capable of guiding

SPP light waves [24, 25]. Each single interface can sustain bound SPP. When the distance

between adjacent interfaces is comparable or smaller than the SPP localization length

Lz ¼ RekSz
	 
�1

, the coupled modes occur due to the interaction between SPP [24]. The following

specific three-layer guiding systems can be considered: (i) an insulator/metal/insulator (IMI)

heterostructure where a thin metallic layer is sandwiched between two infinitely thick dielectric

claddings; (ii) a metal/insulator/metal (MIM) heterostructure where a thin dielectric core layer is

sandwiched between two infinitely thick metallic claddings [24]. LC can be used as a tunable

cladding material or as the guiding core material due to their excellent electro-optic properties

Figure 7. The temporal dependence of the SPP normalized intensities I1,2 tð Þ for the input electric field of 106V=m and

optical wavelengths λopt1 ¼ 0:6μm (curves 1) and λopt1 ¼ 1:33μm (curve 2).
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and large nonlinearity [28]. Photonic components based on plasmonic waveguides with NLC

core have been theoretically investigated in a number of articles (see, for example, [28–31] and

references therein).

We consider the nonlinear optical processes in an MIM waveguide with the SALC core [13].

The structure of such a waveguide is shown in Figure 8. SPP propagating in the metal

claddings and in SALC core are TM waves [24, 25]. The SPP electric and magnetic fields in

the metallic claddings z > d; z < �d H
!

1,2 x; z; tð Þ, E
!

1,2 x; z; tð Þ, and in the SALC core zj j ≤ d

H
!

SA x; z; tð Þ, E
!

SA x; z; tð Þ have the form, respectively [24]

H
!

1,2 x; z; tð Þ ¼
1

2
a
!

yH1,20exp ∓ kmz zþ ikxx� iωt
	 


þ c:c:, zj j > d (58)

E
!

1,2 x; z; tð Þ ¼
1

2
a
!

xE1,2x0 þ a
!

zE1,2z0

h i

exp ∓ kmz zþ ikxx� iωt
	 


þ c:c:, zj j > d (59)

H
!

SA x; z; tð Þ ¼
1

2
a
!

y Aexp kSz z
	 


þ Bexp �kSz z
	 
� �

exp ikxx� iωtð Þ þ c:c:, zj j ≤ d (60)

E
!

SA x; z; tð Þ

¼
1

2
a
!

x
kSz

iωε0ε⊥
Aexp kSz z

	 


� Bexp �kSz z
	 
� �

� a
!

z
kx

ωε0ε∥
Aexp kSz z

	 


þ Bexp �kSz z
	 
� �

( )

�expi kxx� ωtð Þ þ c:c:; zj j ≤ d

(61)

The complex wave number kSz of SPP in SALC in the linear approximation is determined by

expression (49) and the SPP wave number in the metallic claddings is given by kmz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x � εm ωð Þω2=c2
q

[24]. Using the boundary conditions for the tangential components of the

SPP fields (58)–(61) at the interface z ¼ d between the metallic cladding and the SALC core, we

obtain the dispersion relation for the MIM modes [13, 24]

Figure 8. The MIM waveguide with the homeotropically oriented SALC as a core.
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exp �4kSzd
	 


¼
kmz

εr ωð Þ
þ

kSz
ε⊥

 !2
kmz

εr ωð Þ
�

kSz
ε⊥

 !�2

(62)

Numerical estimations show that for the typical values of the SPP frequency ω, the plasma

frequency ωp, the SPP lifetime τ mentioned above, and the MIM thickness 2d ¼ 1μm the

following relationships take place:

RekSz � 106m�1 ≫ ImkSz � 104m�1,Rekx � 107m�1 ≫ Imkx � 103m�1. The SPP wavelength in the

Z direction is given by 2π ImkSz
	 
�1

� 102μm and can be neglected inside the MIM waveguide

core with the thickness of 2d � 1μm. Then, a single localized TM can exist in the MIM wave-

guide according to the dispersion relation (62). The even TM mode has the form [13]

E
!

SA ¼ E0 a
!

xcosh kSz z
	 


� a
!
zi
kxε⊥

kSzε∥
sinh kSz z

	 


" #

exp i kxx� ωtð Þ½ � þ c:c: (63)

The distribution of the TM even mode normalized intensity E
!

SA

�

�

�

�

�

�

2

= E0j j2 in the MIM wave-

guide core is presented in Figure 9. It is seen from Figure 9 that the intensity is filling the MIM

waveguide core due to the overlapping of SPP inserted from the metallic claddings

z < �d; z > d. Substituting the SPP field (63) into equation of motion (9), we obtain the smectic

layer normal strain [13].

∂u

∂z
¼

ε0 E0j j2

B
exp �2 Imkxð Þx½ � a⊥ cosh kSz z

	 
�

�

�

�

2
þ a∥

kxj j2ε2⊥

kSz
�

�

�

�

2
ε2∥

sinh kSz z
	 
�

�

�

�

2

8

<

:

9

=

;

(64)

The nonlinear polarization in the SALC core caused by the smectic layer strain (64) has the

form [13]

Figure 9. Distribution of the SPP normalized intensity E
!

SA

�

�

�

�

�

�

2

= E0j j2 in the MIM waveguide core (arbitrary units).
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D
!NL

SA ¼ ε0
∂u

∂z
E0 a

!
xa⊥cosh k

S
z z

	 


� a
!

zia∥
kxε⊥

k
S
zε∥

sinh k
S
zz

	 


" #

exp i kxx� ωtð Þ½ � þ c:c: (65)

Substituting the SPP electric field (63) and nonlinear polarization (65) into Eq. (13) and sepa-

rating linear and nonlinear parts, we obtain the truncated equation for SVA E0 tð Þ ¼ E0 tð Þj j

expiw tð Þ.

�2i
∂E0

∂t
E
∗
0ε⊥ cosh k

S
z z

	 
�

�

�

�

2
þ

kxj j2ε⊥

k
S
z

�

�

�

�

2
ε∥

sinh k
S
z z

	 
�

�

�

�

2

" #

¼ ω
ε0 E0j j4

B
exp �2 Imkxð Þx½ � a⊥ cosh k

S
z z

	 
�

�

�

�

2
þ a∥

kxj j2ε2⊥

k
S
z

�

�

�

�

2
ε2∥

sinh k
S
z z

	 
�

�

�

�

2

2

4

3

5

2 (66)

At the distances x≪ Lx ¼ Imkxð Þ�1
, the SVA dependence on x can be neglected since exp �2½

Imkxð Þx� ≈ 1 [13]. The dispersion effects can be neglected because the dispersion length LD ≫ Lx

[13]. Integrating both sides of Eq. (66) over z∈ �d; d½ � and separating real and imaginary parts we

obtain the following equations for the magnitude E tð Þj j and phase w tð Þ of the SPP SVA.

∂ E0j j2

∂t
¼ 0;

∂w

∂t
¼ ω

ε0 E0j j2

16B

F2 k
S
z ; kx; d

	 


F1 k
S
z ; kx; d

	 
 (67)

Here,

F1 k
S
z ; kx; d

	 


¼ ε⊥ 1þ
ε⊥ kxj j2

ε∥ k
S
z

�

�

�

�

2

 !

sinh 2 RekSz
	 


d
� �

þ 1�
ε⊥ kxj j2

ε∥ k
S
z

�

�

�

�

2

 !

2 RekSz
	 


d

" #

F2 k
S
z ; kx; d

	 


¼ a⊥ þ a∥
ε2
⊥
kxj j2

ε2
∥
k
S
zj j

2

� �2

sinh 4 RekSz
	 


d
� �

þ8 a2⊥ � a∥
ε2
⊥
kxj j2

ε2
∥
kSzj j

2

� �2
 !

sinh 2 RekSz
	 


d
� �

þ8
1

2
a⊥ þ a∥

ε2⊥ kxj j2

ε2∥ k
S
z

�

�

�

�

2

0

@

1

A

2

þ a⊥ � a∥
ε2⊥ kxj j2

ε2∥ k
S
z

�

�

�

�

2

0

@

1

A

22

4

3

5 RekSz
	 


d

(68)

The solution of Eq. (67) has the form

E0j j2 ¼ const;w tð Þ ¼ ω
ε0 E0j j2

16B

F2 k
S
z ; kx; d

	 


F1 k
S
z ; kx; d

	 


( )

t (69)

Eq. (69) shows that the strong SPM of the even SPP mode in the MIM wave guide occurs. It is

enhanced by a large geometric factor F2 k
S
z ; kx; d

	 


=F1 k
S
z ; kx; d

	 


, which can achieve a value of

102 � 104 for 2d ¼ 1μm and RekSz � 106 � 3� 106
	 


m�1,Rekx � 5� 106 � 107
	 


m�1.
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7. Conclusions

In SALC, there exists a specific mechanism of the optical nonlinearity related to the normal

displacement u x; y; z; tð Þ of smectic layers. This mechanism combines the properties of the

orientational mechanism typical for LC and of the electrostrictive mechanism. In particular,

the smectic layer oscillations occur without the mass density change. Under the resonant

condition (11), the SS acoustic wave propagates in SALC in the direction oblique to the layer

plane. The cubic nonlinearity related to this mechanism is characterized by a strong anisotropy,

a short time response, a weak temperature dependence, a resonant frequency dependence, and

a strong dependence on the optical wave polarization and propagation direction. The cubic

susceptibility related to the smectic layer displacement is larger than the Kerr type susceptibil-

ity in ordinary organic liquids. It should be noted that the nonlinear optics of NLC has been

mainly studied. However, SALC are promising candidates for nonlinear optical applications

due to their low losses and higher degree of the long range order.

We derived the equation of motion (9) of the smectic layer displacement u x; y; z; tð Þ in the

electric field of optical waves. We investigated theoretically the nonlinear optical phenomena

in SALC based on this specific mechanism. We solved simultaneously the equation of motion

(9) and the wave Eq. (13) for the optical waves including the nonlinear polarization. The

solution was based on the SVAA.

In an optically uniaxial SALC, an ordinary wave and an extraordinary one can propagate. Both

the ordinary and extraordinary optical beams propagating in SALC undergo self-focusing and

self-trapping and form spatial solitons. The optical wave self-trapping can occur at the inter-

face between the linear medium and SALC. We obtained the analytical solutions for the SVA of

the self-trapped beams.

SLS of two arbitrary polarized optical waves in SALC transforms into the partially frequency

degenerate FWM because each optical wave splits into the ordinary and extraordinary waves.

The coupled optical waves create a dynamic grating of the smectic layer normal displacement

u x; y; z; tð Þ and undergo the parametric energy exchange and XPM. The signal optical waves

with the lower frequency are amplified up to a saturation level determined by the Manley-

Rowe relation, while the pumping optical waves with higher frequency are depleted. It has

been shown that the system of the coupled optical waves and the dynamic grating is stable.

The analytical expressions for the magnitudes and phases of SVA have been obtained in the

limiting case when the waves are mainly polarized either perpendicular to the propagation

plane, or in it. The SLS gain coefficient is significantly larger than the one in the case of the

Brillouin SLS in isotropic organic liquids. The SLS in SALC also results in the generation of the

Stokes and anti-Stokes harmonics with the combination wave vectors.

The nondegenerate FWM in SALC results in the amplification of the signal optical wave with the

lowest frequency and depletion of three other waves with higher frequencies. The polarization-

decoupled FWMmay take place when the polarizations of some optical waves are perpendicular

to one another. If the coupled optical waves are counter propagating and their frequencies satisfy

the balance conditions typical for OPC process then BEFWM takes place accompanied by the

amplification of the phase-conjugate wave. The spectrum of the scattered harmonics consists of

24 Stokes and anti-Stokes terms with combination frequencies and wave vectors.
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LC applications in nanophotonics, plasmonics, and metamaterials attracted a wide interest due

to the combination of LC large nonlinearity and strong localized electric fields of SPP. Until now,

NLC applications in nanophotonics and plasmonics have been investigated. We studied theoret-

ically the nonlinear optical processes at the interface of a metal and a homeotropically oriented

SALC. In such a case, SPP penetrating into SALC create the spatially localized surface dynamic

grating of smectic layer normal displacement. We have shown that for optical frequencies of

about 1015 s�1 and coupled SPP frequency difference of about 108 s�1, the SALC-metal system

cubic susceptibility may be one to two orders of magnitude larger than the cubic susceptibility of

isotropic organic liquids. We solved the wave Eq. (13) for the counter-propagating SPP in SALC

with the spatially localized nonlinear polarization and obtained the explicit expressions (55)–(57)

for the magnitudes and phases of the coupled SPP SVA. It has been shown that the Rayleigh

stimulated scattering of SPP on the surface smectic layer oscillations occurs. The rise time of the

amplified SPP of about 10 ns can be achieved, which is much faster than the Brillouin relaxation

constant in NLC.

The plasmonic waveguides with NLC for nanophotonic and plasmonic have been theoretically

investigated. We proposed an MIM waveguide with an SALC core. We evaluated the electric

field of the strongly localized SPP even mode, the smectic layer normal strain and the

nonlinear polarization in the MIM core. The evaluation of the SPP SVA shows that the strong

SPM process takes place. The SPM is enhanced by the geometric factor caused by the strong

SPP localization in the MIM core.
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