
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 9

Weakly Nonlinear Stability Analysis of a Nanofluid in a
Horizontal Porous Layer Using a Multidomain Spectral
Collocation Method

Osman A.I. Noreldin, Precious Sibanda and
Sabyasachi Mondal

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71066

Abstract

In this chapter, we present a weakly nonlinear stability analysis of the flow of a nanofluid
in a porous medium with stress-free boundary conditions. Some previous studies have
investigated cross-diffusion in a nanofluid layer although in most cases these studies
mostly deal with linear stability analysis. It is important to study the nonlinear stability in
flows subject to cross-diffusion due to the wide range of applications where such flows
arise such as in hydrothermal growth, compact heat exchanges, the solidification of binary
mixtures, geophysical systems, solar pond, etc. Here we consider flow between parallel
plates with an applied magnetic field and zero nanoparticle flux at the boundaries. A
truncated Fourier series is introduced reducing the flow equations to a Lorenz-type system
of nonlinear evolution equations. The multidomain spectral method is used to solve the
equations that describe the growth of the convection amplitudes. The solutions are
obtained as sets of trajectories in the phase space. Some interesting spiral trajectories and
their sensitivity to the Rayleigh number are given.

Keywords: nonlinear instability, nanofluid flow, porous medium, multidomain spectral
collocation method

1. Introduction

The enhancement of thermal conductivity of a fluid is a matter of supreme interest to engineers

due to the important applications of fluids in heat transfer processes. Natural and forced convec-

tion plays an important role in heat transfer processes due to continuous molecular movements

in fluid. Recent studies show that the suspension of solid nanoparticles in a fluid can substan-

tially improve the fluid’s thermophysical properties, including thermal conductivity.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The term nanofluid describes a liquid containing a suspension of nanometer sized 1–100 nm

solid particles [1]. Examples of commonly used nanoparticles include metallic particles such as

Al, Cu and Ag, and oxides such as Al2O3 and CuO. The base fluid is often a common liquid

such as water, ethylene, glycol, or oil. The enhancement of thermochemical properties of a

fluid due to the addition of nanoparticles has been observed in experimental studies such as in

[2, 3]. Researchers have investigated the influence of seven slip mechanisms, namely, inertia,

Brownian diffusion, thermophoresis, diffusiophoresis, magnus effect, fluid drainage, and

gravity in nanofluids. It has been shown that, in the absence of turbulence, the most significant

among these mechanisms are the Brownian diffusion and thermophoresis.

The classical Rayleigh-Benard convection problem in a heated horizontal layer has been exten-

sively studied in the literature. Among recent studies on nanofluids, Tzou [4] studied the

thermal instability and natural convection in nanofluid flow using an eigenfunction expansion

method. Narayana et al. [5, 6] studied convection and the stability of aMaxwell fluid in a porous

medium. Yadav et al. [7] investigated thermal instability of a rotating nanofluid layer. The

studies by Kuznetsov and Nield [8–11] focused on thermal instability in a porous layer satu-

rated with a nanofluid. They investigated the onset of instability in a horizontal porous layer

using a model for the nanofluid that incorporated particle Brownian motion and thermo-

phoresis. Related studies with various assumptions on the geometry and flow structure have

been made by [12–15]. In the last few decades, researchers have also investigated thermal

instability in a horizontal nanofluid layer subject to an applied magnetic field [16, 17]. The

effects of a magnetic field on convection and the onset of instability have important applications

in problems such as in cooling systems, pumps, magnetohydrodynamics and generators. The

experimental study by Heris et al. [18] showed that thermal efficiency could be achieved by

subjecting the flow to a magnetic field. The studies by Ghasemi et al. [19] and Hamad et al. [20]

focused on the flow behavior and heat transfer in an electrically conducting nanofluid under the

influence of a magnetic field and subject to Brownian diffusion and thermophoresis. They used

a water-based nanofluid containing different types of nanoparticles such as copper, alumina and

silver in their numerical simulations. Related studies of interest include [21–24]. Rana et al. [25]

studied thermal convection in a Walters (Model B) fluid in a porous medium. They showed that

a magnetic field may introduce oscillatory instability modes and acts to stabilize the system.

In this chapter, we give a weakly nonlinear stability analysis of a nanofluid layer with an

applied magnetic field, stress free boundary conditions and under the assumption of zero

nanoparticle flux at the boundary. The studies by Kuznetsov and Nield [9] and Nield and

Kuznetsov [10, 11] investigated cross-diffusion in a nanofluid layer. However, these studies

mostly presented a linear stability analysis. It is important to study the nonlinear regime for a

nanofluid flow subject to cross-diffusion due to the wide range of applications where such

flows may arise. Typical examples may be found in hydrothermal growth, compact heat

exchanges, solidification of binary mixtures, geophysical systems, and so on. Hence, with this

in mind, we studied the finite amplitude convection in a nanofluid flows subject to cross-

diffusion. By introducing a truncated Fourier series, a Lorenz-type system of seven nonlinear

differential equations is obtained. The recent multidomain spectral method is used to solve the

nonlinear equations. This method is accurate and very easy to implement compared to older

methods such as finite difference methods. An analysis of heat and mass transfer for different

parameters such as the Prandtl number, the Dufour and thermophoresis is presented.
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2. Mathematical formulation

Consider viscous incompressible MHD nanofluid flow in an infinitely extended horizontal

porous layer, confined between two boundaries at z ¼ 0 and z ¼ h. The layer is heated from

below and cooled from above, see Figure 1. A Cartesian frame of reference is chosen in which

the z-axis is vertically upward. The boundaries are perfectly conducting. The temperature at

the lower and upper walls is Tc and Th, respectively with Th > Tc. The Oberbeck-Boussinesq

approximation and the Darcy law are assumed to be applicable. The continuity equation,

momentum equation, energy equation, concentration equation and volumetric fraction nano-

particle equation, which describe the above configuration in dimensionless form, are given as

∇ � V ¼ 0, (1)

Da

Pr

∂V

∂t
¼ �∇PþDa∇2V � V þQVbez � Rmbez þ RaTbez þ RsCbez � Rnϕbez, (2)

∂T

∂t
þ V � ∇T ¼ ∇

2T þ
NB

Les
∇ϕ � ∇T þ

NANB

Les
∇T � ∇T þDu∇2C, (3)

∂C

∂t
þ V � ∇C ¼

1

Le
∇

2Cþ Sr∇2T, (4)

1

σ

∂ϕ

∂t
þ
1

ε
V � ∇ϕ ¼

1

Les
∇

2ϕþ
NA

Les
∇

2T, (5)

subject to the boundary conditions

V ¼ 0, T ¼ 1, C ¼ 1
∂ϕ

∂z
þNA

∂T

∂z
¼ 0 at z ¼ 0, (6)

V ¼ 0, T ¼ 0, C ¼ 0
∂ϕ

∂z
þNA

∂T

∂z
¼ 0 at z ¼ 1, (7)

where V is the fluid velocity, T is the temperature, C is the solute concentration and ϕ is the

volumetric fraction of nanoparticles. The dimensionless parameters are the Darcy number

(modified by the viscosity ratio) Da, Prandtl number Pr, Hartmann-Darcy number Q, thermal

Rayleigh-Darcy number Ra, nanoparticle Rayleigh number Rn and the basic density Rayleigh

number Rm. The parameter NA is a modified diffusivity ratio, Le is the Lewis number, Rs is

solutal Rayleigh number, NB is a modified nanoparticle density increment and Du is a modi-

fied Dufour parameter. The parameter Les is the thermo-nanofluid Lewis number, ν is the

kinematic viscosity and Sr is a modified Soret parameter. These parameters have the form

Da ¼
~μK

μh2
, Pr ¼

μ

rfαm
, Q ¼

δB2
0K

μ
, Ra ¼

rf βKhg T∗

h � T∗

c

� �

μαm

, Les ¼
αm

DB
, (8)

Rn ¼

rp � rf

� �
ϕ∗

1 � ϕ∗

0

� �
gKh

μαm

, Rm ¼
rpϕ

∗

0 þ 1� ϕ∗

0

� �
rf gKh

μαm

, Le ¼
αm

DS
, (9)
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NB ¼
ε rcð Þp

rcð Þf
ϕ∗

1 � ϕ∗

0

� �

, NA ¼
DT T∗

h � T∗

c

� �

DBT
∗

c ϕ∗

1 � ϕ∗

0

� � , Rs ¼
rf βKhg C∗

h � C∗

c

� �

μαm

, (10)

Du ¼
σDTC C∗

h � C∗

c

� �

αm T∗

h � T∗

c

� � , Sr ¼
σDCT T∗

h � T∗

c

� �

αm C∗

h � C∗

c

� � , (11)

where rf , rp, ~μ, β1, β2,κm, δ, ε and K are the fluid density, nanoparticle density, effective viscos-

ity of porous medium, thermal volumetric expansion coefficient of the fluid, solutal volumetric

expansion coefficient, the thermal conductivity of porous medium, the electrical conductivity,

the porosity, and permeability of porous medium, respectively. The gravitational acceleration

is denoted by g and DB is the Brownian diffusion coefficient, DT is the thermophoresis diffu-

sion coefficient, DS is the solutal diffusion coefficient, DTC is the Dufour parameter and DCT is

the Soret parameter. The heat capacity of the fluid is rcð Þf , rcð Þp is the effective heat capacity of

the nanoparticle, rcð Þm is the effective heat capacity of the porous medium and B0 is the

uniform magnetic field strength.

The basic state is the time independent solution of Eqs. (1)–(5). Solving these equations with

boundary conditions, we obtain

Tb ¼ 1� z, Cb ¼ 1� z, ϕb ¼ ϕ0 þNAz: (12)

3. Weakly nonlinear stability analysis

In this section, we restrict the analysis to the case of two-dimensional disturbances. We define

the stream function Ψ by the equations

Figure 1. A schematic diagram of the problem.
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u ¼
∂Ψ

∂z
, w ¼ �

∂Ψ

∂x
:

Eqs. (1)–(5) may now be simplified by introducing the truncated Fourier series

Ψ 0 ¼ A11 sinαx sinπz, T0 ¼ B11 cosαx sinπzþ B02 sin 2πz, (13)

C0 ¼ C11 cosαx sinπzþ C02 sin 2πz, ϕ0 ¼ �NA D11 cosαx sinπzþD02 sin 2πzð Þ, (14)

where A11, B11, B02, C11, C02, D11 and D02 are amplitudes that depend on time. This leads to the

Lorenz-type system of nonlinear ordinary differential equations

_Y1 ¼
Pr

Da
�BY1 �N Y2 þ Y4ð Þ þ

NARn

R
Y6

� �

(15)

_Y2 ¼ RY1 � Y2 �DuY4 � Y1Y3 (16)

_Y3 ¼
1

2
Y1Y2 � G Y3 þDuY5ð Þ (17)

_Y4 ¼ RY1 �
1

Les
Y4 � SrY2 � Y1Y5 (18)

_Y5 ¼
1

2
Y1Y2 � G

1

Les
Y5 þ SrY3

� 	

(19)

_Y6 ¼
σR

ε
Y1 �

σ

Le
Y6 � Y2ð Þ �

NAσ

ε
Y1Y7 (20)

_Y7 ¼
NAσ

2ε
Y1Y7 �

G

Le
Y7 � Y3ð Þ (21)

subject to Yn 0ð Þ ¼ Y0
n for n ¼ 1, 2,⋯, 7: The following variables have been introduced in the

equations above:

Y1 ¼
απ

γ
A11, Y2 ¼ �πRB11, Y3 ¼ �πRB02, Y4 ¼ �πRC11, Y5 ¼ �πRC20,

Y6 ¼ �πRD11, Y7 ¼ �πRD20, t∗ ¼ γt, R ¼
α2

γ3
Ra, G ¼

4π2

γ
and N ¼

Rs

Ra
,

B ¼
Daγ2 þ γ� α2Q

γ2
:

Eqs. (15)–(21) give an approximate description of the full dimensional nonlinear system. An

analytical solution of the system of nonlinear ordinary differential Eqs. (15)–(21) is not possible

for the general time variable t. However, it is possible to discuss the stability of the nonlinear

system of equations. The system of equations is uniformly bounded in time and dissipative in

the phase space. We can easily show that
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X

7

i¼1

∂ _Y i

∂Yi

¼ �
DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1


 �

: (22)

This is always true if B ≥ 0. As has been shown in previous studies, the trajectories may be

attracted to a fixed point, limit cycle or other attractor. For a set of initial points in the phase space

occupying a region V 0ð Þ at time t ¼ 0, after a time t > 0, the end point of the corresponding

trajectories fills a volume

V tð Þ ¼ V 0ð Þexp �
DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1


 �

t

� �

: (23)

Eq. (23) shows that the volume decays exponentially with time. Further, it can be noted that

the system of Eqs. (15)–(21) are invariant under the transformation

S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ ! �S Y1;Y2;Y3;Y4;Y5;Y6;Y7ð Þ: (24)

We obtain the possible stationary points of the nonlinear system of equations by setting _Y i ¼ 0

for i ¼ 1, 2,⋯, 7. One of these stationary points is Yi ¼ 0 and by linearizing about this point, we

obtain the Jacobian matrix

A ¼

�
PrB

Da
�

Pr

Da
0

PrN

Da
0

PrNARn

DaR
0

R �1 0 �Du 0 0 0

0 0 �G 0 �GDu 0 0

R �Sr 0 �Les�1 0 0 0

0 0 �GSr 0 �GLes�1 0 0
σR

ε
σLe�1 0 0 0 �σLe�1 0

0 0 GLe�1 0 0 0 �GLe�1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

: (25)

The eigenvalues of the above matrix depend on the various parameters. For the specific param-

eters R ¼ 103, Da ¼ 20,Pr ¼ 10, N ¼ 25, Du ¼ 0:2, Sr ¼ 3, Les ¼ 10, Le ¼ 5, σ ¼ 0:05, G ¼ 3 and

ε ¼ 0:04, the characteristic polynomial is

P λð Þ ¼ λ
7 þ 21:41λ6 þ 651:5λ5 þ 5391:7λ4 þ 12772:232λ3 � 370:962λ2 � 2996:712λþ 545:8

with eigenvalues

λ1 ¼ 0:2955056985, λ2 ¼ 0:2402382976, λ3 ¼ �0:6139990637, λ4 ¼ �4:886000936,

λ5 ¼ �5, λ6 ¼ �5:7228719981� 21:9033954659i, λ7 ¼ �5:7228719981þ 21:9033954659i:

This stationary point is a saddle point. Nonetheless, because the eigenvalues depend on

various parameters, we cannot make general conclusions as to the stability of the system. We

note, however, that if we denote the trace of the matrix A by T and the determinant d, then
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T ¼ �
DaB

Pr
þ 1þ Gþ Les�1 þ GLes�1 þ σLe�1 þ GLe�1

� 	

, (26)

and

d ¼
σPrG3

DaLeLes
�
DuNRSr

Le
�
DuNRSr

ε

þ
BDuSr

Le
þ
DuRSr

Le
þ

NR

LeLes
þ

NR

Lesε
�

B

LeLes
�

R

LeLes

	

:

�

(27)

The trace is always negative, but the sign of determinant depends on the parameter values. If

d < 0 then

1�Nð ÞεDuSrRLesþ εB�NRLeð ÞDuSrLesþ εþ Leð ÞNLe < Bþ Rð Þε, (28)

suggesting a saddle point.

4. Method of solution

To study the influence of various physical parameters on the average Nusselt and Sherwood

numbers, we solved the nonlinear system of Eqs. (15)–(21) numerically using the multidomain

spectral collocation method. This is a novel technique for solving nonlinear initial value problems

and parabolic equations with large time domains. It has been suggested in the literature that the

method gives better accuracy compared to other methods such as finite difference and Runge-

Kutta methods [26]. To apply the multidomain spectral collocation to the nonlinear system of

equations, we first divide the interval 0;T½ � into subintervals Ωi ¼ ti�1; ti½ � for i ¼ 1, 2,⋯, p. The

transformation

t ¼
ti � ti�1

2
τþ

ti þ ti�1

2
(29)

is used to transform each subinterval Ωi into the interval �1; 1½ �. The system of Eqs. (15)–(21)

can be written in the form

dYi
1

dt
¼

Pr

Da
�BYi

1 �N Yi
2 þ Y4

� �

þ
NARn

Ra
Yi
6

� �

, (30)

dYi
2

dt
¼ RYi

1 � Yi
2 �DuYi

4 � Yi
1Y

i
3, (31)

dYi
3

dt
¼

1

2
Yi
1Y

i
2 � G Yi

3 þDuYi
5

� �

, (32)

dYi
4

dt
¼ RYi

1 �
1

Les
Yi

4 � SrYi
2 � Yi

1Y
i
5, (33)

dYi
5

dt
¼

1

2
Yi

1Y
i
2 � G

1

Les
Yi
5 þ SrYi

3

� 	

, (34)

Weakly Nonlinear Stability Analysis of a Nanofluid in a Horizontal Porous Layer Using a Multidomain Spectral…
http://dx.doi.org/10.5772/intechopen.71066

155



dYi
6

dt
¼

σR

ε

Yi
1 �

σ

Le
Yi
6 � Yi

2

� �

�
NAσ

ε

Yi
1Y

i
7, (35)

dYi
7

dt
¼

NAσ

2ε
Yi
1Y

i
7 �

G

Le
Yi

7 � Yi
3

� �

, (36)

subject to

Yi
n ti�1ð Þ ¼ Yi�1

n ti�1ð Þ for n ¼ 1, 2,⋯, 7: (37)

The first step in using the multidomain spectral collocation method (MDSCM) concerns the

quasilinearization of Eqs. (30)–(36) leading to a system of equations in the form

X

7

n¼1

ai j;nð ÞrY
i
n, rþ1 �

dYi
j, rþ1

dt
¼ Ri

jr, (38)

subject to

Yi
n, rþ1 ti�1ð Þ ¼ Yi�1

n, rþ1 ti�1ð Þ for n ¼ 1, 2,⋯, 7: (39)

where ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 are given in the Appendix. Having linearized the equa-

tions, the second step is to integrate Eqs. (30)–(36). To this end, we use the Gauss-Lobatto nodes

τ
i
j ¼ cos

πj

Nc
, for j ¼ 0, 1,⋯, Nc: (40)

We approximate the derivatives of the unknown functions Yi
n, rþ1 tð Þ at the collocation points by

dYi
n, rþ1

dt
τ
i
j

� �

¼
XNc

k¼0
DjkY

i
n, rþ1 τ

j
j

� �

¼ DU
i
n, rþ1

h i

j
, (41)

where D ¼ 2D= ti � ti�1ð Þ, D is the Chebyshev differentiation matrix and

U
i
n, rþ1 ¼ Yi

n, rþ1 τ
i
0

� �

;⋯Yi
n, rþ1 τ

i
Nc

� �

� �T
,

is a vector of the unknown functions at the collocation points. Substituting Eq. (41) into

Eqs. (38) and reducing the result into matrix form, we obtain

AU
i
n, rþ1 ¼ R

i
n,

U
i
n, rþ1 τ

i�1
Nc

� �

¼ U
i
n τ

i�1
Nc

� �

, n ¼ 1, 2,⋯, 7:
(42)

where the matrices A ¼ Aij

� 

and R
i
n are given in the Appendix.

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals156



5. Heat and mass transfer

The study of heat and mass transfer in a horizontal nanofluid layer heated from below and

cooled from above has important engineering applications. We define the rate of heat transfer

by the average Nusselt number Nu tð Þ where

Nu tð Þ ¼ 1þ
α

2π

Ð
2π
α

0
∂T

∂z
dx

α

2π

Ð 2π
α

0
∂Tb

∂z
dx

2

4

3

5

z¼0

þDu 1þ
α

2π

Ð
2π
α

0
∂C

∂z
dx

α

2π

Ð 2π
α

0
∂Cb

∂z
dx

2

4

3

5

z¼0

8

<

:

9

=

;

: (43)

Substituting Eqs. (12) and (13) into Eq. (43), we obtain

Nu tð Þ ¼ 1þ
2

R
Y3 þDu 1þ

2

R
Y5

� 	

: (44)

Similarly, the rate of mass transfer stated in terms of the average Sherwood number is

Sh tð Þ ¼ 1þ
2

R
Y5 þ Sr 1þ

2

R
Y3

� 	

(45)

6. Results and discussion

We have studied the weakly nonlinear instability of nanofluid flow in a horizontal layer with

stress free boundary conditions. For numerical simulations, the parameter values were chosen

from the literature on nanofluid flow such as [4, 7]. In the literature, the critical Rayleigh

number is found when the Darcy number is very large. In this study, we investigated the

critical Rayleigh number for low Darcy numbers.

The method of solution described in Section 4 was used to solve Eqs. (15)–(21). All computations

are carried out up to a value of maximum time tmax ¼ 1, and solutions are obtained using initial

conditions selected in the neighborhood of stationary points. Periodic solution sets were

obtained for the system of nonlinear equations. We determined the rate of heat andmass transfer

as functions of time for different parameter values. The results are shown in Figures 2–4. Figure 2

shows the effect of the Dufour and Soret parameters on the Nusselt and Sherwood numbers with

time t. Figure 2(a) shows how the heat transfer coefficient changes with both the Dufour

parameter and time. The heat transfer coefficient increases with the Dufour parameter but

eventually settles to a steady value with time. In Figure 2(b), the Soret parameter is similarly

shown to enhance the mass transfer coefficient. We investigated the effect of the Prandtl and

Lewis numbers (see Figures 3 and 4). An increase in the Lewis number enhances both heat and

mass transfer in a nanofluid layer heated from below. However, Figure 3 shows that increasing

the Prandtl number reduces the amplitude of oscillatory heat and mass transfer. The Prandtl

number can lead to both positive and negative contributions to the Nusselt and Sherwood

numbers. It is interesting to note that our investigation shows that the magnetic field parameter

has very little effect on the heat and mass transfer for this type of flow.
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Figures 5–11 show the effect of the Rayleigh number on the trajectories projected onto the Yi;Yj

� �

phase planes. The solution sets provide a visual representation of the system’s behavior with

every phase point on the phase space representing the physical state of the system. The convective

solution sets for different values of R have been presented with the trajectories projected onto the

Yi;Yj

� �

phase planes. These trajectories spiral toward the fixed point for Rayleigh numbers from

102 to 104. The solution sets give spiral phase portraits as R increases and for the high Rayleigh

numbers, the trajectories spiral many times before they reach a fixed point.

Figures 5–8 show the phase portraits projected onto the Yi;Yj

� �

- plane correspond to a

simple spiral for R ¼ 100. As R is increased to 104, the complexity of the trajectories

Figure 2. The effect of cross-diffusive parameters on (a) the Nusselt number Nu and (b) the Sherwood number Sh for

Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5, Ra ¼ 1000 and various values of the Dufour and Soret

parameters.

Figure 3. The effect of Prandtl number Pr on (a) the Nusselt number Nu and (b) the Sherwood number Sh when

Da ¼ 0:05, Le ¼ 2, Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.
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increases leading to certain chaotic forms. Figures 8–11 show the trajectories in the three-

dimensional phase space. Here, we observe similar solution sets as in the two-dimensional

phase portraits.

Figure 5. The trajectories of the system of nonlinear equations projected on the Y1, Y2-plane when revised Rayleigh

number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2,

Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 4. The effect of Lewis number on (a) the Nusselt number Nu and (b) the Sherwood number Sh when Da ¼ 0:05,

Du ¼ 0:2, ε ¼ 0:04, σ ¼ 0:05, Les ¼ 100, Rn ¼ 5 and Ra ¼ 1000.

Figure 6. Trajectories of the system of nonlinear equations projected on the Y1;Y3ð Þ plane when the revised Rayleigh

number (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 whenDa ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04,Q ¼ 10,Du ¼ 0:2, Sr ¼ 0:3,

Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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Figures 12 and 13 show the streamline, isotherm and isoconcentration contours in the nanofluid

flow for different values of the Darcy number and buoyancy ratio. Figure 12 displays the stream-

lines for various values of the buoyancy ratio term. Two different eddies are observed. The

clockwise and anticlockwise flows are shown via negative and positive stream function values,

respectively. The anticlockwise rotating flow occupies the largest area of the nanofluid layer.

For low buoyancy ratio parameters, the flow structure is significantly influenced by the buoyancy

within the whole enclosure. Increasing the buoyancy ratio causes the boundary layer thickness to

Figure 7. Trajectories of the system of nonlinear equations projected on the Y1;Y5ð Þ-plane showing the sensitive depen-

dence of the trajectories on the revised Rayleigh number for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05,

Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.

Figure 8. Trajectories of the system of nonlinear equations projected on the Y1;Y6ð Þ-plane showing the sensitive depen-

dence of the trajectories on the revised Rayleigh number for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104 when Da ¼ 0:05,

Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5:

Figure 9. The bifurcations in the three-dimension solution space Y1;Y2;Y3ð Þ for (a) R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104

when Da ¼ 0:05, Les ¼ 100, σ ¼ 0:05, ε ¼ 0:04, Q ¼ 10, Du ¼ 0:2, Sr ¼ 0:3, Le ¼ 2, N ¼ 25 and Rn ¼ 5.
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become thinner. Also, a high buoyancy ratio changes the flow structure, and this impacts signif-

icantly on the concentration field, which builds up a vertical stratification in the enclosure. It is

interesting to note that for N ¼ �25, the effect of the solutal buoyancy force is in the opposite

direction of the thermal buoyancy force. The isothermal and isoconcentration profiles are situated

toward the left wall, while for N ¼ 1, the thermal and solutal buoyancy forces are equal. For

N ¼ 25, the effect of solutal buoyancy force is in the same direction as the thermal buoyancy force.

In such cases, the isothermal and isoconcentration contours are mostly toward the right wall.

We observe that when N ¼ �25, the stream function values in the central eddies increase

because the thickness of the boundary layer increases with the buoyancy ratio. The streamlines

and the flow behavior are affected by the change in the buoyancy ratio, but the flow pattern

remains unaltered. As N decreases from 1 to�25, the streamlines become very dense to the left

side of nanofluid layer while when N increases from 1 to 25, the streamlines are less so. The

buoyancy forces that drive the nanofluid motion are mainly due to the temperature gradient.

Three different types of eddies are observed for the isoconcentration contours when N ¼ 25. Of

these, two have a clockwise rotation and one is anticlockwise. It is seen that the small eddy at the

right bottom edge is diminished asN decreases from 1 to�25. Here, the concentration boundary

layer decreases due to increasing N values, hence the buoyancy ratio has a significant influence

on the concentration gradient. As the buoyancy ratio N increases from 1 to 25 the isoconcen-

trations become very dense at the bottom of nanofluid layer.

Figure 10. Flow trajectories and bifurcations in the three-dimensional space Y1;Y2;Y6ð Þ for Rayleigh numbers (a)

R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.

Figure 11. Flow trajectories and bifurcations in the three-dimensional space Y1;Y6;Y7ð Þ for Rayleigh numbers (a)

R ¼ 102, (b) R ¼ 103 and (c) R ¼ 104.
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The effect of the Darcy number on the nanofluid flow in the porous medium is shown in detail in

Figure 13. The streamline patterns are similar to those depicted in Figure 12. However, as Da

increases from 0.05 to 0.07, the rotation of the streamlines changes. Similarly, the isotherm

patterns change with increasing Darcy numbers. The value of the center eddies increases with

increasingDa. IncreasingDa has the effect of increasing the effective fluid viscosity and reducing

the thermal and solutal boundary layers.

7. Conclusion

We have investigated the onset of thermal instability in a horizontal porous layer of infinite

extent in a cross-diffusive nanofluid flow. The focus of the study has been on stress free

boundary conditions with zero nanoparticle flux at the wall. A multidomain spectral colloca-

tion method was used to solve the system of nonlinear evolution equations. As the Rayleigh

Figure 12. The pattern of streamlines (top), isotherms (middle) and isoconcentration (bottom) for different values of the

buoyancy ratio N.
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number increases to 104, the trajectories spiral many times before reaching a fixed point. The

nanofluid convection regime is complex for Rayleigh numbers higher than R ¼ 104, and the

flow pattern presents difficulties in interpreting correctly.

Additionally, a change in system parameters, such as an increase in the flow Lewis number,

improves the rate of heat and mass transfer in the nanofluid saturated porous media. The

Dufour parameter has the effect of increasing heat transfer, while increasing the Soret param-

eter increases the rate of mass transfer.
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number Da.
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A. Appendix

The terms ai j;nð Þr and Ri
jr for j ¼ 1, 2,…, 7 in Eq. (38) are given by

ai1;1ð Þr ¼ �γ3B, ai1;2ð Þr ¼ �γ3, ai1;4ð Þr ¼ �γ3N, ai1;6ð Þr ¼
γ3NARn

Ra
,

ai1;3ð Þr ¼ ai1;5ð Þr ¼ ai1;7ð Þr ¼ 0, ai2;1ð Þr ¼ R� Yi
3, r, ai2;2ð Þr ¼ �1, ai2;3ð Þr ¼ �Yi

1, r,

ai2;4ð Þr ¼ �Du, ai2;5ð Þr ¼ ai2;6ð Þr ¼ ai2;7ð Þr ¼ 0ai3;1ð Þr ¼ �
απ

2
ui2, r, ai3;2ð Þr ¼

1

2
Yi
1, r,

ai3;3ð Þr ¼ �G, ai3;5ð Þr ¼ �GDuai3;4ð Þr ¼ ai3;6ð Þr ¼ ai3;7ð Þr ¼ 0, ai4;1ð Þr ¼ R� Yi
5, r,

ai4;2ð Þr ¼ �Sr, ai5;3ð Þr ¼ �GSr

ai4;4ð Þr ¼ �
1

Les
, ai4;5ð Þr ¼ �Yi

1, r, ai4;3ð Þr ¼ ai4;6ð Þr ¼ ai4;7ð Þr ¼ 0, ai5;1ð Þr ¼
1

2
Yi
4, r,

ai5;4ð Þr ¼
1

2
Yi
1, r, a

i
5;5ð Þr ¼ �

G

Les
, ai5;2ð Þr ¼ ai5;6ð Þr ¼ ai5;7ð Þr ¼ 0, ai6;1ð Þr ¼ γ1 � γ2Y

i
7, r,

ai6;2ð Þr ¼
σ

Le
, ai6;6ð Þr ¼ �

σ

Le
, ai6;7ð Þr ¼ �γ2Y

i
1, r, ai6;3ð Þr ¼ ai6;4ð Þr ¼ ai6;5ð Þr ¼ 0,

ai7;1ð Þr ¼
γ2

2
Yi
6, r, a

i
7;3ð Þr ¼

G

Le
, ai7;6ð Þr ¼

γ2

2
Yi
1, r, ai7;7ð Þr ¼ �

G

Le
,

ai7;2ð Þr ¼ ai7;4ð Þr ¼ ai7;5ð Þr ¼ 0,

Ri
1r ¼ 0, Ri

2r ¼ �Yi
1, rY

i
3, rR

i
3r ¼

1

2
Yi

1, rY
i
2, r, Ri

4r ¼ �Yi
1, rY

i
5, r, Ri

5r ¼
1

2
Yi
1, rY

i
4, r,

Ri
6r ¼ �

σNA

ε
Yi
1, rY

i
7, r, Ri

7r ¼
σNA

2ε
Yi
1, rY

i
6, r,

where γ1 ¼
σR
ε
, γ2 ¼

NAσ

ε
and γ3 ¼

Pr
Da.

B. Appendix

The matrices Aij in Eq. (42) are given by

Ann ¼ diag an,nÞr
i

� �

�D, A12 ¼ diag ai1;2ð Þr

� �

, A16 ¼ diag ai1;6ð Þr

� �

,

A13 ¼ A14 ¼ A15 ¼ A17 ¼ O,

A21 ¼ diag ai2;1ð Þr

� �

, A23 ¼ diag ai2;3ð Þr

� �

, A24 ¼ diag ai2;4ð Þr

� �

, A25 ¼ A26 ¼ A27 ¼ O,

A31 ¼ diag ai3;1ð Þr

� �

, A32 ¼ diag ai3;2ð Þr

� �

, A35 ¼ diag ai3;5ð Þr

� �

, A34 ¼ A36 ¼ A37 ¼ O,

A41 ¼ diag ai4;1ð Þr

� �

, A42 ¼ diag ai4;2ð Þr

� �

, A45 ¼ diag ai4;5ð Þr

� �

, A43 ¼ A46 ¼ A47 ¼ O,

A51 ¼ diag ai5;1ð Þr

� �

, A53 ¼ diag ai5;3ð Þr

� �

, A54 ¼ diag ai5;4ð Þr

� �

, A52 ¼ A56 ¼ A57 ¼ O,

A61 ¼ diag ai6;1ð Þr

� �

, A62 ¼ diag ai6;2ð Þr

� �

, A67 ¼ diag ai6;7ð Þr

� �

, A63 ¼ A64 ¼ A65 ¼ O,
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A71 ¼ diag ai7;1ð Þr

� �

, A73 ¼ diag ai7;3ð Þr

� �

, A76 ¼ diag ai7;6ð Þr

� �

, A72 ¼ A74 ¼ A75 ¼ O,

where O is an N þ 1ð Þ � N þ 1ð Þ matrix of zeros and diag is an N þ 1ð Þ � N þ 1ð Þ diagonal

matrix.
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