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1. Introduction     

Nowadays, the domain of biotechnology is characterized by rapid changes in terms of 
novelty and by highly complex processes that require advanced procedures for design, 
operation and control. From the engineering point of view, the control of bioprocesses poses 
a number of challenging problems. These problems arise from the presence of living 
organisms, the high complexity of the interactions between the micro-organisms, as well as 
the high complexity of the metabolic reactions. Moreover, for monitoring and control 
applications, only a few measurements are available, either because the measuring devices 
do not exist or are too expensive, or because the available devices do not give reliable 
measurements. Therefore, we can deduce that the main difficulties arising in the control of 
bioprocesses arrive from two main sources: the process complexity and the difficulty to 
have reliable measurements of bioprocess variables (Bastin & Dochain, 1990; Selişteanu et 
al., 2007a). 
In order to overcome these difficulties several strategies for the control of bioprocesses were 
developed, such as adaptive approach (Bastin & Dochain, 1990; Mailleret et al., 2004), 
vibrational control (Selişteanu & Petre, 2001; Selişteanu et al., 2007a), sliding mode control 
(Selişteanu et al., 2007a; Selişteanu et al., 2007b), fuzzy and neural strategies etc.  
Sliding mode control (SMC) has been widely accepted as an efficient method for control of 
uncertain nonlinear systems (Utkin, 1992; Slotine & Li, 1991; Edwards & Spurgeon, 1998).  
The classical applications of SMC (such as robotics, electrical machines etc.) were extended 
to SMC of chemical processes (Sira-Ramirez & Llanes-Santiago, 1994) and to SMC of 
bioprocesses (Selişteanu et al., 2007a; Selişteanu et al., 2007b). The well-known advantages of 
the SMC are the robustness, controller order reduction, disturbance rejection, and 
insensitivity to parameter variations. The main disadvantage of the SMC strategies used in 
real applications remains the chattering phenomenon, even if some techniques of chattering 
reduction were developed (Slotine & Li, 1991; Edwards & Spurgeon, 1998). 
Vibrational control (VC) is a non-classical open-loop control method proposed by Bellman, 
Bentsman and Meerkov (Meerkov, 1980; Bellman et al., 1986a; Bellman et al., 1986b). 
Applications of the vibrational control theory can be found for: stabilization of plasma, 
lasers, chemical reactors, biotechnological processes (Selişteanu et al., 2007a) etc. The VC 
technique is applied by oscillating an accessible system component at low amplitude and 
high frequency. Therefore, this technique can be considered, like the SMC, a form of high-
frequency control (obviously high-frequency relative to the natural frequency of the system). 
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But, unlike the SMC, the amplitude and the frequency of the control input are constants and 
independent of the state of the system, so this technique is a form of open-loop control.     
In this chapter, which is an extended work of (Selişteanu et al., 2007a), two nonlinear control 
strategies for bioprocesses are designed: a feedback SMC law and a vibrational control 
strategy. First, a class of bioprocesses is briefly analysed and a nonlinear prototype model is 
presented in detail. Then, the design of a feedback control law for a prototype bioprocess is 
developed. The design is based on a combination between exactly linearization, sliding 
mode control, and generalized observability canonical forms. In order to implement this 
SMC law, asymptotic observers (Bastin & Dochain, 1990) will be used for the reconstruction 
of unmeasured states. The next paragraph deals with the presentation of most important 
results of vibrational control theory. Also, a VC strategy for a continuous bioprocess is 
developed. The existence and the choice of stabilizing vibrations, which ensure the desired 
behaviour of the bioprocess are analysed. Some simulations results, comparisons of the 
proposed nonlinear control strategies, and final remarks are also presented.  

2. Nonlinear dynamical models of the bioprocesses 

2.1 The dynamical model of a class of bioprocesses 

In bioindustry, the bioprocesses take place in biological reactors, also called bioreactors. A 
bioreactor is a tank in which several biological reactions occur simultaneously in a liquid 
medium (Bastin & Dochain, 1990). These reactions can be classified into two classes: 
microbial growth reactions and enzyme-catalysed reactions. The bioreactors can operate in 
three modes: the continuous mode, the fed-batch mode and the batch mode. For example, a 
Fed-Batch Bioreactor (FBB) initially contains a small amount of substrates and micro-
organisms and is progressively filled with the influent substrates. When the FBB is full the 
content is harvested. By contrast, in a Continuous Stirred Tank Bioreactor (CSTB) the 
substrates are fed to the bioreactor continuously and an effluent stream is continuously 
withdrawn from the reactor such that the culture volume is constant.  
In practice, the bioprocess control is often limited to regulation of the temperature and pH at 
some constant values favourable to the microbial growth. 
There is however no doubt that the control of the biological state variables (biomass, 
substrates, products) can help to increase the bioprocess performance. In order to develop 
and apply advanced control strategies for these biological variables, obviously is necessary 
to obtain a useful dynamical model. The modelling of bioprocesses is a difficult task; 
however, using the mass balance of the components inside the bioreactor and obeying some 
modelling rules, a dynamical state-space model can be obtained (Bastin & Dochain, 1990; 
Bastin, 1991). 
A process carried out in a bioreactor can be defined as a set of m biochemical reactions 
involving n components (with mn ≥ ). The reaction scheme of a bioprocess (the reaction 
network) contains n components and m reactions. The concentrations of the physical 

components will be denoted with the notations n,1i,i =ξ . The reaction rates will be 

denoted as m,1j,j =ϕ . The evolution of each component is described by the differential 

equation (Bastin & Dochain, 1990): 

 ( )∑ −+ξ−ϕ±=ξ
i~j

iiijiji QFDk$   (1) 
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where iξ$  is the time derivative of the concentration iξ  (g/l) and the notation i~j  indicates 

that the sum is done in accordance with the reactions j that involve the component i. The 
positive and dimensionless constants ijk  are yield coefficients. The sign of the first term of 

(1) is given by the type of the component iξ : plus (+) when the component is a reaction 

product and minus  (-) otherwise. D is the specific volumetric rate (h-1), usually called 

dilution rate. iF  represents the rate of supply of the component iξ  (external substrate) to the 

bioreactor per unit of volume (g/lh). When this component is not an external substrate, then 

0Fi ≡ . iQ  represents the rate of removal of the component iξ  from the bioreactor in 

gazeous form per unit of volume (g/lh). 
In order to obtain a dynamical state-space model of the entire bioprocess, we denote 

[ ]Tn21 ξξξ=ξ A , where ξ  is the n-dimensional vector of the instantaneous 

concentrations, also is the state of the model. The vector of the reaction rates (the reaction 

kinetics) is denoted [ ]Tm21 ϕϕϕ=ϕ A . The reaction rate vector is m-dimensional. 

Usually, a reaction rate is represented by a non-negative rational function of the state ξ . The 

yield coefficients can be written as the ( mn × ) – dimensional yield matrix [ ] ,KK ij=  

m,1j;n,1i == , where ijij k)(K ±=  if i~j  and 0 otherwise. Next, we introduce the notations 

[ ] ,FFFF T
n21 A=  [ ]T

n21 QQQQ A= , where F is the vector of rates of supply and 

Q is the vector of rates of removal of the components in gazeous form. 
From (1), with the above notations, the global dynamics can be represented by the 
dynamical state-space model (Bastin & Dochain, 1990):  

 ( ) QFDK −+ξ−ξϕ⋅=ξ$  (2) 

This model describes in fact the behaviour of an entire class of biotechnological processes 
and is referred to as the general dynamical state-space model of this class of bioprocesses 

(Bastin & Dochain, 1990; Bastin, 1991). In (2), the term ( )ξϕ⋅K  is in fact the rate of 

consumption and/or production of the components in the reactor, i.e. the reaction kinetics. 
The term QFD −+ξ−  represents the exchange with the environment, i.e. the dynamics of 

the component transportation through the bioreactor. The strongly nonlinear character of 
the model (2) is given by the reaction kinetics. In many situations, the yield coefficients, the 
structure and the parameters of the reaction rates are partially known or unknown. 

Remark 1. In a FBB, the term iDξ  represents the dilution of a component due to the increase 

in volume. In this case D is the specific rate of volume increase ( VDV ⋅=$ , with V the liquid 

volume in the FBB and V$  its time derivative). In a CSTB, iDξ  represents the rate of 

removal of a component in liquid form (in a CSTB, 0V =$ ). 

Often in practice, the bioprocess control goal is to regulate a scalar output y, which can be 
defined as a linear combination of the state variables. Usually, this control objective is 
reached using as a control input one of the components of F, i.e. a rate of supply of an 

external substrate: iFu = . Consequently, the vector F can be written as F
~

ubF +⋅= , with 
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[ ]T
n21 bbbb A= ; ,1bi =  ,0b j =  ji ≠ ; and [ ]Tn21 F

~
F
~

F
~

F
~ A= ; ,0F

~
i =  ij,FF

~
jj ≠= . 

Then, the model (2) can be rewritten as 

 
( ) ( )

( )ξ=
⋅+ξ=⋅+−+ξ−ξϕ⋅=ξ

hy

ubfubQF
~

DK$
 (3) 

2.2 The model prototype of a continuous bioprocess 
A model prototype of a continuous bioprocess that takes place inside a CSTB is described by 
the following nonlinear system (Bastin & Dochain, 1990; Dochain & Vanrolleghem, 2001): 

 ( ) 1121
1 D,

dt

d
ξ⋅−ξ⋅ξξμ=

ξ
 (4) 

 ( ) in21211
2 SDD,k

dt

d
⋅+ξ⋅−ξ⋅ξξμ−=

ξ
 (5) 

where 21 , ξξ  represent the biomass and the limiting substrate concentrations (g/l). Sin is the 

influent substrate concentration, and D is the dilution rate (h-1). In (4), (5) μ  is the specific 

growth rate and k1 > 0 the yield coefficient.  
The bioprocess (4), (5) is in fact a fermentation process, which usually occurs in a bioreactor. 
A compact representation of (4), (5) is: 

 ( )ξ=ξ f$  (6) 

with ( ) ( ) ( )[ ]T212211 ,f,,ff ξξξξ=ξ  and [ ]T21 ξξ=ξ  the state vector.  

The equilibrium states of (4), (5) are of two types: 
E1. Wash-out state, defined by: 

 [ ] [ ]Tin
T

2s1ss S0=ξξ=ξ  (7) 

This equilibrium is a state when the bacterial life has disappeared; therefore, the wash-out 
state has not practical interest. 
E2. Operational equilibrium states, implicitly defined by: 

 
( )

( )⎩
⎨
⎧

=ξ+ξξξμ
=ξξμ

in2s1s2s1s1

2s1s

DSD,k

D,
 (8) 

These equilibria can be attractive or repulsive depending on the particular form of ( )21 ,ξξμ . 

Only these equilibria have a practical interest. Let’s assume that the specific growth rate is of 
the form: 

 ( ) ( )
i

2
22M

2
0221

K/K
,

ξ+ξ+
ξ

μ=ξμ=ξξμ  (9) 

This is the Haldane kinetic model of the specific growth rate (Bastin & Dochain, 1990), 
where KM is the Michaelis-Menten constant, Ki the inhibition constant and 0μ  the maxim 

specific growth rate.  
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Let's analyse the stability of the equilibria (E2) for given constant inputs D and inS . The 

linear approximation of the system (4), (5) around the equilibrium point (E2) is: 

 ( ) ( )sss )(A
dt

d
ξ−ξξ=ξ−ξ  (10) 

where ( )sA ξ  is the matrix of the linearized system, which takes for the specific rate (6) the 

form: 

 ( ) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−ρ−ξμ−

ρ
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ξ∂
∂

ξ∂
∂

ξ∂
∂

ξ∂
∂

=ξξ=ξξ=ξ

ξ=ξ

Δ

Dkk

0

ff

ff

,J,AA
12s1

2

2

1

2

2

1

1

1

2s1s2s1ss

s

 (11) 

where 
( )

( )2i
2
2s2sM

i
2
2sM

01s
2

2
1s

N

K/K

K/K

d

d

2s2
ξ+ξ+

ξ−
μξ=⎥

⎦

⎤
⎢
⎣

⎡

ξ
ξμ

ξ=ρ
ξ=ξ

.  

The eigenvalues of the matrix (11) are 0D1 <−=λ  (D is positive) and ρ−=λ 12 k . The 

equilibrium state is stable only if 0>ρ , i.e.: 

 ( ){ }2iM2s
2

maxKK0 ξμ=<ξ≤
ξ

 (12) 

Two possibilities appear for the equilibria (E2): 
a) - if the condition (12) is achieved: 

1

1,2sin
1,1s

N

1

2sin
1s

k

S

k

S ξ−
=ξ=

ξ−
=ξ ; 

1,2s

N

2s ξ=ξ  

(13) 

b) - or contrarily: 

1

2,2sin
2,1s

N

1

2sin
1s

k

S

k

S ξ−
=ξ=

ξ−
=ξ ; 

2,2s

N

2s ξ=ξ  

(14) 

The case a) corresponds to a stable equilibrium point (stable node) with 0,0 21 <λ<λ . The 

case b) leads to a saddle type for the equilibria (E2): 0,0 21 >λ<λ . The phase plane of the 

system (4), (5) for the values of the parameters: 1
0 h6 −=μ , l/g10KM = , l/g100K i = , 

1h6.3D −= , 1k1 = , l/g100S in =  and for different initial conditions is represented in Fig. 1. 

From this picture it can be seen that when the substrate inhibition appears, the process can 
exhibit unstable or, maybe worse, the evolution leads to wash-out steady-state, for which 
the microbial life has disappeared and the reactor is stopped. In these situations, the 
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bioprocess requires control to stabilize the CSTB. Moreover, in many cases, the stable 
equilibrium point corresponding to a) is not technological operable (requires a big initial 
amount of biomass). 
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ξ 
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Fig. 1. Phase portrait of the continuous bioprocess – state trajectories and equilibrium points 

The model (4), (5) is a prototype model for some bioprocesses, as the activated sludge 
bioprocess, anaerobic digestion process for wastewater treatment etc. (Dochain & 
Vanrolleghem, 2001) and for other biotechnological applications. For instance, the control 
objective for the waste treatment processes is to control the concentration of some pollutants 
at a constant (low) level. Various control strategies were developed for this prototype 
bioprocess: exact linearizing strategy (Bastin & Dochain, 1990), adaptive control (Bastin & 
Dochain, 1990; Bastin, 1991; Dochain & Vanrolleghem, 2001) and so on. The exact linearizing 
control does not work when the kinetics are imprecisely known because the exact 
cancellation of the nonlinearities would not be possible. The performance of adaptive 
control decreases when large and abrupt changes occur in bioprocess parameters.  
Viable alternatives are the sliding mode control (Fossas et al., 2001; Stanchev, 2003; Tham et 
al., 2003) and adaptive sliding mode control strategies (Selişteanu & Petre, 2005; Selişteanu 
et al., 2007b) with good performance in the presence of parameter uncertainties and external 
disturbances. Another possible strategy is the open-loop vibrational control (Selişteanu et 
al., 2007a); in this situation, on-line measurements of the state variables are no more needed. 

3. Sliding mode control design 

3.1 Linearizing sliding mode control law design 

In order to implement a viable SMC strategy for the continuous bioprocess, the control goal 
is to design a discontinuous feedback law by using the exactly linearization of the system 
(Isidori, 1995) and by imposing a SMC action that stabilize the output. The control strategy 
is obtained by repeated output differentiation and by imposing a discontinuous feedback 
controller, which drives the output of the system to satisfy a stable linearized dynamics; for 
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details see (Sira-Ramirez, 1992; Sira-Ramirez & Llanes-Santiago, 1994; Selişteanu et al., 
2007b). Let’s define the output of the system (4), (5) as 

 ( ) Chy 1 −ξ=ξ=  (15) 

The control variable is the rate of supply of substrate to the reactor per unit of volume, i.e. 

inSDu ⋅=  (g/lh). The control goal for the biological process (4), (5), (15) is to regulate the 

concentration error y towards zero so that the biomass concentration value 1ξ  converges to 

a prescribed setpoint value specified by the constant C. It is assumed that the control 
variable u is naturally bounded in the interval [0, Umax]. This SMC strategy can be applied 
for the nonlinear bioprocess (4), (5), (15) if the so-called observability matrix 

( ) ( ) T)1(hh
⎥
⎦

⎤
⎢
⎣

⎡
ξ∂

ξ∂
ξ∂
ξ∂

=O  (16) 

is full rank (Fliess, 1990; Sira-Ramirez, 1992; Sira-Ramirez & Llanes-Santiago, 1994). It is easy 
to verify, after some straightforward calculations, that the rank of the observability matrix is 

equal to 2 (full rank), except on line 01 =ξ , which is devoid of practical significance ( 1ξ  

represents the biomass concentration; so 01 =ξ  means no micro-organisms and the life in 

the bioreactor is stopped). 

Assume that ( )sss u,uu ξ=ξ=  expresses a constant equilibrium point for the system (4), 

(5), (15) such that ( )( )ss uh ξ  is zero. The stability nature of an equilibrium point suu =  of the 

zero dynamics (Sira-Ramirez, 1992; Sira-Ramirez & Llanes-Santiago, 1994) determines the 
minimum or non-minimum phase character of the system (4), (5), (15). Next, the constant 

equilibrium point of this system is represented as ( )( ) ==ξ 0y,u,u ssss ( )( )0,u,u sssξ . A 

stable constant equilibrium point for (4), (5), (15) is given by (13), if the condition (12) is 
achieved. In this case, the system is locally minimum phase around this equilibrium point 
(i.e. the zero dynamics is locally asymptotically stable to the equilibrium point).  
The following input-dependent state coordinate transformation: 

 
( ) 11212

11

Dyz

Cyz

ξ−ξξμ=ξ==

−ξ==
$$

 (17) 

allows one to obtain an observability canonical form for the system (4), (5), (15) (for details 

about the generalized observability canonical forms see (Fliess, 1990)). The inverse of this 

transformation is obtained by solving (17) with respect to 1ξ  and 2ξ . One can obtain also 

the transformed system equations, which are of the form: 

 ( )
1

212

21

zy

u,z,zz

zz

=
ψ=

=
$
$

 (18) 

where ψ  is a nonlinear function of state variables and of the input.  

For the design of SMC, consider now the auxiliary output function (the sliding surface): 
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 ( ) ( )CDyyzz 111121112 −ξγ+ξ−ξξμ=γ+=γ+=σ $  (19) 

If (19) is zeroed by means of a discontinuous control strategy, then it follows that the time 
response of the controlled output y is ideally governed by an asymptotically stable linear 

time-invariant dynamics 111 zz γ−=$  (for the design parameter 01 >γ ). 

Proposition 1. The following discontinuous feedback control law (sliding mode control law): 

( ) ( ) ( )( )
( ) ( ) ( )( ) ( )[ ]σ⋅+ξ−ξμγ⋅

ξξμ′
−

ξμ′
−ξμ

−ξ+ξξμ= sgnkD
1D

Dktu 121
122

2
2

2121  (20) 

imposes to the output of the system (18), in finite time, a linearized dynamics of the form 

0yy 1 =γ+$ . In (20), k is a strictly positive scalar, “sgn” stand for the signum function, 

01 >γ , and ( ) ( )
2

2
Δ

2
d

d

ξ
ξμ

=ξμ′ . 

Proof. The proof is immediate considering the auxiliary output function (19) and imposing 
on this auxiliary output the discontinuous dynamics ( )σ⋅−=σ sgnk$ , which leads to the 

implicit discontinuous equation ( ) =ψ u,z,z 21  ( )σ−γ− sgnkz21 . Then the control law (20) is 

easily obtained using the original state coordinates. This discontinuous system globally 

exhibits a sliding regime on 0=σ . Any trajectory starting on the value ( )0σ=σ  at time 0 

reaches the condition in finite time T given by ( )0kT 1 σ= −  (see (Utkin, 1978; Sira-Ramirez 

& Llanes-Santiago, 1994)). 

The basic idea for the design of the SMC law (20) is to use the auxiliary output 0=σ  as a 

sliding surface, and so to force the system trajectories to remain on this surface. 
Remark 2. In the case of a static SMC law, the inherent chattering can be reduced using 
various continuous approximations of the SMC (Slotine & Li, 1991; Edwards & Spurgeon, 
1998; Bartoszewicz, 2000), which are designed to make a boundary layer attractive such that 
the trajectories started off the boundary layer will be attracted to this region in a finite time. 
A possibility is to use the so-called sampled SMC (Sira-Ramirez & Llanes-Santiago, 1994). To 
reach a good compromise between small chattering and tracking precision a range of other 
compensation strategies have been proposed, such as integral sliding mode control, sliding 
mode control with time-varying boundary layers (Slotine & Li, 1991), fuzzy sliding mode 
control (Palm et al., 1997) and complementary SMC (Su & Wang, 2002).  

3.2 Design of state observers for bioprocesses 

The SMC law presented in the previous paragraph can be implemented only if the 
measurements of state variables are available on-line. However, in many practical 
applications, only a part of the concentrations of the components involved are measurable 
on-line. In such cases, an alternative is the use of state observers. An important difficulty 
when applying state observers to bioprocesses is related to the uncertainty of models 
describing their dynamics. Presently two classes of state observers for bioprocesses can be 
found in the literature (Bastin & Dochain, 1990; Bastin, 1991; Dochain & Vanrolleghem, 
2001).  
The first class of observers (including classical observers like Luenberger and Kalman 
observers, nonlinear observers) are based on a perfect knowledge of the model structure. A 
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disadvantage of this class is that the uncertainty in the model parameters can generate 
possibly large bias in the estimation of the unmeasured states. A second class of observers, 
called asymptotic observers, is based on the idea that the uncertainty in process models lies 
in the process kinetics models. The design of these observers is based on the mass and 
energy balances without the knowledge of the process kinetics being necessary. The 
potential drawback of the asymptotic observers is that the rate of estimation convergence 
depends on the operating conditions (Selişteanu et al., 2007b). 
A general class of observers for bioprocesses of the form (2) is (Bastin & Dochain, 1990): 

 )ˆ()ˆ(QFˆD)ˆ(Kˆ
11 ζ−ζ⋅ξΩ+−+ξ⋅−ξϕ=ξ

$
 (21) 

where ξ̂  is the estimated state vector, )ˆ(ξΩ  is a gain matrix, and 1ζ  is the vector of 

measurable state variables: ξ⋅=ζ L1 , L being a selection matrix. The design of observer lies 

in the choice of the gain matrix.  

If in the model (2) the reaction rate )(ξϕ  is completely known, it is possible to design the so-

called exponential observers, such as extended Luenberger or Kalman observers based on 
the general form (21). But the reaction rates are usually incompletely known (uncertainties 
of parametric or structural nature); therefore it is not possible to design and to use such 
observers. A possibility is to use an asymptotic observer (Bastin & Dochain, 1990; Bastin, 
1991; Dochain & Vanrolleghem, 2001), which can be designed even without knowledge of 
kinetic reaction. The design of an asymptotic observer is based on some useful changes of 
coordinates, which lead to a submodel of (2) which is independent of the kinetics. In order 

to achieve the change of coordinates, a partition of the state vector ξ  in two parts is 

considered. This partition denoted ),( ba ξξ induces partitions of the yield matrix K: (Ka, Kb), 

also of the rate vectors F and Q: (Fa, Fb), (Qa, Qb) accordingly. We suppose that a state 

partition is chosen such that the submatrix aK  is full rank and )K(rank)dim( aa =ξ  

)K(rank= . Then a linear change of coordinates can be defined as follows: baGz ξ+ξ⋅= , 

with z an auxiliary state vector and G the solution of the matrix equation 0KKG ba =+⋅ . In 

the new coordinates, model (2) can be rewritten as 

 
bbaa

aaaaaaa

QF)QF(GzDz

QFD)Gz,(K

−+−⋅+⋅−=
−+ξ⋅−ξ−ξϕ=ξ

$

$
 (22) 

The main achievement of the change of coordinates is that the dynamics of the auxiliary 
state variables z is independent of the reaction kinetics. Now z  can be rewritten as a linear 

combination of the vectors of measured states 1ζ  and unmeasured states 2ζ : 

 2211 GGz ζ⋅+ζ⋅=  (23) 

with G1 and G2 well defined matrices. If the matrix G2 is left invertible, the asymptotic 
observer equations for (2) derive from the structure of equations (22) and (23): 

 
)Gẑ(Gˆ

QF)QF(GẑDẑ

1122

bbaa

ζ−⋅=ζ

−+−⋅+⋅−=
+

$
 (24) 
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where T
2

1
2

T
22 G)GG(G −+ = . The asymptotic observer is indeed independent of the kinetics. 

The asymptotic observer (24) has good convergence and stability performance (Bastin & 
Dochain, 1990; Bastin, 1991; Dochain & Vanrolleghem, 2001). 
Concerning the continuous bioprocess (4), (5), (15), a possible practical situation, which can 
appear when the sliding mode control law (20) is implemented, is that the only 
measurement on-line available is the biomass concentration inside of CSTB. In this case, the 
unmeasured variable 2ξ  (the substrate concentration) can be estimated by using an 

asymptotic state observer. For that, let us define the auxiliary variable ζ  as follows: 

211k ξ+ξ=ζ
 

In the new coordinates, the model (4), (5), (15) can be rewritten 

( )

Cy

uD

Dk

1

11111

−ξ=
+ζ−=ζ

ξ−ξξ−ζμ=ξ
$

$

 

The asymptotic observer equations derive from the above model:  

 

112 kˆˆ

uˆD
dt

ˆd

ξ−ζ=ξ

+ζ⋅−=
ζ

 (25) 

The dynamics of the auxiliary variable ζ  is independent of the reaction kinetics. The 

estimations of 2ξ  obtained using this asymptotic observer can be used in the sliding mode 

control law (20), which takes the form: 

 ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )[ ]σ⋅+ξ−ξμγ⋅

ξξμ′
−

ξμ′
−ξμ

−ξ+ξξμ= sgnkDˆ
ˆ
1

ˆ
Dˆ

ˆDˆktu 121

122

2

2
2121  (26) 

4. Vibrational control design 

4.1 Vibrational control theory fundaments 
The general theory of vibrational control was developed by Bellman, Bentsman and 
Meerkov (Meerkov, 1980; Bellman et al., 1986a; Bellman et al., 1986b), who presented the 
criteria for vibrational stabilizability and vibrational controllability of linear and nonlinear 
systems. Consider a nonlinear system given by the equation: 

 ( )α= ,xfx$  (27) 

with nmn:f ℜ→ℜ×ℜ , nx ℜ∈  is a state and mℜ∈α  is a parameter, in fact a vector that 

contains the system parameters. Suppose that for a fixed 0α=α  the system (27) has the 

equilibrium ( )α= ss xx . Let introduce now in (27) parametric vibrations according to the 

law: 

 ( ) ( )tgt 0 +α=α  (28) 
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where 0α  is a constant vector and g(t) is an almost periodic vector function with average 

equal to zero (APAZ vector). Then (27) becomes: 

 ( )( )tg,xfx 0 +α=$  (29) 

Definition 1 (Bellman et al., 1986a). An equilibrium point ( )0sx α  of (27) is vibrationally 

stabilizable if for any 0>δ  there exists an APAZ vector g(t) such that (29) has an 

asymptotically stable almost periodic solution ( )txs  characterized by ( ) δ<α− 0s
s xx , 

( ) ( )∫ ττ==
→∞

Δ T

0

s

T

ss dx
T

1
limtxx . 

Definition 2 (Bellman et al., 1986a). An equilibrium point ( )0sx α  of (27) is totally 

vibrationally stabilizable if it is vibrationally stabilizable and in addition we have 

( ) == consttxs ( )0sx α , ℜ∈∀t .  

The vibrational stabilizability problem consists of finding conditions for existence of 
stabilizable vibrations. Meerkov has demonstrated since 1980 (Meerkov, 1980) that for linear 
systems, vibrational stabilizability implies total stabilizability. If the matrix A of the linear 

system Axx =$  is a nonderogatory matrix, i.e. the minimal and characteristic polynomials 

coincide, a sufficient condition of v-stabilizability is ( ) 0Atr < . 

Considered now a class of nonlinear systems such that (29) is represented as: 

 ( ) ( ) ( )( )x,tgf,xftx v0 +α=$  (30) 

with ( )⋅⋅,fv  a vector function linear with respect to its first argument and ( ) ( )0

N

,xfxf α=  ( 0α  

fixed). 
For this large class of nonlinear systems with parametric oscillations, a classification can be 

done with respect to the form of ( )⋅⋅,fv :  

i) ( )( ) ( )tLx,tgfv = , where ( )tL  is an APAZ vector and the vibrations are called vector 

additive. If ( ) ( )[ ]Ttl00tL A= , i.e. all but the last components of ( )tL  are zero, the 

vibrations are AP – forcing;  

ii) ( )( ) ( )xtBx,tgfv = , with ( )tB  an APAZ matrix. These vibrations are linear multiplicative; 

iii) ( )( ) ( ) ( )xtBx,tgfv Γ=  - vibrations are nonlinear multiplicative. ( )tB  is an APAZ matrix. 

In (Bellman et al., 1986a; Bellman et al., 1986b) the existence of stabilizing vibrations for the 
class of the nonlinear system (30) is analyzed and it is shown in what sense and under which 
conditions an equilibrium of (30) can be stabilized. The general conclusion of (Bellman et al., 
1986a; Bellman et al., 1986b) is that the VC with vibrations of the form i) and ii) is not 
feasible if the Jacobian matrix has a positive trace. The case of nonlinear multiplicative 
vibrations iii) was studied for a subclass of nonlinear systems in (Bentsman, 1987). Once the 
conditions for existence of vibrational stabilizability are settled for a system, it is necessary 
to solve another important problem: finding the specific form of stabilizing vibrations. This 
problem is referred as vibrational controllability (Bellman et al., 1986b). 
Consider the general solution of 

 ( ) ( )( )x,tgftx v=$  (31) 
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denoted as ( ) ( )c,ttx ϑ= , where nc ℜ∈  is a constant uniquely defined for every initial 

condition ( )00 t,x  and assume that this general solution is almost periodic. The substitution 

( ) ( )( )tx~,ttx ϑ=  transforms the nonlinear system (30) into ( )( ) ( )x~,tXx~,tf
x~

x~
1 Δ−

=ϑ⋅⎥⎦
⎤

⎢⎣
⎡

∂
∂ϑ

=$ . Then, 

the averaging of this system is: 

 ( )aa xXx =$ ( ) ( )∫∞→

Δ
==

T

0
T

dtx~,tX
T

1
limx~,tX  (32) 

Consider 
sa

x
,

 an equilibrium of (32), and the linearization of (32) around s,ax : 

 
( )

a

xxa

a
a x

x

xX
x

s,aa

⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

=
=

$  (33) 

The goal is to find an APAZ vector g(t) that induces a dynamic equivalence between 

systems (30) and (32). Assume that the equilibrium sx  of (30) satisfies the equality 

( )s,as x,tx ϑ= . Then, for the equilibrium s,ax  corresponding to sx , the linearization (33) can 

be represented as: 

 ( ) aa xHJx ⋅+=$  (34) 

where J is the Jacobian matrix of (30) for the equilibrium sx  and H is a constant nn ×  

matrix. 

Definition 3 (Bellman et al., 1986b). An element ijj  of matrix J is vibrationally controllable if 

there exists an APAZ vector g(t) such the corresponding element ijh  of H is nonzero. 

The type of vibrations and their parameters depend of the particular nonlinear system that 
is analysed. Calculation formulas have been obtained in (Bellman et al., 1986b). Assume that 
the Jacobian matrix J of the nonlinear system (30) has negative trace. Then the calculation 
formula for linear multiplicative vibrations applied to the nonlinear system is: 

 JRH −= ,    ( ) ( )0,tJ0,tR 1 Φ⋅⋅Φ= −  (35) 

where ( )0,tΦ  is the state transition matrix of the system (30), in the particular case of the 

linear multiplicative vibrations ii): ( )( ) ( )xtBx,tgfv = . 

4.2 The vibrational control strategy for the continuous bioprocess 

The basic idea of vibrational controlled CSTB is to vibrate the flow rates and in this way to 

operate the bioreactor at average conversion rates which were previously unstable. By using 

this technique is possible to eliminate significant expenses associated with feedback. Since 

the vibrations depend only on time and not on the value of states, there no longer was a 

need to take measurements of concentrations. 

In order to apply the vibrational control we have three possibilities: additive vibrations, 

linear multiplicative vibrations or nonlinear multiplicative vibrations. The general 

www.intechopen.com



Nonlinear Control Strategies for Bioprocesses: Sliding Mode Control versus Vibrational Control 

 

213 

conclusion of (Selişteanu & Petre, 2001) is that the additive vibrations and AP-forcing VC 

are not applicable to the bioprocess described in Section 2. A study about the linear 

multiplicative VC of the CSTB is achieved next.  

Consider the bioprocess (4), (5) with the equilibria (E1) or (E2). From operational point of 

view, only the equilibrium (E2) is interesting. With the Haldane kinetic model of the specific 

rate (9), we have two possibilities for the equilibrium (E2): stable equilibrium point (13) - a 

stable nod - if 0>ρ  and saddle type of equilibrium point (14), i.e. instability, if 0<ρ  (see 

also Fig. 1). In those situations when the substrate inhibition appears, the bioprocess can 

exhibit unstable or can go to the wash-out; in these cases the system requires control in 

order to stabilize the CSTB. 

The trace condition for the Jacobian matrix (11) of the bioprocess (4), (5) is achieved if: 

 0Dk)J(tr 1 <−ρ−=  (36) 

Assume that (36) is respected. The vibrational controlled bioprocess is of the form: 

 ( ) ( ) ξ⋅+ξ=ξ tBf$  (37) 

where B(t) is an APAZ matrix.  

There exists positive .const0 =ε  such that vibrations ( ) ( )ε⋅ε /tB/1 , 00 ε≤ε< , induce a 

dynamic equivalence between the linearized averaged system of the form (32), denoted here 

)(ξΞ=ξ$ , and the vibrationally controlled process ( ) ( ) ( ) ξ⋅ε⋅ε+ξ=ξ /tB/1f$ . In order to 

apply the VC, it is important to find the particular form of B(t) such that this dynamical 

equivalence is achieved. Consider B(t) of the form: 

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

0tb

00
tB  (38) 

Then the state transition matrix of ( )ξ=ξ tB$  is: ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
ϕ

=Φ
1t

01
t , with ( ) ( )∫ ττ=ϕ

t

0

dbt .  

Assuming that ( ) 0t =ϕ  we obtain from (35): 

 ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−ρ−ϕρ−ξμ−

ρ
=

Dktk

0
R

1
2

2s1

 (39) 

For b(t) – an APAZ function – we consider the cosinusoidal form: ( ) ( )tcostb β= . 

Consequently we have ( ) ( ) 2/d
T

1
limt 2

T

0

2

T

2 β=ττϕ=ϕ ∫→∞
, and finally R and then H using the 

calculation formula (35) are obtained: 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−ρ−β⋅ρ−ξμ−

ρ
=

Dk2/k

0
R

1
2

2s1

 (40) 
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 ⎥
⎦

⎤
⎢
⎣

⎡
β⋅ρ−

=−=
02/

00
JRH 2  (41) 

For β  chosen such that R is Hurwitz, and for ε  sufficiently small, the vibrations (38) 

stabilize the equilibrium (14) of (4), (5). A theoretical value for 0ε  is complicated to obtain, 

but a practical value can be obtained via simulation. 
Remark 3. Because the equilibrium (14) is nonzero (nontrivial), in fact it is stabilizable by a 
combination of linear multiplicative and vector additive vibrations ( ) ( )stB ξ−ξ⋅ . 

5. Simulation results 

Sliding mode control. Simulation were performed for a continuous stirred tank bioreactor 
(CSTB) described by the model (4), (5), (15) with the parameters from paragraph 2. Two 
simulation cases are considered: 

i) The simulated control task considered the problem of stabilizing the output y to 0y* = , 

using the SMC law (20). In fact, the closed loop system was tested for a step profile of the 
external substrate reference C. The final reference value is achieved in two steps: first the 

reference is set to 70 g/l; the next reference is set to the value g/l80C*
1 ==ξ . The SMC law 

parameters are 11 =γ  and 3k = .  

Figure 2 presents the time evolution of the concentrations, and Fig. 3 depicts the output and 
the control input.  
The behaviour of the concentrations is good, but it can be seen that the control action 
exhibits a chattering, which can be unacceptable in practice. The profile of the auxiliary 
output function (the “sliding surface”) and a magnification of this auxiliary output are 
depicted in Fig. 4. In order to obtain a smoothed control input, a saturation function is used 
and the results are presented in Fig. 5. 
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Fig. 2. Time evolution of the substrate and biomass concentrations – SMC case 
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Fig. 3. Profiles of output and control input (rate of supply of substrate per unit of volume) 
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Fig. 4. The evolution of the auxiliary output (the sliding surface), including a zoom area 

ii) In order to test the robustness properties of the controlled bioprocess and to add realism 

to the simulation, a parametric disturbance in the yield coefficient 1k  was considered (a 

50% variation from the nominal value); this coefficient is uncertain in practice. The 

disturbance occurs once in the simulation time interval, about 1 h in duration (time interval 

30h – 31h). Also, in this simulation case, only the biomass concentration is considered on-

line measurable.  
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Fig. 5. Time evolution of the output and the control input – the chattering reduction case 

Therefore, the SMC law (26) was implemented, using the estimations 2ξ̂  provided by the 

asymptotic observer (25). The profile of the reference is the same as in the first simulation 

case. The performance of the asymptotic observer can be noticed in Fig. 6, where the 

substrate concentration and its estimate are depicted. Fig. 7 shows that in this simulation 

case, the controlled process exhibits a good behaviour and the SMC law can cope with the 

parametric disturbance. 
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Fig. 6. Profiles of the substrate concentration and its estimate (magnification of a small area) 
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Fig. 7. Time evolution of the concentrations – the SMC parametric disturbance case 

Remark 4. In practice, there exist the so-called parasitic or unmodelled dynamics, along with 

the principal dynamics of the plant (Boiko, 2005; Boiko & Fridman, 2006). The principal 

dynamics are used for the SMC design. On the other hand, to implement the designed 

algorithms, some equipment such as actuators, sensors etc. are needed. Hence it is required 

to take into consideration the parasitic dynamics, introduced mainly by the actuators. Often, 

a first-order (plus time lag) model of the actuator is used, with the transfer function 

( )1sT/eK)s(H a
s

aa += τ− , where aa T,K  are the parameters of the actuator, and τ  is the time 

lag. However, for our CSTB, the dynamics of the actuator are faster than the principal 

dynamics and the time lag is negligible, hence their contribution to the overall system 

dynamics is small. Nevertheless, some supplementary simulation results show that the 

performance of the sliding mode controlled process is deteriorated in this case (in 

comparison with the ideal sliding mode controlled bioprocess) – for example the chattering 

of the control input is increasing and the setpoint regulation performance is deteriorated.  

Remark 5. A problem in the case of SMC is that the robustness of the sliding surface (used in 

the SMC design procedure) with respect to the parametric uncertainties is valid only for 

small variations of the parameters. If the parameters are imprecisely known, then the 

switchings cannot take place with precision on the switching manifold and furthermore the 

stability of the closed loop system can be affected. In that case, an adaptive dynamical SMC 

law can be used in order to improve the performance of the controlled bioprocess 

(Selişteanu et al., 2007b).  

Vibrational control. The simulation is given for the same bioprocess parameters. The value of 

the control parameter 5=β  is chosen such that the matrix R is Hurwitz. In Figure 8, the 

averaged phase portrait of the vibrationally controlled bioprocess (the averaged state 

trajectories) is presented. It can be seen that the previously unstable equilibrium (see Fig. 1) 

is stabilized into a stable node. 
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Fig. 8. The averaged phase portrait of the vibrationally controlled continuous bioprocess 

The time evolution of concentrations and the averaged time trajectories are provided in Fig. 

9. This picture gives a comparison of )t(ξ  (solid curves) and the averaged state variables 

)t(ξ  (dashed curves) for 066.0=ε . To test the robustness of the vibrationally controlled 

bioprocess, the same parametric disturbance in the yield coefficient like in the SMC case was 
considered (in the time interval 10h – 11h). The simulation results are presented in Fig. 10. 
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Fig. 9. Time evolution of the biomass and substrate concentrations – VC strategy 
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Fig. 10. Time profiles of the concentrations – VC parametric disturbance case 

6. Conclusion 

In this work, two nonlinear high-frequency control strategies for bioprocesses are proposed: 
a feedback sliding mode control law and a vibrational control strategy. In order to 
implement these strategies, a prototype bioprocess that is carried out in a Continuous 
Stirred Tank Bioreactor was considered. First, a discontinuous feedback law was designed 
using the exact linearization and by imposing a SMC that stabilizes the output of the 
bioprocess. When some state variables used in the control law are not measurable on-line, 
an asymptotic state observer was used in order to reconstruct these states. Second, using the 
vibrational control theory, a VC strategy for the continuous bioprocess was developed. The 
existence and the choice of stabilizing vibrations, which ensure the desired behaviour of the 
bioprocess are widely analysed. 
Some discussions and comparisons regarding the application of the sliding mode control 
and vibrational control techniques to bioprocesses can be done. Both the SMC and VC 
strategies are high-frequency methods, obviously high frequency relative to the natural 
frequency of the bioprocess. A main difference between VC and SMC is that in vibrational 
case, no measurements of state variables are required.  
The idea of vibrational stabilization is to determine vibrations such the unstable equilibrium 
point of a bioprocess bifurcates into a stable almost periodic solution. The practical 
engineering VC problem can be described as a three steps technique: first it is necessary to 
find the conditions for existence of stabilizing vibrations, second to find which parameter or 
component is physically possible to vibrate and finally to find the parameters of vibrations 
that ensure the desired response.  
From the simulations, the conclusion is that both methods can deal with some parametric 
disturbances. However, from this point of view, the behaviour of the feedback SMC is 
better. For the vibrational technique to be effective, one needs to have an accurate 
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description of system dynamics. This fact together with physical limitation on the 
magnitude and the frequency of vibrations in some cases are the disadvantages of the 
vibrational technique. A drawback of the SMC strategy is the chattering phenomenon. This 
chattering can be reduced using various techniques, but it cannot be eliminated, due to the 
inherent presence of the so-called parasitic dynamics, which are introduced principally by 
the actuator. 
The proposed high-frequency techniques were tested using a prototype of a continuous 
bioprocess. For that reason, the presented results cannot be extended without intensive 
studies to other bioprocesses.  
However, there exist some studies and implementations of the SMC strategy for fed-batch 
bioprocesses (Selişteanu & Petre, 2005). On another hand, using the results obtained by 
(Lehman & Bentsman, 1992; Lehman et al., 1994), the vibrational control theory can be 
extended for time lag systems with bounded delay. Such systems are the bioprocesses that 
take place inside the CSTB with delay in the recycle stream (Selişteanu et al., 2006). 
The obtained results are quite encouraging from a simulation viewpoint and show the 
robustness of the controllers and good setpoint regulation performance. These results must 
to be verified in the laboratory using some real bioreactors. Further research will be focused 
on this real implementation. Also, some theoretical approaches will be the development of 
the high-frequency control strategies for multivariable bioprocesses and of some hybrid 
control strategies for these bioprocesses, like the closed-loop vibrational control (see for 
example (Kabamba et al., 1998)) and the adaptive sliding mode techniques. 
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