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Abstract

Computational Fluid Dynamics (CFD) solutions have played an important role in the
design and evaluation of complex problems where analytical solutions are not available.
Amongmany practical applications, hypersonic flows have been an area of intense research
because of the important challenges found in this flow regime. The numerical study
conducted herein, focuses on solving the hypersonic flat plate problem under realistic
conditions, at high Reynolds and Mach numbers. The numerical scheme implemented in
this study solves the two-dimensional unsteady Navier Stokes Equations, using a novel
technique called Integro-Differential Scheme (IDS) that combines the traditional finite vol-
ume and the finite difference methods. Moreover, this scheme is built on the premise of
reducing the numerical errors through the implementation of a consistent averaging proce-
dure. Unlike other numerical approaches, where free molecular effects are considered, this
study enforces no-slip and fixed temperature as boundary conditions. The IDS approach
accurately predicted the physics in the vicinity of the hypersonic leading edge at such
realistic conditions. Even though there are slight discrepancies between the numerical
solution and the available experimental data, the IDS solution revealed some interesting
details about the flow field that was previously undiscovered.

Keywords: hypersonic flows, computational fluid dynamics, flat plate,
viscous-inviscid interactions

1. Introduction

The flow over a flat plate is a classic yet fundamental fluid dynamic problem. Although the

flow boundaries appear to be simple, the resulting flow field depends greatly on the pre-

scribed free stream conditions. Of course, the free stream conditions are mainly defined by

the Mach and Reynolds numbers as well as the ratio of specific heats. It is the ranges at which

the free stream conditions are set that dictate the physics of the resulting flow field over the flat
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plate, and the complexities associated with it. Herein lie the many technical challenges of

predicting the flat plate flow field. For example, at low Reynolds number and for subsonic

Mach numbers at constant specific heats ratio of 1.4, the resulting flat plate only encourages

the growth of a laminar boundary layer. Simulating such flow fields is relatively simple. As the

Reynolds number increases, the boundary layer transitions to turbulent and the flow field

becomes more challenging to simulate numerically. In the cases where the Reynolds number

gets in the order of several million, the Mach number gets into the Hypersonic range, and the

ratio of specific heat gets closer to 1.2, making the flow field interactions get complicated, and

numerical simulations become unpredictable.

This chapter is concerned with the flow field over a flat plate at hypersonic conditions and at

high Reynolds number. Understanding the flow field dynamics at these conditions will pro-

vide aerospace designers valuable insights into the complex interactions found in space vehi-

cles such as rockets, space shuttles as well as military applications, for instance, hypersonic

and long-range missiles. Under these conditions, the major aerodynamic concerns are aerody-

namic heating and shockwave boundary layer interactions. In addition, the flow field may

consist of two flow regimes; one mainly governed by the kinetic flow theory and another

governed by the continuum flow theory [1]. In the case of the flat plate, especially near the

tip, it is speculated that the displacement thickness increases rather drastically, causing the

flow to move upward, initiating a compression shock wave and the formation of a strong

interaction region. A weak interaction region follows this region. The resulting flow field

becomes even more complicated because of the complex dynamics associated with the two

regions. This shock is called a bow shock, due to its characteristic curvature. The region between

the surface and the shock wave is called the shock layer [2], refer to Figure 1. Further, the shock

layer is divided into two sublayers, each dominated by either inviscid or viscous effect. The

sub-layer closest to the plate surface is known as the boundary layer, and the outer sublayer is

the so-called entropy layer. Typically, the boundary layer undergoes an important transition;

usually from a laminar to a turbulent boundary layer.

Figure 1. Sketch of the flat plate problem.
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Two regions can also characterize the flow along the plate; one near the leading edge and

another further away. In the leading-edge region, the viscous-inviscid interactions are very

strong, and they affect both sublayers: the inviscid entropy and the viscous boundary

sublayers. Further, this strong interaction results in the merging of the entropy and boundary

layer. In contrast, further away from the leading edge, the inviscid-viscous interaction is weak,

and the two sub-layers remain separated. The two zones that are mainly characterized by the

inviscid-viscous interactions are referred to as the strong and weak interaction regions, respec-

tively. The flow phenomena in the strong and weak interaction regions at the leading edge of the

hypersonic plate problem are of paramount importance to this analysis. Because of the inher-

ent complexity of the flow physics, analytical models are scarce, and reliable analyses can only

be obtained exclusively by experiments and numerical simulations.

CFD emerged as a valuable tool for these types of flow studies. Nevertheless, the CFD tool

must be capable of resolving sharp gradients while negotiating systems of partial differential

equations of varying types. In other words, not only are the grids expected to be extremely fine

to fully resolve the sharp gradients manifesting in these regions, the CFD schemes are also

expected to remain computationally stable, accurate and timely.

Many numerical solutions have been proposed. Blottner [3] solved the boundary layer

problem with finite chemical reactions using finite differences. In this study, 11 chemical

species and 20 reactions were considered. Another numerical study was carried out by [4],

where the full time dependent Navier Stokes Equations (NSE) were solved using particle-in-

cell and fluid-in-cell computing methods. In addition, the study revealed that pressure

gradient is appreciable near the leading edge. Unlike reference [3], the boundary conditions

used in [4] were velocity slip and temperature jump at the surface plate. These types of

boundary conditions are widely applied in rarefied hypersonic flows, which have been an

active area of research. These types of flows are found near the leading-edge and experimen-

tal results suggest that strong interaction theory overpredicts the surface pressure [4]. These

discrepancies are attributed to the transition between continuum and free molecular flow.

An extensive comparison was presented by [5], where Direct Simulation Monte Carlo

(DSMC) results were compared to the NSE solution in order to evaluate the accuracy of the

NSE in this regime. They concluded that including the slip conditions improved the

predicted values on the surface properties. However, knowledge about the Knudsen layer is

required to properly define the slip conditions at the surface. Although the Knudsen number

is small in the freestream, its value is considerably high close the surface where density

gradients are large [5]. Under these scenarios, the continuum hypothesis of the NSE falls

apart and the accuracy of the technique is no longer ensured. Furthermore, the numerical

implementation of such boundary conditions requires further simplifications and assump-

tions. For example, the tangential and energy accommodation factors affect the CFD solu-

tions. Tangential accommodation values of 0.5 seem to provide accurate results near the

leading edge, whereas values between 0.75 and 1.0 yield the best agreement further along

the plate [6]. The same author in another publication [7] claimed that the difficulty of

defining these slip conditions is in determining the correct values for the coefficients men-

tioned above and other empirical terms required for the implementation.
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The major objective of this book chapter is to numerically solve the hypersonic flow over a flat

plate problem with a novel numerical method called Integro-Differential Scheme (IDS) [8]. This

study ignores the slip and jump boundary conditions introduced by [7] and directly prescribes

the boundary conditions applicable to the continuum flow theory. Based on the literature

review presented above, the authors of this chapter suggested that the slip and jump condi-

tions are more appropriate for use with the Burnet equations. Further, many literature reviews

suggested that the hypersonic leading-edge phenomena are best explained through the use of

the transition regime, which intersects continuum and free molecular flow theories, where

Burnet equations are appropriate. Although, technical evidence exists to support this hypoth-

esis [5] this demonstration is not the focus of this book chapter.

2. The governing equation

Numerical solutions of fluid dynamic problems are governed by conservation laws. These

laws can be expressed mathematically either in the differential or the integral form. In the case

of compressible fluid flows, these coupled laws form a closed system of partial differential

equations that is called the system of Navier-Stokes Equations (NSE). Herein, the conservation

of mass, momentum and energy principles in the integral form are of interest to this study, and

they are expressed as follows:

∂

∂t
∰
V

rdvþ ∯
S

ruð Þidsi
� �

¼ 0 (1)

∂

∂t
∰
V

ruð Þkdvþ ∯
S

ruð Þidsi
� �

uk ¼ �∯
S

pdsi
� �

þ ∯
S

τikdsi (2)

∂

∂t
∰
V

reð Þdvþ ∯
S

reuð Þidsi
� �

¼ �∯
S

puidsi
� �

þ ∯
S

τikukð Þdsið Þ þ ∯
S

qidsi
� �

(3)

In Eqs. (1)–(3) the symbols: r, u, t represent the density, the velocity components of an

elementary control fluid element, and time, respectively. In addition, the symbols e, p, τij and

qi in Eqs. (1)–(3) represent the internal energy, pressure, the stress tensor and the heat flux

associated with an elementary control volume, respectively. Internal energy, pressure, stress

tensor and heat flux are defined by Eqs. (4)–(7)

e ¼ CvTþ
1

2
ukuk (4)

p ¼ rRT (5)

τik ¼ μ
∂ui

∂xk
þ

∂uk

∂xi
�
2

3
δik

∂uj

∂xk

� �

(6)

qk ¼ �k
∂T

∂xk
(7)

Recent Trends in Computational Science and Engineering78



In Eq. (5), R is the gas constant. The symbols μ and k represent the viscous and thermal

properties of the fluid of interest. For air, the viscosity of the fluid is evaluated using

Sutherland’s law and the thermal conductivity expression,

k ¼ 4:76� 10�6
� �

T3=2= Tþ 112:0ð Þ (8)

In the case of 3D aerothermodynamics, the NSE (1–8) represent a closed system of five

equation relative to five unknowns. These unknowns are called Primitive Variables (PV), and

are defined in the vector form as follows:

PV ≔ r u v w T½ �T (9)

The goal of any numerical solution to the NSE is to determine the primitive variables at every

grid point. However, obtaining a unique solution to the NSE (1–8) requires the prescription of

initial and boundary conditions.

Of course, the full set of the NSE (1–8) does not readily lend itself to analytical solutions. It is

only in recent decades, with the advent of modern computers that the non-existence of analyt-

ical solutions to the NSE ceased to be a limitation to our understanding of the physics under-

pinning flow fields. Modern computers also gave birth to the many modern numerical

methods capable of solving the NSE. Among these methods are the Conservation-Element

Solution Element (CESE) method, Direct Numerical Simulation (DNS), Large Eddy Simulation

(LES), Discontinuous Galerkin Methods (DGM) and the Integro-Differential Scheme (IDS).

These computational methods have all been applied to the task of solving the NSE, and have

all provided varying degrees of success when it comes to elucidating the details associated

with the various flow field physics of interest to the engineers at realistic Reynolds and Mach

numbers. This report highlights the IDS procedure of solving the NSE.

3. The IDS fluid model

Consider the Integro-Differential Model (IDM) as it is applied to the computational solution to the

NSE (1–8). In general, the IDS solution of a given fluid dynamic problem is built on an

interconnecting set of spatial and temporal fluid cells. In the Cartesian system of coordinates, a

typical fluid cell is nothingmore than a carefully chosen elementary rectangular prism, defined by

the dimension; dx, dy and dz. It is the application of a specified fluid cell in relationship to the NSE

equations that determines whether it becomes a spatial or a temporal cell. Nevertheless, consider

the fluid cell illustrated in Figure 2where its implementation in the NSE is irrelevant at this time.

3.1. IDS cell properties

The Cartesian cell defined in Figure 2, has the following properties:

1. The rectangular prism has 6 elementary surfaces and each surface is defined through the

use of 3 directional normals. Further, each normal is defined in either a positive or a
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negative direction in relationship to its respective axis. This definition is not unique to the

IDM, but it is used here for illustrative purposes only

2. Each of the six elementary surfaces, ds, of the fluid cell, is considered a vector and is defined

as follows: δs�i ¼ n�
i dξjdηk, where the indices i, j, and k vary from 1 to 3, representing the x,

y or z coordinate direction. In addition, the area is considered a vector, having both direction

and magnitude. Likewise, the volume of the elementary cell can be defined by δv ¼ dxdydz

for uniform grids. Note, this type of evaluation also works well for non-uniform and

unstructured grids.

3. The fluid cell defined in Figure 2 also allows for mass, momentum and energy fluxes to

traverse its surfaces. At any given instance, the net spatial fluxes traversing a given surface

are defined by a combination of their inviscid and viscous counterparts. The inviscid and

viscous fluxes on the cell surfaces are defined by the symbols: E, Evis, F, Fvis, G, and Gvis,

representing the inviscid and viscous fluxes in the x, y and z directions, respectively.

4. In accordance with the IDM, the flux values are approximated from their edge quantities

using their arithmetic averages, and are assumed to be located at the center of the respec-

tive surfaces. Consequently, all quantities evaluated on any of the cell surfaces are labeled

as averaged quantities. The fluxes of interest on the cell surfaces are the average inviscid

and viscous spatial fluxes on the n�
x surfaces, and they are defined by the symbols: ESurf,nx�

Avg

and ESurf,nx�
Vis, Avg. Likewise, the average inviscid and viscous fluxes on the n�

y and n�
z surfaces

are defined by the symbols: FSurf,nx�Avg , FSurf,nx�Vis, Avg, G
Surf,nz�
Avg and GSurf,nz�

Vis, Avg, respectively. Hav-

ing established the fact that the average cell flux quantities can only be defined on one of

its elementary surfaces, the expressions needed for the evaluation of the spatial fluxes can

now be summarily expressed as,

E ¼ δs�i

ru
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Figure 2. Spatial cell with notation at surface nodes.
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where the subscripts in the right-hand terms represent the location and type of operations

used in evaluating the required average quantities. Similarly, for the inviscid and viscous

fluxes, F, Fvis, G, and Gvis.

5. In a similar manner, the average quantities within the cell volume, such as the time fluxes,

UCell
Avg, and the rate of change of the time fluxes, ∂U=∂tð ÞCellAvg, are defined as

UCell
Avg ¼

r

ru

rv

rw

reT
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(11)

3.2. Computing the cell properties

At this point, the concept of evaluating the volume and surface areas of an elementary fluid cell is

fully formulated. However, the computation of the average time and spatial fluxes within and on

the surface of an IDS cell is still not uniquely defined. For example, how are the primitive variables,

which are defined at a point and the average time fluxes within the cell or the spatial fluxes on an

elementary surface related? How is the flow field defined in relationship to the IDS fluid cell

concept? To answer these questions and others, consider Figure 2 oncemore. Assume the red dots

in Figure 2 represent the physical grid points in the flow field of interest, and at each of these

points, the primitive variables are known.A typical elementary fluid cell is then built around eight

such points, with each point separated by nomore than one grid point. Using these assumptions,

the average time fluxes within the cell can be computed from the arithmetic mean, as:

UCell
Avg ¼
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Similarly, cell surface quantities, such as, the nþ
x surface fluxes defined by ESurf,nxþ

Avg can be

computed as follows:
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Avg ¼
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In a similar manner, the other inviscid flux quantities at the nþ
x , n

�
y , and n�

z surfaces can be

found. Unfortunately, computing the viscous flux quantities; ESurf,nx�
Vis, Avg, F

Surf,nx�
Vis, Avg, and GSurf,nz�

Vis, Avg,

are somewhat complicated and greater care is required. Refer to Ref. [8] for details. In
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summary, the IDM allows for the grid points, and the primitive variables allocated at those

points to be used in uniquely formulating the elementary fluid cells and completely defining

their flow field characteristics.

3.3. The IDS control volume and its properties

A typical IDS control volume in the 3D Cartesian system of coordinates is illustrated in

Figure 3.

As can be observed, the IDS control volume consists of eight cells. The properties of the IDS

control volume is as follows:

1. It is of interest to note that the centers of the eight cells form the vertex of an overlapping cell.

This overlapping cell is called the temporal cell. As such, the control volume consists of eight

neighboring cells that allow for the formation of a temporal cell. In other words, analogous to

the manner in which the eight grid points formed the vortex of a given cell, so too, the center

of eight neighboring cells formed the vortex of a temporal cell.

2. Also of interest to note is the fact that at the vertex of the temporal cell, the rate of change of

the time fluxes are known. Consequently, at the center of the temporal cell, the average

time rate of change of the time fluxes are computed as,

∂U

∂t

� �CV

Avg

¼
1

8

∂U

∂t

� �Cell1

Avg

þ
∂U

∂t

� �Cell2

Avg

þ ::… þ
∂U

∂t

� �Cell8

Avg

" #

(14)

3. Similarly, at the center of an IDS control volume, the average time fluxes are defined by

the arithmetic averages

UCV
Avg ¼

1

8
UCell1

Avg þUCell2
Avg þ ::… þUCell8

Avg

h i

(15)

Figure 3. Illustration of control volume.
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4. The IDS solution can only be advanced from within the temporal cells. Within a given

temporal, the average temporal fluxes are updated as follows:

UCV
Updated,Avg ¼ UCV

Avg þ
∂U

∂t

� �CV

Avg

δt (16)

where the symbol δt is the time increment, and methods for its computations are defined

later in this report.

5. In the 3D Cartesian system of coordinates, the grids can be developed such that the center

of the IDS control volume always overlaps with the center of a grid point. If this were the

case, then the updated primitive variables can be computed from the expression
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It is with this IDM in mind, where the spatial cell, the temporal cell and the control volume

concepts are paramount, that the NSE are transformed into their Integro-Differential counterparts.

In addition to this, Eqs. (14)–(16) highlight the main differences between the IDS and other CFD

schemes, where the solution vector and the time rate are computed using local values, whereas

the IDS computes the right-hand side terms from Eq. (16) through the use of Eqs. (14) and (15).

From the computational perspective, the IDS performs more floating points operations per node

and therefore, the method is computationally expensive. Roughly speaking, for 2D flows the

method performs 8 times more floating-point operations. Nevertheless, the calculation of the

viscous stresses and heat fluxes, Eq. (10), demands the evaluation of the stresses and heat fluxes

at the faces of the control volumes, where the mean value theorem is used and hence, an extra

averaged is required. Off course, for 3D fluid flows these operation increases because of the

spanwise component where the averaging procedure is also implemented.

4. The Integro-differential scheme

Consider the IDM described in the preceding section for the special 3D Cartesian system of

coordinates. If the NSE (1–3) were directly applied to a fluid element, such as the one illus-

trated in Figure 2, the analytical solution arising from this process, especially when the mean

value principles are invoked, will yield the following transformational equations:

∂r

∂t

� �

Avg

¼ �
X

6

m¼1

ruδsð Þ�m

" #,

δv (18)
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∂ rukð Þ
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� �

Avg
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m
uk �
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δv (19)
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� �
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¼ �
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uiδs
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m
�

X
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qiδs
� ��

m

" #,

δv (20)

where the index m, m = 1, 6, defines the surfaces with positive and negative normal, respectively,

and the indices i and k, go from 1 to 3, defining the coordinate directions. The technical chal-

lenges in computing Eqs. (14)–(16) lie in the careful and consistent manner in which the NSE

auxiliary/closure Eqs. (4)–(8) are evaluated as they are applied to a fluid cell. It is worthwhile to

repeat that Eqs. (4)–(8) must be evaluated in accordance with the requirements of each cell.

In the special case of 3D Cartesian systems with the spatial flow field domain defined on

uniform cells, the viscous and inviscid fluxes can be expressed in vector form, as:

∂U

∂t

� �

Avg

þ
Δ�
nx E� Evisð Þ

Δν
þ
Δ�
ny F� Fvisð Þ

Δν
þ
Δ�
nz G� Gvisð Þ

Δν
¼ 0 (21)

where the U, E, Evis, F, Fvis, G and Gvis vectors were defined earlier. The subscripts in Eq. (17)

define the location and type of operations used in evaluating respective average quantities. In

addition, the difference operators; Δ�
nx, Δ

�
ny, and Δ�

nz represent the difference in the surface fluxes

across each cell, such that, the surface information of each cell are independently computed.

In summary, the integral form of the NSE equations (1–3) were analytically solved using the

mean value theorem over an elementary control volume. The resulting solution was expressed

in the form an Integro-differential formulation as described by Eq. (17). Finally, as in all explicit

schemes, Eq. (16) can be used to compute the update solution vector U, such that, where the

time fluxes and rate of change of the time fluxes vectors were defined in Eqs. (14) and (15). The

symbol δt is the time increment and is computed by using the Courant-Friedrichs-Lewy (CFL)

criterion. In this book chapter, the CFL criterion is computed with the aid of the expression [2],

δt ¼ C
uj j

Δx
þ

vj j

Δy
þ

wj j

Δy
þ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Δx2
þ

1

Δy2
þ

1

Δz2

s

þ
2

ReL
ν

1

Δx2
þ

1

Δy2
þ

1

Δz2

� �

" #�1

(22)

where a is the local speed of sound, C is the Courant number, and γ is the specific heat ratio,

and ν is computed from the expression

ν ¼ max
4

3
μ; γμ=Prð Þ

� �

.

r

� �

The typical values used for C in this analysis range as follows: 0:5 ≤C ≤ 0:8.

The IDS offers an important numerical advantage given that it is a very stable and accurate

method. Further, the IDS provides a significant reduction in both spatial and temporal numerical
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dispersion through its use of the mean value theorem in computing the finite volume quanti-

ties. In the IDS approach, the time and spatial fluxes are appropriately approximate. In addi-

tion, the method has been shown to be consistent and has a minimum discretization error of

order p = 2. A major advantage of the IDS method is that computations involving the com-

pressible NSE are very stable, and no numerical oscillations are typically detected when the

grid is fully refined. Another advantage of the IDS method is that it is suitable for solving both

steady and unsteady flows at realistic Reynolds and Mach numbers. Experiences have shown

that it is quite a satisfactory method for solving high Reynolds number flows, where the

viscous regions are very thin, and shock boundary layer interactions are significant. For these

flows, once the mesh is highly refined the IDS is able to resolve the flow physics within the

viscous regions with a great order of accuracy.

5. The hypersonic flow over a flat plate

Consider the hypersonic flow over a 1 meter long flat plate at zero angle of attack. The

freestream Mach number is set at 8.6, the Reynolds number set to 3.4757 � 106 (based on the

plate length), the Prandtl number to 0.70 and the specific heat ratio, γ, to 1.4. These conditions

are similar to those presented by [9] except that their experiments considered a slightly longer

plate. Nevertheless, in comparison to this effort, the Reynolds number used in [9] was in

perfect agreement, but the Mach number was slightly greater (approximately 0.93%). The

boundary conditions were set as follows: free stream values were assigned to the inflow and

the far field boundaries, the interior flow primitive variables were extrapolated to the exit

plane, and three separate sets of conditions were assigned to the base of the domain. Symmet-

ric boundary conditions were assigned to the leading and trailing edge gaps, and a combina-

tion of no-slip and fixed wall temperature assigned to the solid wall. It is of interest to mention

here, in this effort the dimensionless temperature is set to 1.0 at the wall, whereas it was set to a

value of 0.828 in the experimental study [9]

In efforts to obtain a grid independent solution, five sets of grids of sizes ranging from 1001 by

1001 nodes to 5001 by 16001 nodes in the streamwise and vertical direction, respectively, were

studied. Since the gradients of the flow field parameters in the direction normal to the wall are

sharper than those in the direction parallel to the wall, substantially finer grids were placed in

the vertical direction [2]. In addition to the five sets of grids described above, an extra case,

termed the modified grid, was also considered. This was done in efforts to more thoroughly

evaluate the IDS capabilities in predicting the viscous dissipation effects inside the boundary

layer. In the case of the modified grid, the height of the domain was reduced by half, resulting

in an equivalent grid size of 6001 by 32001 nodes. This reduction in height effectively reduced

the cell height by a factor of 2, resulting in a finer set of grids without a substantial increase in

computational load.

The IDS flow field solutions resulting from the grid independence study are summarized in

the Figures 4 and 5. Note, that in Figures 4 and 5, the modified grid is represented by the grid

size of 6001 by 16001*. Note, Figure 4 illustrates the behavior of the streamwise velocity

component in the y-direction at a location of x = 0.5 m from the leading edge. A careful
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observation of the data demonstrates that the height of the boundary layer is approximately

0.0088 of non-dimensional units, representing 8.8 mm based upon 0:99U
∞
. In addition, no

evidence of shock is shown in Figure 4. Similarly, Figure 5 depicts the temperature profile at

Figure 4. U velocity profile at 0.5*L.

Figure 5. Temperature profile at 0.5*L.
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0.5 m from the leading-edge. However, in this case, the effect of viscous dissipation within the

boundary layer is clearly demonstrated [10]. As noted in Figure 5, the temperature increases

from the outer edge of the boundary layer toward the wall, reaching two peaks. The outer peak

indicates the presence of a shock, while the inner peak indicates the effects of boundary layer

dissipation due to viscous friction. Similar trends were also found in [11, 12].

The grid study data suggest that grid independence was obtained for a grid size of 5001 by

16001. A closer observation of Figure 5, reveals the existence of the two expected sub-layers;

namely the entropy layer and the viscous boundary layer. As supported by Figure 5, although

the height of the shock wave was fully resolved with mesh sizes; 4001 by 8001; 5001 by 16001

and 10001 by 16001*, the dissipation effects were clearly not. Herein, the conclusion is the

boundary layer needs an extremely finer set of grids to resolve its physics when compared to

the mesh size needed to resolve the entropy layer and the shock wave.

In this chapter, the normal Mach number is measured in the direction of the pressure gradient,

and computed with the aid of Eq. (23), which is fully described in [13]. Since pressure and

density are the two variables that produce the greatest change as they traverse discontinues in

the flow field, they are also very efficient in detecting shocks. In some cases, however, false

indications may occur, so a small degree of filtering is required [14]. The filtering criteria

proposed by [14] with a threshold of e = 0.007 is used in Eq. (23).

Man ¼
Ma � ∇p

∇pj j
¼ 1 (23)

Consider the IDS flow field distribution of the normal Mach number computed from expres-

sion (23) illustrated in Figure 6. Using a filtering threshold of e = 0.007, the bow shock, the

viscous boundary layer, entropy layer and other flow field features are extracted. It can be

observed that the bow shock starts slightly ahead of the leading-edge tip and it certainly

displays the characteristic curvature. This characteristic was also reported in [1]. In addition,

Figure 6 accurately predicts the growth of the boundary layer. More importantly, the similar-

ities of the predicted features illustrated in Figure 1 closely matches the IDS computed results

illustrated in Figure 6. Of greater significance is the fact that the two interaction zones; namely

the strong and weak inviscid-viscous interactions zones merged, and all are vividly computed.

Figure 6. Normal Mach number.
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Now, consider the Q-criterion introduced by [15] and computed with the aid of expression,

Q ¼
1

2
Ωk k2 � Sk k2

	 


(24)

Note that the symbols Ωk k and Sk k in Eq. (24) represent the Euclidean norm of the vorticity

and rate of strain tensor, respectively. Further, Eq. (24) is an effective tool for the extraction of

the vector field topology that represents the local balance between the rate of shear strain and

vorticity. When Eq. (24) is applied to the IDS flow field solution over the flat plate, the regions

with dominant rates of strains and vorticity are revealed. The Q-criterion results are

documented in Figure 7. Again, as observed the bow shock, the viscous boundary layer,

entropy layer and other flow field features defined by the vortical structures are effectively

captured.

In efforts to closely observe the flow physics in the weak interaction regime, the variation of the

Q-criterion in the y-direction is plotted and illustrated in Figure 8. Note, Figure 8 provides

quantitative information about Q-criterion at the location x = 0.27 along the plate and merely

complements the information already presented in Figure 7. Nevertheless, Figure 8 reveals

that the strain dominates over vorticity very near the wall; as the Q-criterion becomes negative

as it approaches the wall. The Q-criterion behavior observed in this analysis is typical within

viscous sub layers where the shear stress is laminar [16]. A second layer, the so-called turbulent

layer where the swirling motions are common causes the Q-criterion to turn positive. In this

region, the viscous effects contribute to large increases in entropy, and consequently vorticity

[17]. Thus, this layer is characterized by positive values of Q-criterion. Moving deeper into the

flow field, vertically above the wall, the inviscid region is revealed. In this region, the rate of

strain dominates over the rate of rotation, and the Q-criterion gets deeper in the negative

direction, only to be reversed as the shock wave is penetrated.

A close-up investigation of the flow physics at the hypersonic leading edge was conducted. To

this end, an extra case was analyzed where the length and height of the domain were reduced,

while the dimensionless parameter, such as Reynolds and Mach numbers were kept constant.

Boundary conditions and the freestream values of the primitive variables were the same from

the previous analyses. However, unlike the previous solution, where the full plate of length

1 m was studied, the following results do not consider trailing edge. The focus of this analysis

Figure 7. Q-criterion contour plot.
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is to analyze the flow physics near the leading edge thoroughly. The length and height were

selected as 0.1 and 0.02 m, respectively and the leading-edge gap was defined as 0.1 dimen-

sionless units. Figure 9 illustrates IDS prediction in the form of the Q-Criterion at the leading

edge. These results indicate that the rate of strain is the dominant effect at the leading-edge

followed by large rotational motions that cause a delay in the growth of the boundary layer.

Figure 9 also shows that the bow shock wave is formed ahead of the plate.

It is of interest to note that at the tip of the plate, the region with the greatest rate of strain

within the flowfield is observed, albeit a small region. Immediately following this region there

is a similarly small region with the greatest rate of rotation, refer to Figure 10. The two regions

with the greatest rate of strain and rate of rotation are located at the leading edge, and it

is from these two regions that the shock wave and the boundary layer respectively emanate.

Figure 8. Q-criterion profile at 0.27 from the leading edge.

Figure 9. Q-criterion contour plot at the leading edge.
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At this point, the technical details associated with the growth of these sub-layers is not fully

resolved, and as such, further analysis is warranted.

5.1. Validating the IDS hypersonic leading-edge solution

The experimental data developed by [9] was used to validate the accuracy of the IDS solution

to the Hypersonic flat plate problem. In Figure 11, the temperature and u-velocity profiles at

80 mm from the leading edge for both cases: experimental and IDS, respectively, are compared.

Note that Figure 11 shows that the IDS solution under-predicts the maximum temperature

inside the boundary layer according to the experimental data. Figure 11 also shows the

comparative behavior of the horizontal component of the velocity vector for the experimental

study and the IDS solution.

Obviously, there are differences in the experimental and IDS solutions. The reasons for these

differences were analyzed. First, it turns out that the required freestream conditions used

during the experiment were not public and could not be easily reproduced. Reference [9]

described that the study was carried out in a divergence nozzle, and as such, the flat plate

experienced a somewhat favorable pressure gradient during the course of the experiment.

Second, the freestream conditions were computed using a computational package called

STUBE [18], that used the piston theory to estimate the pressure in the reservoir; a huge

approximation. Other discrepancies were found between the experimental data and the

STUBE predictions [9]. Moreover, [9] also compared the experimental data with the numerical

solution from a commercial CFD package called CFD-FASTRAN. The CFD simulations used

the freestream conditions calculated by STUBE, and even then, the freestream velocity was

Figure 10. Horizontal profile of Q-criterion at y = 2 � 10�5.
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scaled to match the measured external velocity [9]. Nevertheless, even with these uncertainties,

the data presented in Figure 5 is considered to be reasonably close and the IDS code is

considered validated.

Figure 12 illustrates the vertical profiles of the density and the y-component of the velocity

vector at 80 mm from the leading edge, respectively. However, unlike in the case of the

temperature and U velocity profiles, there are no equivalent experimental data available for

direct comparison. However, as can be observed in Figure 12 the three most important phe-

nomena, namely the boundary layer, the entropy layer and the shock wave along with their

respective flow filed characteristics are distinctly captured.

5.2. Approximate boundary layer analysis

The boundary layer thickness in the absence of adverse pressure gradient can be computed as [19]:

δ

x
¼ 5:0þ 0:2þ 0:9

Tw

Taw

� �

γ� 1ð ÞM2
e

� �

ffiffiffiffiffiffiffiffi

Cw

Rex

s

(25)

Where Cw represent the Chapman-Rubesin parameter, Rex is the Reynolds number at the

measurement point and Taw, the adiabatic wall temperature, is given by:

Taw ¼ Te 1þ
ffiffiffiffiffi

Pr
p γ� 1

2

� �

M
2
e

� �

(26)

Figure 11. Experimental and IDS solution.
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Equations (25) and (26) were used to compute the theoretical boundary layer, whose value is

1.87 mm. The boundary layer predicted by the IDS was measured to be 2.83 mm. The authors

are still evaluating the reasons for the resulting discrepancy.

5.3. Investigating the strength of the hypersonic leading-edge interaction

An important phenomenon that is observed within the flow field in the vicinity of the leading

edge is a rise in pressure. This high pressure emanates at the edge and it leads to an induced

pressure gradient along the rest of plate. Therefore, the assumption of zero pressure gradient

condition through the boundary conditions is debatable [10]. Today’s experiments have shown

that under hypersonic flow conditions, the leading-edge experiences a bow shock, a significant

pressure rise, very large skin friction, and very large heat flux. Further, these experimental

observations have shown that adverse conditions are confined only to the leading-edge. To

fully explore the leading edge behavior, researchers [19] introduced the shock interaction

parameter, χ, which is defined as:

χ ¼ Ma
3
∞

Cw

Re
∞

� �

(27)

This parameter, χ, is a function of the freestream Mach number, Reynolds number and the

specific heats ratio, and it serves to quantify the strength of the flow field interaction at the

leading edge. Two sets of the shock interaction parameter, χ, ranges are of interest to this

study; weak interactions as described by χ << 1 and strong interactions as described by

Figure 12. Density and vertical velocity profile.
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χ >> 1. Figure 13 shows the experimental data from [20] indicating the strength of the shock

interactions, χ at Mach numbers ranging from 5 to 10 to 20, as indicated by the green, blue and

cyan colors. It is important to mention that the horizontal axis is described by the inverse of

Aχ, where A is an aerodynamic parameter defined by

A ¼
1

2
γ� 1ð Þ0:664 1þ 2:6Tw=T0ð Þ (28)

This transformation is done in efforts to allow for small values of Aχ to map with the strong

interaction regions and for large values of Aχ to map with the weak interaction regions.

Using the data provided by [20], the weak interaction curve, highlighted in black, is recovered.

Finally, the IDS solution is also plotted in Figure 13 and it is depicted by the red curve. As

observed in Figure 13, the IDS solution matches the predictions governed by the interaction

parameter, Aχ, and as noted, lies closest to the Mach 5 interaction curves.

The IDS hypersonic flat-plate solution confirms that the scheme is capable of accurately

resolving the complex flow physics within the vicinity of the hypersonic leading edge, and it

correctly qualifies the inviscid-viscous interactions associated with this region. However, it is

important to note that the IDS scheme is currently being upgraded with OpenMP and MPI

capabilities in efforts to handle three-dimensional flows. It is the author’s opinion that the

mechanism driving turbulence dynamics is three dimensional in nature, and therefore cannot

be captured by two-dimensional flow fields. As a result, in 2D flow fields, vortex stretching

and other fluid mechanisms important to the development of turbulence flows are absent.

Once these capabilities are validated, the hypersonic flat-plate problem will be revisited.

Figure 13. Induced pressure near the leading edge.
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