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Abstract

There have been tremendous efforts to understand the biological nature of human grasp-
ing, in such a way that it can be learned and copied to prosthesis–robotics and dextrous
grasping applications. Several biomimetic methods and techniques have been adopted,
hence applied to analytically comprehend ways human performs grasping to duplicate
human knowledge. A major topic for further study, is related to decoding the resulting
EEG brainwaves during motorizing of fingers and moving parts. To accomplish this,
there are a number of phases that are performed, including recording, pre-processing,
filtration, and understanding of the waves. However, there are two important phases
that have received substantial research attentions. The classification and decoding, of
such massive and complex brain waves, as they are two important steps towards under-
standing patterns during grasping. In this respect, the fundamental objective of this
research is to demonstrate how to employ advanced pattern recognition methods, like
fuzzy c-mean clustering for understanding resulting EEG brain waves, in such a way to
control a prosthesis or robotic hand, while relying sets of detected EEG brainwaves.
There are a number of decoding and classification methods and techniques, however we
shall look into fuzzy based clustering blended with principle component analysis (PAC)
technique to help for the decoding mechanism. EEG brainwaves during a grasping and
manipulation have been used for this analysis. This involves, movement of almost five
fingers during a grasping defined task. The study has found that, it is not a straight
forward task to decode all human fingers motions, as due to the complexity of grasping
tasks. However, the adopted analysis was able to classify and identify the different
narrowly performed and related fundamental events during a simple grasping task.

Keywords: biomimetic, electroencephalography, PCA, fuzzy clustering, Dextrous
grasping, prosthesis, robotic hand, robotics control
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1. Introduction

1.1. Biomimetic engineering for EEG applications

Human brain and other biological brains are the most complicated part of any intelligent life

forms, it controls almost every part in the human body. For controlling biological organs via

a brain, there must be communication between organs. After years of research, it was esta-

blished that brains communicate with organs via massive set of electrical signals that are

periodically sent to various body parts. These electrical signals, can be detected through

electroencephalography (EEG). These EEG waves are sent from neurons in the brain to the

ones in the spinal cord, and end in nerve endings in the organs. Neurons are connected

together, in addition to nerves using synapses. This is the basic structure of the nervous system

that is in charge of communications between the brain and the rest of the body. Brain signals

are basically electrical currents, however connecting them to artificial prosthesis, and robotic

hand has always been a challenge.

Given this fact, biomimetics is employed for imitation of models, systems, in addition to

elements of nature, Vincent et al. [1]. This is used for a purpose of solving complex human

related problems. Lately, electroencephalography(EEG)–has received considerable attention,

due to a number of advantages while data mining and dealing with brain waves. There are

tremendous efforts to make use of biomimicry for EEG waves understanding, [2–5]. In this

regard, Yuanfang et al. [6], stated they have used two novel classifiers: biomimetic pattern

recognition and sparse representation. Each classifier labels the unlabelled data for other

classifiers to extend the labeled set. An enlarged labeled set is used to generate the final

classifier BPR–SR. BPR–SR was constructed by combining BPR with SR. EEG features

extracted by common spatial patterns were used for classification. Perruchoud et al. [7], pre-

sented the concept of biomimetic rehabilitation engineering, and presented a more focus

review in this sense. The importance of somatosensory feedback for brain–machine interfaces

were also presented. Menniti et al. [8] stated that they used implanted electrodes, to obtain

acoustical information about the external environment generated by a biomimetic system and

converted in electrical signals. Bullock et al. [9], data was collected by recording two male

experienced machinist and two female housekeepers while working for at least 8 hours each.

Classification was done using modified Feix taxonomy to work with video footage. Data

showed that 80% of the time the housekeepers used only five grasps and the machinists 10

grasps. In [10] Bullock et al., it was found out that for basic objects handling, medium wrap

and lateral pinch are most suited. For precision and dexterous manipulation, three fingertips

were needed and thumb �two finger, tripod, or lateral tripod can be used.

In [11], two machinists and two housekeepers were recorded during typical day at work. A

camera was head-mounted and was used to record hands when doing their work. With each

right hand grasp, the data was tagged with grasp type and object properties. In Feix et al. [12],

analysis of human grasping and behavior detection was done. Object characteristics and grasp

types were reported. Mainly, 10,000 grasp instances were recorded and a correlation between

the property of the object and the grasp type was established. In reference to [13, 14], various

analysis of EEG were conducted using some time and frequency analysis approaches. In [15],
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Feix et al., investigated task classification according to degrees of freedom, required force, and

the functional task type. Since these are thought to be natural considerations that humans

think of when doing tasks. In [16–18], have presented various ways for EEG analysis. A

versatile signal processing and analysis framework for EEG were conducted. Signals were

decomposed into frequency sub-bands using DWT. Set of statistical features were extracted

from the sub-bands to represent distribution of wavelet coefficients. Hazrati and Erfanian [19],

have presented an online EEG-based brain–computer interface for controlling hand grasp

using an adaptive probabilistic ANN. Jianjun et al. [20], have also implemented a robotics

control through a set of EEG waves. Group of 13 human subjects willingly modulate brain

activity to control a robotic arm.

Furthermore, due to complex robotic tasks, grasping by dextrous prosthesis–robotic hands, is

no longer can be achieved through analytical approaches, as done in the past using mathemat-

ically defined force computations, as found in Vinet et al. [21], and Cutkosky [22]. However,

human grasping experience and knowledge have been under massive studies to be transferred

to robots, Mattar et al. [23]. This is due to the advanced applications robots and prosthesis are

preforming nowadays.

1.2. Electroencephalography classification-decoding

In addition to the above introduction, recently human like hands have been developed world-

wide, to achieve accurate grasping, Figure 1, [24, 25]. In parallel, EEG based robotics control

systems have also received fundamental attention by researchers world-wide, Vinet et al. [21].

However, there are a number of issues related to interpretation of the massive waves. EEG signal

classification using principal component analysis (PCA), independent component analysis (ICA),

linear discriminant analysis (LDA) and SVM, were investigated by Subasi and Gursoy [26]. In

their work, they have investigated using EEG in diagnostics of epileptic seizure. First, data was

acquired from an outside source. These data contained EEG recordings from multiple seizure

patients that have been diagnosed and found the region where the seizure accrued and another

data from healthy people. The EEG signals then were transformed to sub-bands using discrete

wavelet transform (DWT). DWT was used because the EEG signals are non-stationary and

DWT is capable of handling such signals. Hence using statistical techniques, features related to

Figure 1. Current development of prosthesis, and robotic artificial limbs and hand. Left picture source with permission,

Dustin, [24]. Right source with permission, Touch Bionics, [25].
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seizures were extracted. These techniques reduce the data by removing the redundancy in it and

focusing on the features. This is done by getting the low dimensional space of the features. The

first technique used was principal component analysis (PCA) that reduces dimension and max-

imize variance in the data of the lower dimension hence make it easier to extract waves features.

Independent component analysis (ICA) was used. This method generates mutually independent

components from random signals. This highlights the features in the signals. Finally, linear

discriminant analysis (LDA) was used. This method combines the predictors to generate a

discriminant score. This resulted in discriminant scores normally distributed in each class. All

the features from each technique was then submitted to support vector machine (SVM). The

SVM then generated the classification of having an epileptic seizure or not. The accuracy of

feature extraction was based on the specificity and sensitivity derived from the confusion matri-

ces. The PCA had the lowest classification at 98.75%. ICA achieved second best result at 99.5%.

LDA achieved a perfect score of 100%. The research showed that the generalization performance

of SVM was improved by dimensional reduction. This whole system was proven to be eligible

for the use in diagnostics.

Wang et al. [27], have also shown how feature extraction and recognition of epileptiform activity

in EEG by combining PCA with approximate entropy (ApEn) can be adopted. The paper also

investigated the use of EEG signals to identify the epileptiform activity associated with epilepsy.

The problems with older techniques for finding epileptiform activity was the speed, mainly due

to the huge amounts of data. First, the EEG data was recorded and then was subjected to PCA to

reduce the dimension of data, hence to identify patterns related to epileptiform activity based on

the variances. DWT was applied on the PCA data to generate the sub-bands associated with

signal types such as spike and sharp waves. Then, approximate entropy (ApEn) estimation was

done of the sub-bands. The ApEn is used to find out if the time series is random or deterministic

based on the value of the entropy (high or low respectively). Finally, to classify the data into

epilepsy or not, Neyman-Pearson criteria was applied. This was done by getting a threshold

value from the Neyman-Pearson criteria and comparing the ApEn value with the threshold. If

the signal ApEn was less than a threshold, it is epileptic otherwise it is normal. The paper

showed result is similar to other techniques, however because of PCA the detection speed was

much faster due to reduction of data. Mahajan et al. [28] have done classification of EEG using

PCA, ICA, and neural network. This is also another paper that focuses on the use of EEG signals

to diagnose epilepsy. This research was similar to Subasi and Gursoy, [26]. EEG data was taken

from an outside source. EEG signals were first divided into sub-bands using DWT. Then, some

features related to epilepsy were extracted from the sub-bands using PCA and ICA. Then,

features were sent to train a neural network that was used for classification. The neural network

is made of two layers and five perceptron. The training was done using feedforward algorithm.

The neural network was able to classify the EEG data and determine whether it is epileptic or

not. The accuracy of feature extraction was based on the specificity and sensitivity. ICA achieved

96.75% accuracy and PCA achieved 93.63%. The work showed that ICA is better than PCA

which was also established in by Subasi and Gursoy.

For electroencephalogram signal classification using neural networks with wavelet packet

analysis, PCA and data normalization as pre-processors was introduced by Aminian et al.

[29]. In this work, the authors try to predict hand/arm movement using EEG data. The EEG
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signals were recorded when subjects were asked to grasp an object, point to an object, and

extend an arm. This data was then subjected to wavelet packet analysis to reduce the number

of features to concentrate on the important ones. This was done by choosing approximate

coefficients as features. Then, generates an approximation and detail levels from the each of

the approximation and detail component by decomposing it. PCA is used to reduce features to

reduce the amount of data while keeping the important parts. A uniform scaling scheme was

applied to make sure that small important features are not taken for granted. This was

achieved by normalization of the data by getting zero mean and unity standard deviation.

Finally, a neural network was used for classification. It is a backpropagation trained neural

network with feedforward multilayers. The neural network generates outputs as many as the

classes (tasks). By doing so, each output corresponds to one of the classes and gives probabil-

ities for the inputs and their class. The network was unaffected by outliers because it does not

try to fit them due to its simplicity. Overtraining was also not an issue because of smooth

mapping function of the input–output. This scheme achieved a 100% accuracy in the classifi-

cation of the tasks for all the participants. Classification of direction perception EEG based on

PCA-SVM was also introduced by Wang and Wang, [30]. In this work, the paper uses EEG

signals to identify movement based on vision. The EEG data was recorded when subjects were

looking at a monitor with 3D environment. This environment contained roads and there was

movement in first person view. The objective was to identify the direction of movement

perceived by these individuals.

Discrete Fourier transform (DFT) was first applied to these signals to examine them in the

frequency domain. This allowed the identification of some features related to the perception of

movement based on the power at certain frequencies. Then, PCA was used to reduce the

dimension of the data and simplify the features. To classify the data, support victor machine

SVM was used. To overcome some error induced by the penalty factor in SVM, a new variable

was introduced to add degree of freedom margin in patter recognition. The two class classifi-

cation achieved (50–91.25%) accuracy between all the subjects and the two way movement

(left-right, right-front…). This could be due to the feature extraction technique used which is not

able to distinguish between similar movements. The use of DWTmay have been a better choice

due its ability to handle non-stationary signals such as EEG.

Within this chapter, and given the above review, the adopted technique, we shall introduce

another view for EEG analysis for prosthesis–robotics grasping. This is based on blending PCA

with C-means clustering. The technique has an ability to detect the grasping events.

1.3. Chapter contribution and organization

1.3.1. Chapter contribution

This chapter is presenting a unique classification technique for EEG brainwaves during a

defined grasping and lifting task. The study is presenting a mechanism for extracting focal

features, and patterns intrinsics for resulting EEG waves during experimentally conducted

grasping task. Definitely, knowledge of the features will help for robotics grasping based tasks.

The novel presented work in this chapter, is summarized in Figure 2, and as follow:
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Figure 2. (Top): Overall system EEG-PCA detection of main components hierarchy. (Down): Layout of how the machine

learning tools and techniques can be integrated with the detection process.
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(i) A human grasping experimental task is initially conducted. The experiment was related to

grasping of an object to perform a defined grasping task. Further details about source, and the

EEG dataset will be further explained at later stage here in this chapter. Due to raw nature of

the detected EEG waves, EEG brainwaves have been filtered, hence they are processed to be

much easy to compute and analysis. (ii) To identify related events during the defined grasping

task for different participates. In his respect, a PCA and fuzzy clustering were applied to the

EEG dataset to identify the most identifiable wave characterization. Identified features are then

used for copying a human behavioral motion as used for robotic hand.

1.3.2. Chapter organization

To achieve the stated objectives, the chapter has been structured as follow. A set of experiments

were conducted with advanced EEG detection probes placed over the subject skull, as in

Luciw et al. [31]. PCA has been used to detect data features, hence C-fuzzy clustering, is used

to learn inherent characterization. Characterization will be further learned to a robotic system.

2. Gasping events detection

2.1. EEG gasping clustering for events detection

In order to detect different events during grasping or manipulations tasks, it is required to

classify the data via clustering of resulting EEG waves. This mean to classify different perfor-

mances. Based on above definitions, fuzzy clustering of the massive EEG dataset is precisely

formulated as an optimization problem. This is to minimize the distances to which the differ-

ent sampled EEG waves are belonging. Formulation of fuzzy clustering is as a minimization

problem, i.e. to minimize distances clusters centers uij:

J uij; vk
� �

¼
X

c

i¼1

X

n

j¼1

X

c

k¼1

g w xið Þ; uij
� �

d xj; vk
� �

i, k ¼ 1 2 ⋯ cð Þ j ¼ 1 2 ⋯ nð Þ

(1)

subject to the following clusters centers constraints:

X

c

i¼1

uij ¼ 1 j ¼ 1 2 ⋯ n 0 ≤
X

n

j¼1

uij ≤n i ¼ 1 2 ⋯ cð Þ (2)

One of the widely employed clustering methods based on Eq. (1) is the fuzzy c-means (FCM)

algorithm. The objective function of the FCM algorithm is expressed in the form of,

ð3Þ

In Eq. (3), m is known as exponential weight that influences the degree of fuzziness of the

membership or partition matrix. To solve this minimization problem, the objective function
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is differentiated in Eq. (3) with respect to vi (for fixed uij, i = 1,…,c, j = 1,…,n) and to uij

(for fixed vi, i = 1,…,c). Applying constraints conditions, thus obtaining:

ð4Þ

ð5Þ

The system described by Eqs. (4) and (5) cannot be solved analytically. However, fuzzy c-

means algorithm provides a computationally iterative approach to approximating the mini-

mum of the objective function starting from a given position.

2.2. EEG gasping events: dimensionally reduction

2.2.1. Concept of Eigen EEG waves

Principal components analysis (PCA), aims to find total variation in the set of the used EEG

waves, hence it helps to explain this variation by less number of variables. PCA does this by

computing the basis of a space which is represented by EEG waves. The basis vectors com-

puted by PCA are in direction of the largest variance of used EEG waves. These basis vectors

are computed by solution of an eigen problem, and as such the basis vectors are eigenvectors.

In order to deal with the massive dataset resulting from the grasping, we need also to reduce

the dimensionality of the data size, as most of the resulting brain waves look similar with very

minor differences. This is summarized as follows: Finding the mean of the signals, hence

compute the eigenvectors. First we need to find the mean of all the N columns separately by:

xn ¼
1

M

XM

m¼1

xmn,n ¼ 1, 2,…,N (6)

In Eq. (6), xn is the mean of each N column (n = 1, 2,…, N).

The next step is to do cantering the massive EEG waves. Since PCA requires the matrix to be

cantered by subtracting the mean from each column. This will cause the mean of each column

to be zero.

∆n ¼ xn � xn (7)

where ∆n is the column of the X matrix after subtracting the mean from the original column.

This will cause the data to be moved close to the centre (origin) of the principal components.

We then need also to compute the covariance matrix of the resulting EEG waves. It is required

to get the covariance matrix which is the variance between all the columns to get the relation-

ship between these columns in terms of the variance (multiple dimension variance). The
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variance is how much the data varies from its mean and the covariance is used to find some

kind of a relationship between only two dimensions. For example, relationship between

velocity, and car crashes. Therefore, the covariance matrix is just all the combinations of the

covariance between each dimension and another. The value of the covariance determines the

relationship between the two dimensions. If it is positive, then if one dimension increases the

other will increase as well. If it is negative, then the relationship is inversely proportional and

when one increase the other decreases. Finally, if it is zero, then the two dimensions are

independent of each other or have a nonlinear relationship. The magnitude of the covariance

will determine the amount of increase that will occur in the other dimension with maximum

relationship of one to one. The covariance matrix:

C ¼
1

N

X

N

n¼1

∆n∗∆
T

n
(8)

In Eq. (8), ∆T

n
is the transpose column of ∆n. This is further expanded into:

C ¼

x1,1�x1 ⋯ x1,N�xN

⋮ ⋱ ⋮

xM,1�x1 ⋯ xM,N�xN

2

6

6

6

4

3

7

7

7

5

∗

x1,1�x1 ⋯ xM,1�x1

⋮ ⋱ ⋮

x1,N�xN ⋯ xM,N�xN

2

6

6

6

4

3

7

7

7

5

(9)

Finally, the covariance matrix C is further expressed by Subasi and Gursoy [6]:

C ¼

cov x1; x1ð Þ ⋯ cov x1; xNð Þ

⋮ ⋱ ⋮

cov xN ; x1ð Þ ⋯ cov xN ; xNð Þ

2

6

6

4

3

7

7

5

(10)

The C, which is a square matrix, is said to be symmetric around the main diagonal because it

was results of multiplication of a matrix and its transpose. The main diagonal of C, is the

covariance between the dimension and it self. Therefore, once we are looking to find the

relationship between the dimensions, we will look at the non-diagonal elements and judge

based on their value, as in Subasi and Gursoy [26].

Finally, we need to compute the eigenvalues and eigenvectors. In this respect, to understand

patterns of the normalized data, we need to understand the covariance C of the data. This can

be possible by getting some lines in the plot that will explain the data pattern based on the

covariance of the signals. This can be achieved by getting the eigenvectors of the covariance

matrix. We can find eigenvectors for the covariance matrix C, this is because of the square

nature which is a requirement for eigenvector calculations, Subasi and Gursoy [26]. For an

(n�n) matrix A, if we find a row vector X (n�1) that could be multiplied by A and get the same

vector X multiplied by a value λ called an eigenvalue and the vector is an eigenvector. Since

the matrix A transforms the vector X to scale positions by an amount equal to λ, it is called a

transformation matrix as presented by:
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AX ¼ λX (11)

There are (n) eigenvalues for an (n�n) transformation matrix. Since every eigenvector is scaled

by an eigenvalue (λ), we shall have (n) eigenvectors as well. The eigenvalues (λ) is found by

solving for while using the identity given by equation Eq. (12):

A� Iλð ÞX ¼ 0 (12)

In Eq. (12), I is an identity/unity matrix which does not alter value of a matrix it’s multiple

with. Getting the determinant of |(A�Iλ)|, and solving for λ, results in finding eigenvalues.

Substituting each (λ) in Eq. (12), and solving for (X), results in the eigenvector (X) for that λ.

det A� Iλð Þ ¼ 0 (13)

3. Time-frequency analysis of grasping EEG waves

3.1. Time-frequency relation

It is essential to investigate both time and frequency domain relation among the detected EEG

waves. These relations reveal where (in term of frequency), and when (in term of time), and

when power densities are taking place during a course of thinking of grasping. EEGLAB in

addition to other tools have been used to analyze the brain data both in time and frequency

domain. EEGLAB is a Matlab based toolbox that was developed to further analyze the EEG

waves both in time and frequency domains, as found in Delorme and Makeig [32]. This shall

further observe results of using EEGLAB at different relations among the waves both time and

frequency domains. The experiments were conducted by 11 participates. Further analysis on

using the EEGLAB are presented at later stages. The grasping experiment can be further found

as in reference to Luciw et al. [31]. The entire dataset (11 individuals grasping experiment), was

passed into both a PCA algorithm, and fuzzy based clustering algorithm. PAC algorithm was

used to reduce the dimensionality of such massive dataset. Fuzzy c-means clustering was used

to identify a number of clusters, thus similar dataset events. It is well known, human do similar

actions while doing a similar grasping task. We shall identify (P1), as the first individual that

performed the grasping task, whereas (P9), for example is the ninth individual performing the

experiment. Similar naming are given to other individuals.

3.1.1. Time-domain analysis of grasping waves

A) EXAMPLE, FIRST PARTICIPANT: First we loaded dataset for the first person (P1), and then

plotted all channels in time domain. Signals are time stamped with labels of what they

correspond to in action that happed in the experiment and was recorded by all of the sensors.

These are just the main events and they include the LED turning on and off, when the hand

starts moving, when each finger touches the plates, the object lift off the table and replacing it

back to original position, if the new trial includes expected or unexpected high or low weights,

and finally the release of the fingers from the plates. The all the possible labels are clearly

shown in Table 1. In Figures 3 and 4, after the LED was turned on there was a minor increase
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in the voltage due to the intent to move in response to the event (ERP). If the hand started

moving there was a minor increase in some channels and decrease in the reference channels

due to hand movement. Consequently, as fingers touched the object, forces were applied.

Minor change happened until the lift off, which caused a high-low voltage for lift and then

relax in destination after (0.5 sec) from lifting off. In anticipation of LED turning on, there was

an increase in voltage and a sudden spike once LED tuned off due to eye blinking. Finally, after

releasing the object, there was a drop in voltage when relaxing the fingers and returning into

original position.

Event no. Label Meaning

Event-01 — tTouch Fingers touching

Event-02 — tStartLoadPhase Stating to apply load

Event-03 — tReplace Replacing the object

Event-04 — tRelease Releasing fingers

Event-05 ____ tLiftOff Lifting the object

Event-06 ____ tHandStart Hand movement started

Event-07 ____ Unexp.light weight lift Unexpected light weight

Event-08 ____ Unexp.heavy weight lift Unexpected heavy weight

Event-09 ____ LEDON LED turned On

Event-10 ____ LEDOFF LED turned Off

Event-11 ____ Expected Weight Lift Expected weight

Table 1. Grasping events labels, (Meaning for EEGLAB plot).

Figure 3. EEGLAB time-domain plot for (P1), and all 32 channels (Voltage (μV) vs. Time (Sec.)).
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B) EXAMPLE, SECOND PARTICIPANT: Second, is the plot for the second person (called (P4)

in the data) in a similar trial as the first person. This looks almost exact and similar as the first

participant, except the blinking happened just before the LED turning off.

3.1.2. Frequency- analysis of grasping waves: power spectrum

After we are done with the time domain analysis, we will now examine the spectral power

changes and the corresponding area of the brain that all the electrodes cover. This will indicate

any movement and its origin within the human head. This is further shown in both Figures 5

and 6.

We should indicate that, while the data were recorded by (32) channel brain waves cap, such

massive dataset are plotted in Figure 7. Figure 7 shows the time plot of only nine out of 32

channels that were used during the conduct of the experiment. The PCA and clustering

operations were performed over the entire (11 individuals – nine trails – different objects –

different weights), hence clustering operations were performed. This is further shown both in

Figure 8.

FIRST PARTICIPANT, SECOND PARTICIPANT: In reference to the frequency spectrum dur-

ing the grasping tasks, while looking at Figure 5we can deduce that power changes accrued at

(5.9 Hz) in theta band and corresponded to the frontal part of the brain which indicates

relaxation as shown in previous studies. There were only minor changes at (9.8 Hz) in alpha

band. Finally, there were big power changes in (F8, FC6, and T8) and minor to the counterpart

Figure 4. EEGLAB time-domain plot for (P4), and all 32 channels (voltage (μV) vs. Time (Sec.)).
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at (22 Hz) in beta band side this could indicate the blinking artifact we saw earlier. We can see

similar patterns in Figure 6 for the second person especially for blinking artifact in (22 Hz) in

beta band. However, there is significant difference in at (9.8 Hz) which could be due to the

finger or hand movement which will be investigated in the next section using PCA. For each

real grasping experiment, it was found the identical and similar EEG patterns, that was

detected by the locations of the clustered centers and gathered fuzzy membership function. In

this context, the gathered fuzzy memberships obtained through the fuzzy c-mean clustered, do

indicate the inherent knowledge about how the grasping was conducted. This knowledge is

Figure 5. EEGLAB frequency-domain power spectrum analysis, for (P1) for all (32 channels). ICA for the resulting

grasping waves.

Figure 6. EEGLAB frequency-domain power spectrum for the grasping trails, for (P4) for all (32 channels).
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further decoded for generating the most suitable patterns of motorizing finger motion to be

used for the robotic hand, or the human type prosthesis.

In reference to Table 2, the adopted dimensionality reduction via PCA, hence the clustering,

have helped in identifying there main events related to this experiment which was performed

during 6 seconds of time. Detecting EEG similar events during hand grasping is not an easy

task to achieve. Such similar events do indicate how the real human behavior was done. Once

this is done, this can be copied to a robotic system. Combining both PCA with clustering

mechanism has definitely help the inherent and hidden features on how the different individ-

uals performs grasping. PCA has proven the similar patterns, despite of the shapes of different

waves.

The inherent features are almost the same, as seen via the eigenvalues of the individual

experiments and the individual personals. In addition, fuzzy clustering has proven the

overlapped shapes of the EEG waves during the same experiments, however, despite of such

overlaps, the fuzzy clusters are able to detect the different grasping events that can be trans-

lated to a robotic hand. Within this chapter, we have presented a mechanism through which to

analyze brainwaves EEG patterns for robotics and prosthesis use. The main discussed theme

was based on using pattern recognition and clustering techniques for capturing the inherent

patterns characterization during a phase of grasping. Capturing events and these characteriza-

tions are useful for transferring human knowledge (for the grasping tasks) to robotics hand, or

prosthetics for complex grasping. In achieving that, a fuzzy clustering technique was able to

identify similar events. The presented methodology was very useful in getting the intrinsic

patterns. The presented approach also is efficient for mapping useful human thoughts, for

robotics grasping tasks.

Figure 7. Plot of (P1) for (9 trials) by the individuals. Note: here the weight changes but the type is the same (sandpaper).

Full time, same all-channels, and (9) trials (only weight change). (P1), Full time, all-channels, and (9) trials (series 1). (P1),

Full time, all-channels, and (9) trials.
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4. Conclusion

Electroencephalography and brain waves for robotics, human, computer, and machine inter-

faces (BMI, BCI), are evolving very fast. This is due to the fast development of high tech

Figure 8. Three regions of clustering patterns for second experimentation. Grasping EEG waves as being clustered into

three main clusters. Each cluster indicates the focus of where similar EEG patterns are centered. Above-Left: Time domain

signals during the course of grasping. Above-Right: Corresponding c-means clustering results. Four to Five main clusters

have been identified for all the trails. Down-Left-Right: PCA analysis of the resulting EEG waves during the grasping task.

Creating principle components does lead to observe similar waves, thus reducing the dimensionally of the EEG grasping

data size.

TASK 1 Event-1 Event-1 Overlapped Clusters

1 Hand motion Hand grasping Hand grasping Clusters 1,3

2 Figures motion Apply force Apply force Clusters 2,3

3 Hand motion Finger move Force releasing Clusters 3,2

Table 2. Grasping experimentation and patterns mapping and detected fuzzy clusters association.
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interfacing devices and computational methods. In this respect, the presented work is dedi-

cated towards deep understanding of resulting electroencephalography (EEG) brainwaves

during a typical grasp and lift human grasping task. During grasping, forces are applied by

fingertips dexterously, as observed through resulting EEG waves. For mirroring this to a

prosthesis-robotics and dextrous grasping applications, methods have to be developed to do

mining and catch features for optimal forces, movements, and accurate finger joints displace-

ments. Resulting EEG brainwaves during a grasp and lift task are very useful, however these

EEG waves are related, correlated, complicated, and raw. With the potential and analysis of

principal components analysis (PCA) of EEG, it indicated an overlap of valuable neural

behaviors from various locations over the human skull, indicating interrelated and coupled

events for robotic grasping. PCA has been used also to unlock few main features of EEG waves

during the grasp and lift task. The foremost grasping features are hence used in creating

accurate events for a robotic dexterous grasping.
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