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Abstract

This chapter investigates optimization of maintenance policy of a repairable equipment
whose lifetime distribution depends on the operating environment severity. The considered
equipment is undergone to a maintenance policy which consists of repairing minimally at
failure and maintaining after operating periods. The periodic maintenance is preventive
maintenance (PM) and allows reducing consequently the equipment age but with higher
cost than minimal repair. In addition, the equipment has to operate at least in two operating
environments with different severity. Therefore, in this analysis, the equipment lifetime
distribution function depends on the operating severity. Under these hypotheses, a mathe-
matical modeling of the maintenance cost per unit of time is proposed and discussed. This
cost is mathematically analyzed in order to derive optimal periods between preventive
maintenance (PM) and the optimal condition under which these exist.

Keywords: minimal repair, preventive repair, repairable equipment, several operating
environments

1. Introduction

To reduce the failure risk of production equipments, preventive maintenance or replacement

activities should be performed in appropriate schedules. The search of these appropriate sched-

ules has led to the development and implementation of maintenance optimization policies

for stochastic degrading production equipments. Indeed, the literature on this matter is already

extensive, growing rapidly and also very heterogeneous. Accordingly, this chapter focuses

only to some relevant and fundamental works on the maintenance theory. Early in [1, 2], sev-

eral models appeared on the optimization of replacement or maintenance policies on infinite

time horizon. In these works, the authors mainly discussed about the optimality conditions of

theses maintenance models. Subsequently to these works, many extensions of the previous
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models were proposed on finite time span [3, 4] and also on infinite time horizon in the

literature. For survey, the reader may refer, for example, to [5–8] and the references therein. We

note that in most cited works, the authors assumed that the equipment lifetime distribution is

parametrically characterized and well known. However, Coolen and his coauthors [9, 10]

showed that this assumption impacts clearly the optimal replacement age and its cost per unit

of time when the equipments undergo an age replacement policy (ARP). Recently in [11], de

Jonge et al. pointed out also the weakness of the assumption on knowing of the equipment

lifetime distribution and proposed a parametric modeling of ARP for new equipment with an

uncertainty on the parameters of the equipment lifetime distribution. In this work, de Jonge and

his coauthors used Bayesian approach to model the uncertainty on the parameters and figured

out that this uncertainty has effects on the optimal policy (age and cost) under ARP.

Another way, most existing models merely rely only on a classical assumption which states

that the operating environment is steady and has not any effect on the equipment characteristic

and its lifetime distribution. Roughly speaking, they assume that the degradation process is

the same during the equipment’s life cycle. This is a restrictive assumption in many industrial

areas where production equipment may have experiences under different operating environ-

ments with their own severity degree that impacts the equipment performance. For example,

the degradation process of the mining machinery is impacted by the severity level of the

environment where the machinery is being exploited. Another example may be the engines

used for oil extraction. The degradation process of such equipment depends on whether they

are operated onshore or offshore. In some other industries, production equipments are first

operated in a given environment and then moved to another location where this latter might

be more or less severe than the first. In the same way, many companies operate their equip-

ments at home for several years before shipping them to their subsidiaries in other countries

where they would be subjected to more severe operating conditions. Therefore, suitable main-

tenance strategies, integrating the heterogeneous operating conditions, should be developed to

assess the degradation of such equipments.

In this chapter, a preventive maintenance is investigated for such equipment subject to random

failures. The equipments are assumed to have an experience under two operating environ-

ments. In fact, each operating environment is characterized by its own degree of severity,

which impacts the equipment lifetime distribution. Therefore, the equipment lifetime distribu-

tions follow then a different distribution depending on the operating environments. To reduce

the failure occurrence risk during operating under both operating environments, the equip-

ment undergoes to an periodic preventive maintenance (PM). However, the equipment is

subjected to minimal repair at failure. The objective consists then on evaluating the optimal

age to perform periodic preventive repair in order to minimize the expected maintenance cost

per unit of time. This expected cost is induced by the costs of minimal and preventive repairs.

This policy was already discussed by Nakagawa in [12], in which Nakawaga considered that

the equipment lifetime remains the same during the operation. Nakagawa analyzed mathe-

matically the periodic and sequential maintenance policies. Therefore, our chapter can be

considered as an extension of Nakawaga work.

The remainder parts of the chapter are organized as follows. The analyzed problem is briefly

introduced in Section 2. This section proposes amathematical formulation of the total maintenance
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cost. Section 3 focuses on the maintenance cost analysis in order to derive the optimal conditions

which ensure minimal total cost per unit of time. In this same section, an heuristic is proposed to

find the optimal number and period between preventive actions on both environments. Numerical

experiments are conducted to illustrate the proposed approach on the one hand, and on the other

hand, the accuracy and robustness of model are demonstrated through the simulation in Section 4.

At the end, a conclusion and future works are drawn in the last section.

2. Mathematical formulation of the maintenance cost

In this section, modeling of the maintenance policy is going to be proposed. This modeling

takes into account different hypotheses of our analysis. In fact, our equipment has to be used

under two operating environments with different severities denoted by j ¼ 1 and j ¼ 2 which

stand, respectively, for the first and second environments. Therefore, the equipment spends

T1 and T2 respectively in operating environment 1 and 2. Therefore, the operation duration

is the combination of both durations T1 þ T2. The equipment operates successively on both

environments in order to perform its missions. During this operation, the equipment

undergoes by two types of maintenance actions. Roughly speaking, the equipment is going

to be repaired minimally at failure and preventively after some xj operating periods. The

minimal repair costs cmj and allows that the equipment reaches the same reliability just

before its failure. However, the preventive repair costs Cpj such as Cp >> cmj. Therefore, this

preventive repair impacts the equipment according to its age and its hazard function. First,

the preventive action reduces the equipment age to zero. Second, the preventive action

modifies the hazard function such as the hazard function after repair becomes higher than

its hazard before. That involves that the wear-out process of the equipment degrades more

after the preventive action than before Figure 1.

2.1. Preventive maintenance cost

During operation, the equipment undergoes by preventive action after each x1 and x2 unit of

time, respectively, on the first and second environments. Each of these preventives actions

costs Cp1 on the first and Cp2 on the second environment. In addition, the number of preventive

actions is n1 and n2, respectively, on the first and second environments. Therefore, the total

preventive repair costs

CTP ¼ n1
∗cp1 þ n2

∗cp2, (1)

during the length of operation T1 þ T2ð Þ ¼ n1
∗x1 þ n2

∗x2ð Þ:

2.2. Minimal repair cost

The minimal repair is performed regardless of the preventive actions. The minimal repair is

performed at failures in order that equipment reaches the same reliability just before failing.

Each minimal repair costs cm1 and cm2, respectively, on the first and second environments.
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Therefore, the cost of minimal repair, on the kth interval with a duration xj, is product of

expected number of failure by the cost of a minimal repair cmj. From Thompson analysis [13],

the expected number of renewal on the interval 0; xj
� �

coincides with the integration of hazard

function on 0; xj
� �

: Then, the minimal repair costs during the kth interval are given by

Cmj ¼

ðxj

0

λj,k tð Þdt, (2)

¼ �cmj logRj,k xj
� �

: (3)

whereλj,k tð Þ, andRj,k tð Þ stand for the hazard and the reliability functions of the equipment on the

kth and during the jth environment. Therefore, the total minimal cost on the first environment is

Ctm1 ¼
X

n1

k¼1

ðx1

0

λ1,k tð Þdt, (4)

¼ �cm1

X

n1

k¼1

logR1,k x1ð Þ: (5)

We also deduce the total minimal cost on the second environment as follows

Ctm2 ¼
X

n1þn2þ1

k¼n1þ2

ðx2

0

cm2λ2,k tð Þdt, (6)

¼ �cm2

X

n1þn2þ1

k¼n1þ2

logR2,k x2ð Þ: (7)

Figure 1. Evolution of hazard function due to preventive maintenance.
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In addition, the operation on the n1 þ 1ð Þth period also implies a minimal cost. In fact, on this

period, the equipment operates on both environments. On the first environment, the equip-

ment operates on y units of time before moving on to the second environment such as y < x1:

The minimal cost during this operation is

Ctmy ¼ cm1

ðy

0

λ1,n1þ1 tð Þdt (8)

¼ �cm1 logR1,n1þ1 yð Þ: (9)

After, the equipment moves on to the second environment to operate between y; yþ x2½ �: In

addition, we point out that the second operating environment can be more or less severe than

the first. Therefore, to ensure the continuity of reliability function between both operating

environments, a transfer function φ tð Þ is introduced and defined such as:

R1,n1þ1 tð Þ ¼ R2,n1þ1 φ tð Þ
� �

,

φ 0ð Þ ¼ 0:
(10)

That involves a minimal cost on this period

Cφ ¼ cm2

ðφ yð Þþx2

φ yð Þ

λ2,n1þ1 tð Þdt (11)

¼ �cm2 logR2,n1þ1 x2 þ φ yð Þ
� �

� logR2,n1þ1 φ yð Þ
� �� �

: (12)

To reduce the complexity during computing, we assume that the duration y ¼ 0: That involves

a total minimal which clearly depends on the Eqs. (5), (7), (12). The total minimal cost on all

operating duration is defined by addition

CTm ¼ Ctm1 þ Ctm2 þ Cφ: (13)

Indeed, the hypothesis y ¼ 0 also impacts the number of preventive actions. In fact, under this

latter hypothesis, the number of preventive actions becomes n1 þ n2 � 1 instead of n1 þ n2 as

we indicated in Eq. (1). The total preventive is going to cost

CTPh ¼
n1Cp1 þ n2 � 1ð ÞCp2,

n1 � 1ð ÞCp1 þ n2Cp2:

(

(14)

Eq. (14) is equivalent to

CTPh,γ ¼ n1 � 1þ γð ÞCp1 þ n2 � γð ÞCp2, (15)

where γ ¼ 1 stands for the fact that at the end of nth1 period the equipment is repaired before

moving to the second environment, while γ ¼ 0 corresponds to the reverse.
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2.3. Total maintenance cost

From previous Eqs. (13) and (14), we deduce a mathematical formulation of the total mainte-

nance cost according to the set of parameters n1; n2; x1; x2ð Þ as follows:

C n1; n2; x1; x2ð Þ ¼
CTm þ CTPh,γ

nx1 þ n2x2
: (16)

Based on the equation, the next section is going to analyze the optimality according to the

different parameters such as the number and the duration between the preventive repairs.

3. Optimality analysis

Herein, the maintenance cost is rewritten in order to integrated the impacts of preventive

maintenance (PM) on the equipment lifetime distribution. We assume that a preventive action

allows to reduce the age of equipment to zero and increase the hazard function. Figures 1 and 2

point out the impact of PM on the equipment hazard and reliability functions. The hazard

function is defined after PM as follows

λj,k tð Þ ¼ βjλj,k�1 tð Þ, (17)

where j ¼ 1, 2, and βj > 1: Under these hypotheses, Eq. (5), which represents the total minimal

cost on the first environment, is rewritten as

Ctm1 ¼ �cm1
1� βn11
1� β1

logR1 x1ð Þ, (18)

Figure 2. Evolution of reliability function due to preventive maintenance.
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with

R1 x1ð Þ ¼ R1,1 x1ð Þ: (19)

In the second operating environment, the hazard function at nþ 1ð Þth is a consequence of

n1 � 1þ γ PM in first and 1� γ in the second environment.

λ2,n1þ1 tð Þ ¼ β
n1�1þγ
1 β

1�γ
2 λ2 tð Þ

λ2,n1þ2 tð Þ ¼ β
n1�1þγ
1 β

2�γ
2 λ2 tð Þ

… ¼…

λ2,n1þn2 tð Þ ¼ β
n1�1þγ
1 β

n2�γ
2 λ2 tð Þ

(20)

with

λ2 tð Þ ¼ λ2,1 tð Þ: (21)

The total cost due to the minimal repair in the second environment becomes

Cmt2 ¼ �cm2β
n1�1þγ
1 β

1�γ
2

1� βn22
1� β2

logR2 x2ð Þ: (22)

By considering Eqs. (15), (18), and (19), the total cost per unit of time is rewritten as follows

C n1; n2; x1; x2ð Þ ¼
1

n1x1 þ n2x2
n1 � 1þ γð ÞCp1 þ n2 � γð ÞCp2

� �

�
1

n1x1 þ n2x2
cm1

1� βn11
1� β1

logR1 x1ð Þ

� �

�
1

n1x1 þ n2x2
cm2β

n1�1þγ
1 β

1�γ
2

1� βn22
1� β2

logR2 x2ð Þ

� �

:

(23)

3.1. Optimality according to n1 and n2

Let us assume that there is a pair n1; n2ð Þ that provides the minimal cost per unit according to

the Eq. (20) for given periods x1; x2ð Þ between preventive repairs. Then, corresponding cost has

to remain the unique lowest bound relative to other pairs of integer. This implies that cost at

n1; n2ð Þ must be better than the costs from the successive pairs n1 þ 1; n2ð Þ; n1 � 1; n2ð Þf g;

n1; n2 þ 1ð Þ; n1; n2 � 1ð Þf g and n1 þ 1; n2 þ 1ð Þ; n1 � 1; n2 � 1ð Þf g: The existence and unique-

ness of the pairs are analyzed through some propositions.

3.1.1. Local optimality

The local optimality concerns the direct neighbors of the optimal pair such as n1 þ 1; n2ð Þ;f

n1 � 1; n2ð Þg and n1; n2 � 1ð Þ; n1; n2 þ 1ð Þf g: Let pose that
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L1 n1jn2ð Þ ¼ C n1; n2; x1; x2ð Þ � C n1 þ 1; n2; x1; x2ð Þ, (24)

L2 n2jn1ð Þ ¼ C n1; n2; x1; x2ð Þ � C n1; n2 þ 1; x1; x2ð Þ, (25)

Proposition 1 If the lifetime distribution functions are increasing failure rate (IFR) and L1 1jn2ð Þ > 0,
then there exists a unique optimal number of PM n1 in the first environments in which this n1 ensures

the minimal cost per unit time for a fixed pair x1; x2ð Þ and n2:

Proof. As the maintenance cost per unit of time is minimal for n1; n2ð Þ, then we have

C n1; n2; x1; x2ð Þ ≤C n1 � 1; n2; x1; x2ð Þ,

C n1; n2; x1; x2ð Þ < C n1 þ 1; n2; x1; x2ð Þ:

�

(26)

This system is equivalent to

L1 n1 � 1jn2ð Þ ≥ 0,

L1 n1jn2ð Þ < 0:

�

(27)

with

L1 n1 � 1jn2ð Þ ¼ �n2x2Cp1 þ x1 γ� 1ð ÞCp1 þ n2 � γð ÞCp2

� �

�x1 cm1

1� βn1

1� β1
logR1 x1ð Þ þ cm2β

n1�1þγ
1 β

1�γ
2

1� βn22
1� β2

logR2 x2ð Þ

� �

þ n1x1 þ n2x2ð Þ cm1β
n1�1
1 logR1 x1ð Þ þ cm2β

n1�2þγ
1 β

1�γ
2

β1 � 1

1� β2
1� βn22
� �

logR2 x2ð Þ

� �

:

In fact

lim
n1 þ∞

L1 n1jn2ð Þ ¼ �∞,

and

L1 n1jn2ð Þ � L1 n1 � 1jn2ð Þ ¼ n1x1 þ n2x2ð Þ cm1β
n1
1 logR1 x1ð Þ

� �

þ n1x1 þ n2x2ð Þ cm2β
n1�1þγ
1 β

1�γ
2

β1 � 1

1� β2
1� βn22
� �

logR2 x2ð Þ

� �

,

The right-hand side of the previous equation shows that L1 n1jn2ð Þ � L1 n1 � 1jn2ð Þ < 0: This

implies that L1 n1jn2ð Þ decreases with n1: If L1 1jn2ð Þ > 0, then there exists a unique n1 which

verifies condition (23) and ensures the minimal cost per unit time for given n2.

Proposition 2 If the lifetime distribution function of equipment on both environments is IFR and

L2 1jn1ð Þ > 0, then there exists a unique optimal number of PM n2 in the second environment in which

this number ensures the minimal cost per unit time for corresponding fixed pair x1; x2ð Þ and n2:

System Reliability378



Proof. As the cost maintenance per unit time is minimal for n1; n2ð Þ, then we have

C n1; n2; x1; x2ð Þ ≤C n1; n2 � 1; x1; x2ð Þ,

C n1; n2; x1; x2ð Þ < C n1; n2 þ 1; x1; x2ð Þ:

�

(28)

This is equivalent to

L2 n2 � 1jn1ð Þ ≥ 0,

L2 n2jn1ð Þ < 0:

�

(29)

with

L2 n2 � 1jn1ð Þ ¼ �n1x1Cp2 þ x2 n1 � 1þ γð ÞCp1 � γCp2

� �

�x2 cm1
1� βn11
1� β1

logR1 x1ð Þ þ cm2β
n1�1þγ
1 β

1�γ
2

1� βn22
1� β2

logR2 x2ð Þ

� �

þ n1x1 þ n2x2ð Þ cm2β
n1�1þγ
1 β

n2�γ
2 logR2 x2ð Þ

	 


:

This equation implies

lim
n2!∞

L2 n2jn1ð Þ ¼ �∞,

and

L2 n2jn1ð Þ � L2 n2 � 1jn1ð Þ ¼ n1x1 þ n2x2ð Þ cm2β
n1�1þγ
1 β

n2�γþ1
2 logR2 x2ð Þ

	 


< 0:

Therefore, L2 n2jn1ð Þ decreases with and for L2 1jn1ð Þ > 0, we have a unique n2 in which the total

per unit of time is minimal for fixed n1:

3.1.2. Global optimality

The global optimality compares the optimal pair to n1 þ 1; n2 þ 1ð Þ; n1 � 1; n2 � 1ð Þf g: Let us

pose that

L3 n1; n2ð Þ ¼ C n1; n2; x1; x2ð Þ � C n1 þ 1; n2 þ 1; x1; x2ð Þ: (30)

Proposition 3 If the lifetime distribution functions are IFR and L3 1; 1ð Þ > 0, then there exists a unique

optimal number of PM n1; n2ð Þ in which this ensures the minimal cost per unit time for a fixed pair x1; x2ð Þ.

Proof. As the cost is minimal for n1; n2ð Þ, then

C n1; n2; x1; x2ð Þ ≤C n1 � 1; n2 � 1; x1; x2ð Þ,

C n1; n2; x1; x2ð Þ < C n1 þ 1; n2 þ 1; x1; x2ð Þ:

�

(31)

This is equivalent to
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L3 n1 � 1; n2 � 1ð Þ ≥ 0,

L3 n1; n2ð Þ < 0:

(

(32)

with

L3 n1 � 1; n2 � 1ð Þ ¼ x1 þ x2ð Þ γ� 1ð ÞCp1 � γCp2

� �

� x1 þ x2ð Þ cm1
1� βn11
1� β1

logR1 x1ð Þ þ cm2β
n1�1
1 β

1�γ
2

1� βn22
1� β2

� �

þ n1x1 þ n2x2ð Þ cm1β
n1�1 logR1 x1ð Þ � cm2

1� β1 � βn2�1
2 1� β2

� �

1� β2
βn1�2
1 β

1�γ
2

 !

:

With

L3 þ∞;þ∞ð Þ ¼ �∞,

and

L3 n1; n2ð Þ � L3 n1 � 1; n2 � 1ð Þ < 0:

Therefore, L3 n1; n2ð Þ decreases with n1; n2ð Þ and for L3 1; 1ð Þ > 0, we have a unique pair n1; n2ð Þ

in which the total per unit of time is minimal.

3.2. Optimality according to x1 and x2

For given number of preventive actions n1; n2ð Þ, the optimal durations x1; x2ð Þ between preven-

tive actions in both environments have to verify

∂

∂x1
C n1; n2; x1; x2ð Þ ¼ 0

∂

∂x2
C n1; n2; x1; x2ð Þ ¼ 0;

8

>

>

>

<

>

>

>

:

(33)

This implies

cm1
1� βn11
1� β1

λ1 x1ð Þ ¼ n1C n1; n2; x1; x2ð Þ,

cm2β
n1�1þγ
1 β

1�γ
2

1� βn22
1� β2

λ2 x2ð Þ ¼ n2C n1; n2; x1; x2ð Þ:

8

>

>

>

>

<

>

>

>

>

:

(34)

By dividing, we obtain

λ1 x1ð Þ

λ2 x2ð Þ
¼ β

n1�1þγ
1 β

1�γ
2

	 
 n1
n2

cm2

cm1

1� βn22
1� βn11

1� β1
1� β2

(35)
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Proposition 4 If the lifetime functions of the equipment are Weibull-distributed in both environments

with the same shape parameter b, then the optimal interval between PM is defined as

x1
x2

¼ Cste∗
n1
n2

� �1= b�1ð Þ

: (36)

Proof. As lifetime functions are Weibull-distributed with the same parameter b, then the

hazard functions are defined as follows

λ1 x1ð Þ ¼
b

η1

x1
η1

� �b�1

, (37)

λ2 x2ð Þ ¼
b

η2

x2
η2

� �b�1

, (38)

and from Eq. (32), we deduce

x1
x2

¼
cm2

cm1
β
n1�1þγ
1 β

1�γ
2

	 
 1� βn22
1� βn11

1� β1
1� β2

� �1= b�1ð Þ η1
η2

n1
n2

� �1= b�1ð Þ

: (39)

The uniqueness is tough to establish due to the number of parameters and the complexity of the

proposed cost model here. To make the research of optimal solution easy, we propose a handy

heuristic based on the optimal derived conditions in this chapter. The next section describes step

by step the proposed heuristic which leads to a suitable solution for our optimization problem.

3.3. Numerical resolution of problem

Herein, an algorithm is drawn in order to find the optimal pairs for n1; n2ð Þ and x1; x2ð Þ: The

optimal pairs ensure the minimal cost per unit time defined by Eq. (20). Moreover, the exis-

tence of these optimal pairs is discussed in the previous sections. The proposed heuristic

makes switching between the research of pairs ( n1; n2ð Þ and x1; x2ð Þ). This algorithm converges

surely toward the pair that ensures the minimal cost according to the conditions deduce from

the Eq. (20). The next section presents an application of our approach. The algorithm is on the

previous propositions and defined as follows.

Algorithm 1 Compute the optimal pairs of number n1; n2ð Þ and periods x1; x2ð Þ of PM.

Initialize the pair n1; n2ð Þ0 ¼ 1; 1ð Þ:

Put n1; n2ð Þ ¼ n1; n2ð Þ0

STEP (A) Research optimal x1; x2ð Þ for given n1; n2ð Þ.

Compute L1 1jn2ð Þ, L2 1jn1ð Þ and L3 1; 1ð Þ.

if L1 1jn2ð Þ > 0 then

Research n1 að Þ which verifies condition (24) is verified
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n1 1ð Þ ¼ n1 að Þ and n2 1ð Þ ¼ n2:

C1 ¼ C n1 1ð Þ; n2 1ð Þð Þ

else

L1 1jn2ð Þ < 0f g

C1 ¼ ∞

if L2 1jn1ð Þ > 0 then

Research n2 bð Þ which verifies conditions (26).

n1 2ð Þ ¼ n1; n2 2ð Þ ¼ n2 bð Þ

C2 ¼ C n1 2ð Þ; n2 2ð Þð Þ

else L2 1jn1ð Þ < 0f g

C2 ¼ ∞

if L3 1; 1ð Þ > 0 then

Research n2 cð Þ which verifies L3 n1 cð Þ; n2 cð Þð Þ (29).

n1 2ð Þ ¼ n1 cð Þ; n2 2ð Þ ¼ n2 cð Þ

C3 ¼ C n1 2ð Þ; n2 2ð Þð Þ

else

L3 1; 1ð Þ < 0f g

C3 ¼ ∞

Cmin ¼ Min C1;C2;C3f g

m ¼ mþ 1

n1; n2ð Þm ¼ n1 ið Þ, n2 ið Þ∣Ci ¼ Cminð gf

if n1; n2ð Þm ¼ n1; n2ð Þm�1 then

n1; n2ð Þ ¼ n1; n2ð Þm

Keep corresponding x1; x2ð Þ else

n1; n2ð Þm 6¼ n1; n2ð Þm�1

� �

n1; n2ð Þ ¼ n1; n2ð Þm

Go to step (A)

end if

End.
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4. Numerical application

We consider an equipment whose lifetime distribution function is Weibull with the same shape

parameter b ¼ 2:0. The equipment has to be used on two environments with different severity.

Their severity depends on the scale parameter, such as in first the scale is η1 ¼ 20, while η2 ¼ 10

stands for the scale parameter in the second environment. This implies that the second environ-

ment is twice more severe than first. To reduce the risk of equipment failure of the failure, the

equipment undergoes periodic, preventive maintenance. The preventive maintenance costs

Cp1 ¼ 100 and Cp2 ¼ 150, respectively, on the first and second. The preventive actions impact

the lifetime distribution of equipment. The impact factors due to PM are equal to β1 ¼ 1:85 in

first and β2 ¼ 2:5 in the second environment. In addition, the equipment is minimally repaired at

failure. The costs of minimal repair are in both environments cm1 ¼ 80 and cm2 ¼ 70. Based on

this information, we are going to solve the optimization problem in order to find the number and

duration period between PM on each environment which ensure a minimal cost per unit of time.

With these parameters, the minimal cost reaches 10:37: This minimal cost involves n1 ¼ 1 and

n2 ¼ 1 preventive maintenance (PM) respectively in the first and second environments. The

durations between each PM are x1 ¼ 26:06 and x2 ¼ 3:03:

5. Conclusion

This chapter shows how to solve Nakagawa maintenance policy problem for an equipment

which operates simultaneously on two environments. Each environment impacts the lifetime

distribution function of our equipment. Nakagawa’s maintenance problem is modeled under

lifetime distribution changing in operation. The proposed model is deeply analyzed in order to

derive the conditions under which optimal pairs exist and are reachable. To reach these pairs,

algorithm was proposed to find the optimal solution for the periodic preventive maintenance

on infinite horizon. The model is handy and suitable for production equipments which have to

experience under different operating environments with their own severity degree that

impacts the equipment performance such as onshore or offshore.

For future work, we plan to propose a statistical modeling by ignoring the hypothesis on the

knowledge of the equipment lifetime distribution and perform an extension of the analysis by

considering an finite-time horizon/span.

Author details

Ibrahima dit Bouran Sidibe1* and Imene Djelloul2,3

*Address all correspondence to: bouransidibe@gmail.com

1 Centre de Formation et de Perfectionnement en Statistique (CFP-STAT) Bamako, Mali

2 Higher School of Applied Sciences of Algiers, Place des Martyres, Alger, Algerie

3 Manufacturing Engineering Laboratory of Tlemcen (MELT), Abou Bekr Belkaid University

of Tlemcen, Tlemcen, Algeria

Optimum Maintenance Policy for Equipment over Changing of the Operation Environment
http://dx.doi.org/10.5772/intechopen.72334

383



References

[1] Barlow R, Hunter L. Optimum preventive maintenance policies. Operations Research.

1960;8(1):90-100

[2] Barlow R, Proschan F. Mathematical Theory of Reliability. New York: John Wiley & Sons;

1965

[3] Nakagawa T, Mizutani S. A summary of maintenance policies for a finite interval. Reli-

ability Engineering & System Safety. 2009;94(1):89-96

[4] Nakagawa T. Advanced Reliability Models and Maintenance Policies. Springer series in

reliability engineering, London: Springer; 2008

[5] Cho D, Parlar M. A survey of maintenance models for multi-unit systems. European

Journal of Operational Research. 1991;51(1):1-23

[6] Dekker R. Applications of maintenance optimization models: A review and analysis.

Reliability Engineering & Systems Safety. 1996;51(3):229-240

[7] Jardine A, Tsang A. Maintenance, Replacement, and Reliability: Theory and Applications.

Boca Raton: CRC/Taylor & Francis; 2006

[8] Lugtigheid D, Jardine A, Jiang X. Optimizing the performance of a repairable system

under a maintenance and repair contract. Quality and Reliability Engineering Interna-

tional. 2007;23(8):943-960

[9] Coolen F, Coolen-Schrijner P, Yan K. Non-parametric predictive inference in reliability.

Reliability Engineering & System Safety. 2002;78(2):185-193

[10] Coolen-Schrijner P, Coolen F. Non-parametric predictive inference for age replacement

with a renewal argument. Quality and Reliability Engineering International. 2004;20(3):

203-215

[11] de Jonge B, Klingenberg W, Teunter R, Tinga T. Optimum maintenance strategy under

uncertainty in the lifetime distribution. Reliability Engineering & System Safety. 2015;133:

59–67.

[12] Nakagawa T. Periodic and sequential preventive maintenance policies. Journal of Applied

Probability. 1986;23(2):536-542

[13] Thompson WA. On the foundations of reliability. Technometrics. 1981;23(1):1-13

System Reliability384


