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Abstract

One of the most important environment monitoring problems is the detection of oxi-
dizing gases in the ambient air. Negative impact of noxious oxidizing gases (ozone and 
nitrogen oxides) on human health, sensitive vegetation, and ecosystems is very serious. 
For this reason, palladium (II) oxide nanostructures have been employed for oxidizing 
gas detection. Thin and ultrathin films of palladium (II) oxide were prepared by ther-
mal oxidation at dry oxygen of previously formed pure palladium layers on polished 
poly-Al

2
O

3
, SiO

2
/Si (100), optical quality quartz, and amorphous carbon/KCl substrates. 

At ozone and nitrogen dioxide detection, PdO films prepared by oxidation at T = 870 K 
have demonstrated good values of sensitivity, signal stability, operation speed, and 
reproducibility of sensor response. In comparison with other materials, palladium (II) 
oxide thin and ultrathin films have some advantages at gas sensor fabrication. Firstly, 
for oxidizing gas detection, PdO films with p-type conductivity are more perspective 
than the material with n-type conductivity. Secondly, at ambient conditions, palladium 
(II) oxide is insoluble in water and does not react with it. These facts are favorable 
for the fabrication of gas detectors because they make possible to minimize the air 
humidity influence on PdO sensor response values. Thirdly, the synthesis procedure of 
PdO films is rather simple and is compatible with planar processes of microelectronic 
industry.

Keywords: palladium (II) oxide, nanostructure, gas sensor, ozone, nitrogen dioxide

1. Introduction

Nowadays, the detection of oxidizing gases in the ambient air is one of the most important 
environment monitoring problems for industrialized countries. During the last 25 years, the 
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steady increase in concentration of nitrogen dioxide and tropospheric (low level) ozone is 
observed. As it is known, three out of six common air pollutants (also called “criteria pol-
lutants”) are oxidizing gases: sulfur dioxide, nitrogen oxides, and tropospheric ozone [1, 2]. 

One part of ecologists is sure that increase in the content of low-level ozone in atmospheric 
air is caused mainly by an intensification of industrial production, motor and air transport. 
Undoubtedly, ozone gas is applied in many fields such as food, pharmaceutical, textile, and 
chemical industries, water treatment, and purification of gases. However, there is an opinion 
that emergence of tropospheric ozone in ambient air is a consequence of the “greenhouse” 
effect [3].

Under sunlight, the interaction of ozone, nitrogen oxides, and volatile hydrocarbons can pro-

duce many toxic organic compounds (Figure 1). By the action of sunlight, oxygen atoms freed 

from nitrogen dioxide attack oxygen molecules to make ozone. Nitrogen oxide can combine 
with ozone to reform nitrogen dioxide, and the cycle repeats.

Moreover, at interaction with ozone, the ultraviolet component of sunlight leads to the 
formation of excess quantity of the reactive oxygen species (ROS): oxygen ions, free radi-

cals, and peroxides. In living bodies, even the trace amounts of ROC can provoke an oxi-
dative stress. For human, the oxidative stress is a reason for atherosclerosis, hypertension, 

Alzheimer’s disease, diabetes, and geromorphism [4–9]. The negative impact on human 

health of an aspiration of noxious oxidizing gases (ozone and nitrogen oxides) is more 

 serious, particularly for children, the elderly, and people who suffer from lung diseases 
[1, 2]. Nitrogen oxides and tropospheric ozone can also have harmful effects on sensitive 
vegetation and ecosystems [10–13].

Figure 1. The chemical reactions of tropospheric ozone under sunlight.
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For these reasons, various types of the binary, ternary and quaternary metal-oxide semicon-

ductors have been widely applied for oxidizing gas detection. In most cases, for this purpose, 
the n-type semiconductors such as SnO

2
 [14–20], ZnO [21–26], WO

3
 [27–32], In

2
O

3
 [33, 34], and 

TiO
2
 [35] are used traditionally. In recent years, the search of the materials, which would be 

capable to lower the detection limit of oxidizing gases, became more active.

The study of palladium (II) oxide nanostructures as materials for gas sensor fabrication was 
started only since 2014. The assumption to use palladium (II) oxide, which is a p-type semi-

conductor with the energy band gap ΔE
g
 = 2.2–2.7 eV [36–38], as the material for the detection 

of toxic and highly inflammable gas in ambient air has not been accidental for some reasons 
[39, 40]. Firstly, for a long time, palladium and its compounds in (+2) oxidation state were 
exploited as very effective catalysts for oxidation reactions of hydrocarbons, including auto-

mobile catalytic converters and the catalytic combustion of methane in advanced gas turbines. 

In catalytic converters, the key processes are the complete oxidation of any hydrocarbon in 

the exhaust gas stream, the simultaneous oxidation of carbon monoxide, and reduction of 

nitrogen oxides. Secondly, due to the extremely high catalytic activity, palladium and palla-

dium (II) oxide were applied as additives to improve gas-sensing performance of tin dioxide 
SnO

2
 to a wide range of gases [41–43]. Thirdly, the opinion that long recovery process and 

high stability could be referred to the main disadvantages of the oxidizing gas sensors based 

on tin dioxide has been expressed earlier [44, 45]. Fourthly, the metal oxide semiconductors 

with p-type conductivity are more perspective for oxidizing gas detection than the materials 

with n-type conductivity. In this case, the chemical adsorption of oxidizing gas molecule on 

p-type semiconductors surface leads to decrease in the sensor resistance that has simplified 
the detection process [35, 36]. Thus, at oxidizing gas detection, palladium (II) oxide nano-

structures should demonstrate the increase in sensor response value in comparison with the 
traditional n-type conductivity materials using for the same purpose.

2. Fabrication of palladium (II) oxide nanostructures

Initially, the sensing properties to oxidizing gases of palladium (II) oxide nanostructures were 
tested on ultrathin and thin films at detection of ozone and nitrogen dioxide [46, 47]. The pro-

cedure of PdO thin and ultrathin films synthesis was realized by two stages. First, the initial 
palladium films (thickness 5–30 nm) were formed by thermal sublimation of palladium foil 
(purity is 99.99%) in high vacuum chamber evacuated to 5 × 10−7 Torr using a turbo molecular 

pump. In vacuum chamber, the condensation of Pd metal vapors was performed on different 
substrates: SiO

2
/Si (100), Si (100), optical quality quartz, and KCl (100) with buffer layer of 

amorphous carbon (Figure 2). The values of tungsten heater temperature in order to fabri-

cate initial palladium films with average rate within interval 0.01–0.016 nm per second were 
determined as a result of Pd films cross-sections by high-resolution scanning and transmission 
electron microscopy (HR STEM) study.

The substructure of initial palladium layers was studied by an X-ray analysis and the HEED 
method. As it is shown in Figure 3a and 3b, the initial Pd films were polycrystalline and 
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Figure 2. High-resolution TEM image of Pd/SiO
2
/Si (100) heterostructure cross-section prepared by focused ion beam 

(FIB) technique.

Figure 3. Experimental results of initial Pd films (thickness ~10 nm) crystal structure study: (a) XRD patterns of Pd 
film deposited on Si (100) substrate; (b) HEED patterns of Pd film deposited on amorphous carbon/KCl substrate; 
(c) bright-field TEM image of Pd film deposited on amorphous carbon/KCl substrate; (d) dark-field TEM image of 
Pd film deposited on amorphous carbon/KCl substrate.
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highly dispersive with random orientation of grains irrespective of the substrate nature 
(SiO

2
/Si (100), optical quality quartz, and amorphous carbon/KCl). The analysis of bright-field 

(Figure 3c) and dark-field (Figure 3d) TEM images proves that palladium crystalline grains 
form a continuous coating without an axial texture with very low density of micropores. On 
bright-field image, the light contrast (Figure 3c) testifies to the decrease of film thickness at 
grain borders [48].

Prepared Pd nanostructures on different substrates were annealed at dry oxygen atmosphere 
for 1 h for layers with thickness 5–15 nm and for 2 h for layers with thickness 30 ± 5 nm at 
temperatures T

ox
 = 510, 570, 670, 770, 870, and 1070 K. The dehumidification of oxygen at pres-

sure 120–130 kPa (1.2–1.3 Bar) was carried out by gas flow passage through gas bubbler with 
concentrated sulfuric acid and further through silica tube full of ground zeolite [48].

3. Phase composition and crystal structure of palladium (II) oxide 

nanostructures

X-ray diffraction (XRD) patterns of samples prepared by oxidation of Pd films on SiO
2
/Si 

(100) wafers at dry oxygen atmosphere at T
ox

 = 510, 570, 770, 870, and 970 K are shown in 
Figure 4.

It is necessary to note that in Figure 4, the values of XRD reflex intensities are presented in 
a logarithmic scale because the intensity of Si (400) peak practically exceeds the intensity of 

palladium and palladium (II) oxide peaks by two orders of magnitude owing to a small thick-

ness of the prepared films. The comparison of the as-grown Pd films XRD patterns with XRD 
patterns of Pd film after the annealing at T

ox
 = 510 K (Figure 4a) did not reveal any quality 

changes. The increase in intensities of palladium reflexes was found only.

Thus, it has been established that the annealing of Pd layers at T
ox

 < 570 K (Figure 4a) did not 

result in the change of their phase constitution. The annealing at T
ox

 = 570 K resulted in the 
formation of two phase films (Figure 4b). XRD patterns have shown the presence of Pd with 
PdO simultaneously.

According to XRD results, the rise of the oxidation temperature up to T
ox

 = 770 K and T
ox

 = 870 K 
led to the formation of the homogenous polycrystalline PdO films. It has been determined 
(Figure 4c and 4d) that palladium (II) oxide films were characterized by tetragonal crystal lat-
tice (space group P4

2
/mmc and PtS structure type). XRD patterns show (Figure 4c–4e) that the 

peaks became sharper and higher with the oxidizing temperature increasing from T
ox

 = 770 K 
up to T

ox
 = 970 K. Moreover, the peaks of palladium (II) oxide prepared by oxidation at 

T
ox

 = 970 K are much sharper and higher than those for films oxidized at T
ox

 = 870 K. This 
fact can be interpreted as one of the evidences of the crystalline perfection enhancement of 

palladium (II) oxide films and the grain size enlargement with the increase in the oxidation 
temperature.
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High energy electron diffraction (HEED) technique was used as an alternative method to 
study PdO film phase composition (Figure 5).

Table 1 compares the results of X-ray analysis (layers on SiO
2
/Si substrates), the HEED 

method (layers on optical quartz and Al
2
O

3
 substrates), and TEM micro diffraction (layers 

on amorphous carbon/KCl). An examination of the data presented in Table 1 shows that 
the X-ray analysis, HEED method, and TEM micro diffraction gave the identical results for 
the films oxidized at temperatures T

ox
 = 510, 570, 770, 870, and 970 K. The results of these 

two methods confirm that: (1) the annealing of Pd films at T
ox

 = 510 K does not induce the 
changes in their phase composition; (2) after annealing of Pd films at the T

ox
 = 570 K, the 

partial oxidation takes place and gives two phase samples – a mixture of Pd and PdO; and 
(3) after the annealing of palladium layers at T

ox
 = 770–970 K, the total oxidation gives homo-

geneous PdO films [48].

Figure 4. X-ray diffraction patterns of palladium film deposited on SiO
2
/Si (100) substrate after oxidation in dry oxygen 

at different temperatures: a—T
ox

 = 510 K; b—T
ox

 = 570 K; c—T
ox

 = 770 K; d—T
ox

 = 870 K; and e—T
ox

 = 970 K.
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4. Electrical properties of palladium (II) oxide nanostructures

The type of conductivity of PdO films synthesized at T
ox

 = 770–970 K was determined by the 
Seebeck effect study and by calculation of the electromotive force E

emf
 values:

   E  
emf

   = − S ∇ T,  (1)

where S is thermo-power (Seebeck coefficient), and ∇T is the temperature gradient. Copper-
constantan thermocouples have been used to measure a temperature difference.

Experimental values of E
emf

 have proved the p-type conductivity for all homogeneous pal-

ladium (II) oxide films (Figure 6). The fact of p-type conductivity of PdO bulk samples 

was reported in the previous publications [36, 37]. The values of thermo power (Seebeck 
coefficient) S have been calculated using the Eq. (1). Depending on thickness of palladium 
oxide films and oxidation temperature, the Seebeck coefficient values changed within the 
limits from +120 to +220 μV/K. The relative error at thermo-power measurement did not 
exceed 7%.

Figure 5. HEED patterns (a) and bright-field TEM image (b) of PdO film after oxidation at T
ox

 = 870 K.

Oxidation temperature T
ox

, K Phase composition

X-ray analysis HEED TEM microdiffraction

510 Pd Pd Pd

570 Pd + PdO Pd + PdO Pd + PdO

670 — PdO —

770 PdO PdO PdO

870 PdO PdO PdO

970 PdO PdO PdO

Table 1. Results of phase composition study of Pd films after oxidation at T = 500–970 K.
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In view of p-type conductivity, palladium (II) oxide films are characterized with the cation 
deficiency regarding the stoichiometric 1:1 ratio. Thus, for PdO, the Kröger-Vink defect reac-

tions can be written as follows:

a. with the cations in deficiency on the lattice sites:

   Pd  
Pd

  ×   +  O  
O
  ×   +   1 __ 

2
     O  

2
      (gas)   ⇄  Pd  

Pd
  ×   +  V  

Pd
  ″   + 2  O  

O
  ×   + 2  h   ··   (2)

b. with the anions in excess on the interstitial sites:

   Pd  
Pd

  ×   +  O  
O
  ×   +   1 __ 

2
     O  

2
      (gas)   ⇄  Pd  

Pd
  ×   +  O  

O
  ×   +  O  

i
  ″  + 2  h   ··   (3)

The results obtained in the present work correlate with the capacitance voltage characteristics 
of PdO films on silicon [49]. Previously it was found that within the band gap of PdO films, 
one single energy state is realized only [49]. Therefore, only one type of point defects, which 
have generated holes, dominates in palladium (II) oxide films. The experimental study of the 
point defects nature will be the subject of further investigations.

5. Gas sensor properties of palladium (II) oxide nanostructures

Ozone and nitrogen dioxide sensitivity has been measured using the specially fabricated test 

samples of gas sensors based on thin and ultrathin PdO films oxidized at T
ox

 = 870 K. During 
sensor response measurements of PdO, ultrathin and thin films prepared by oxidation at 
T

ox
 = 873 K, synthetic air, calibrated gas mixtures with fixed nitrogen dioxide concentration, and 

standardized ozone generator produced by Optec were used. The ozone gas was generated by 

Figure 6. Electromotive force E
emf

 dependence upon the temperature gradient for PdO film prepared by oxidation at 
T

ox
 = 870 K (thickness ~ 30 nm).
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oxidizing oxygen molecules of synthetic air (SA) by a pen-ray ultraviolet (UV) lamp calibrated 

to give the O
3
 concentration range between 0.03 ppb and 800 ppb. The synthetic air containing 

ozone was blown directly on the sensor placed on the top of holder within the test chamber. 
The operating temperature T

d
 of the sensor ranging from room temperature to 670 K was con-

trolled by chromel-alumel thermocouple. The measurement started after the sample resistance 

achieved a steady value [50, 51].

Sensor response S was determined as the ratio of the sensor resistance in synthetic air R
0
 to 

the sensor resistance in gas R:

  S =   
 R  

0
  
 __ 
R

    (4)

The measurements of NO
2
 and O

3
 concentration were performed in flow path conditions with 

the rates of 300 cm3 per minute and 2.4 dm3 per minute, respectively. The gas flow rate was 
measured by controllers produced by Bronkhorst.

As it possible to see in Figures 7 and 8, at rather low operation temperature T
d
, the sensors 

based on thin (T
d
 = 490 K) and ultrathin (T

d
 = 448 K) PdO films show good sensitivity to 

rather low concentrations of ozone. Figures 7 and 8 show that at process of ozone quantita-

tive detection at SA atmosphere within concentration interval 100–250 ppb, palladium (II) 
oxide films have demonstrated high values of sensor response, signal stability, and repro-

ducibility of sensor response also. This fact was proved by the results of multiple measure-

ment cycles with the same O
3
 concentrations. PdO films with thickness of about 35 nm are 

characterized by higher values of sensor response (on the average in 7–8 times) in compari-

son with ultrathin films at the same ozone concentrations (Figure 9). It is possible to explain 

Figure 7. Time dependence of PdO ultrathin film (thickness ~ 10 nm) sensor resistance R at ozone different concentrations 
(operation temperature T

d
 = 448 K).
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this fact that the contribution in integrated conductivity of near-surface layers with high 
defects density is essentially higher for ultrathin PdO films than for films with thickness of 
about 35 nm (Figure 9). It is necessary to emphasis that the established feature demands a 

detailed study.

It has been established that PdO thin and ultrathin film sensors gave the stable signal, and the 
resistance values reliably returned to the baseline at SA atmosphere [50, 51]. It is necessary to 

note that the recovery period is quite long (600–700 s). It is necessary to note that the similar 

sensor behavior is typical for other materials used oxidizing gas detection. Usually in this 

case, the long recovery period is explained by the absence of oxidizing gas immediate interac-

tion with oxygen molecules adsorbed on sensor material surface. At reducing gas detection, 
the direct interaction with oxygen molecules takes place; therefore, the recovery time is quite 
short. Moreover, the recovery time depends significantly on the operating temperature.

The sensitivity of palladium (II) oxide ultrathin films to nitrogen dioxide (another toxic oxi-
dizing gas) has also been tested (Figure 10). As it can be seen in Figure 10, at the process of 

NO
2
 quantitative detection within concentration interval 500 ppb–200 ppm, PdO ultrathin 

films have demonstrated good values of sensor response, signal stability, and reproducibility 
of sensor response [51]. It is necessary to note that the recovery period at NO

2
 detection is 

longer than that at O
3
 detection (Figures 7, 8, and 10).

During the determination of ozone (concentration ϕ = 100 ppb) and nitrogen dioxide (concen-

tration ϕ = 10 ppm), the temperature dependences of PdO ultrathin film sensor response S are 

presented in Figure 11.

It is found that within interval of operation temperature 323 < T
d
 < 623 K, the maximum values 

of response S have been observed at T
d
 = 448 K (NO

2
 detection) and at T

d
 = 490 K (O

3
 detection).

Figure 8. Time dependence of PdO thin film (thickness ~ 35 nm) sensor resistance R at ozone different concentrations 
(operation temperature T

d
 = 490 K).

Novel Nanomaterials - Synthesis and Applications220



As it can be seen in Figure 11, approximately equal values of sensor response S of palladium 

(II) oxide films are realized at different concentration of oxidizing gases: φ(O
3
) = 0.1 ppm and 

φ(NO
2
) = 10 ppm.

Figure 9. Dependence of PdO ultrathin and thin film sensor response S at ozone different concentrations: 1—Ultrathin 
film (thickness ~ 10 nm, operation temperature T

d
 = 448 K) and 2—Thin film (thickness ~ 35 nm, operation temperature 

T
d
 = 490 K).

Figure 10. Time dependence of PdO ultrathin film (thickness ~ 10 nm) sensor resistance R at nitrogen dioxide different 
concentrations (operation temperature T

d
 = 448 K).
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6. Discussion

Data presented in Table 2 show that physical properties (molecular mass, electric dipole 
moment) and chemical properties (structure of molecule, high oxidative activity) of detected 

gases are very similar. According to experimental evidence from microwave spectroscopy, 
ozone and nitrogen dioxide are bent molecules with C

2v
 symmetry (Table 2). O

3
 and NO

2
 are 

the polar molecules with a dipole moment of 0.66 and 0.39 D, respectively.

Data in Table 2 show that ozone and nitrogen dioxide molecules essentially differ with mag-

netic properties only. Ozone is diamagnetic, which means that its electrons are all paired. 
Unlike ozone, the ground electronic state of nitrogen dioxide is a doublet state. Owing to since 
nitrogen atom has one unpaired electron NO

2
 molecule is paramagnetic.

Nevertheless, at detection of ozone and nitrogen dioxide, the temperature that has matched the 

maximum values of sensor response differs only 25°. Thus, there is prerequisite for the increase 
in selectivity of palladium (II) oxide sensors at O

3
 and NO

2
 detection after studying in detail 

that oxidation procedure conditions influence on microstructure and stoichiometry deviation.

Moreover, at ambient conditions, palladium (II) oxide is insoluble in water and does not react 
with it. As the bottom sediment, the palladium (II) hydroxide is formed only at interaction 
of soluble palladium (II) salt and alkali [52]. These facts are favorable for fabrication of gas 

detectors because they make possible to minimize the air humidity influence on PdO sensor 

response values.

To estimate such perspective for palladium (II) oxide nanostructures, we have allowed the 
speculative extrapolation of experimental data to the point that corresponds to zero ozone 

concentration (Figure 12). At ozone concentration φ = 10 ppb, which corresponds to 0.1 × PEL 
(permissible exposure limit), sensor response S would be about 2 (S ~ 2 is an open circle in 
Figure 12). The extrapolated sensitivity value at concentration φ(O

3
) = 0.1 × PEL arouses hope 

that palladium (II) oxide films will be used in fabrication of ozone sensors.

Figure 11. Dependence of PdO ultrathin film (thickness ~ 10 nm) sensor response S upon the operation temperature T
d
 at 

detection of ozone (O
3
 concentration 0.1 ppm) and nitrogen dioxide (NO

2
 concentration 10 ppm).
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At interaction with PdO surface ozone molecules are more active than nitrogen dioxide ones. 
This interaction is accompanied by more essential increase in the hole density of palladium 

(II) oxide ultrathin films. In general case, the surface interaction of PdO nanostructures can be 

written within the framework of Kröger-Vink notation:

   Pd  
Pd

  ×     + O  
O
  ×     +  O  

3
        (gas)  ⇄   Pd  

Pd
  ×     +  O  

O
  ×     +  O″  

i
     +  2  h   ··  +   O  

2
        (gas)   (5)

According to Eq. (5), oxygen atom is integrated with palladium (II) oxide structure and O
2
 

molecule is desorbed from the surface. As result of this reaction (5), two holes are formed.

From this point of view, it is possible to explain high efficiency of palladium (II) oxide films 
at ozone detection. The attempt to distinguish the real reason of PdO nanostructures’ higher 

Figure 12. Dependence of PdO sensor response S upon the ozone concentration in synthetic air (operating temperature 

T
d
 = 490 K (220°C).

Molecule Molar mass 

M, g × mol−1
Space group 

symmetry

Magnetic 

Properties

Magnetic 

susceptibility 

χ × 106, cm3/mol

Dipole moment 

μ × 1030, C·m

PEL, ppm

O
3

48.00 C
2v

Diamagnetic +6.7 2.2

0.66D

0.1

(0.2 mg/m3)

NO
2

46.0055 C
2v

Paramagnetic +150.0 1.3

0.39D

5

(9 mg/m3)

Table 2. Physicochemical properties and permissible exposure limit (PEL) of ozone and nitrogen dioxide [52–56].
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sensitivity to ozone, it should be looked for ozone’s extremely high oxidizing ability. As it can 

be seen in Table 2,  the PEL value of ozone is smaller than the similar characteristic of nitrogen 
dioxide by 50 times practically. This fact is the indirect evidence of ozone-exclusive oxidizing 

activity. The difference in sensitivity of palladium (II) oxide nanostructures at ozone and nitro-

gen dioxide detection will be a subject of the subsequent experiments and discussions. Now, it 
is possible to designate the direction of these future researches only. It is reasonable to assume 

that under ozone molecules impact, the metastable nanoclusters are formed on the surface of 

PdO, in which the oxidation states of palladium are higher than (II), for example, (III) or (IV).

7. Conclusion

The results of X-ray analysis, HEED, and HR TEM have demonstrated the possibility of the 
synthesis of homogeneous nanocrystalline thin and ultrathin films of palladium (II) oxide on 
different substrates. The very first examinations of sensitivity to different nitrogen dioxide and 
ozone concentration at rather low operating temperature have shown the high values of sensor 
response, signal stability, operation speed, and reproducibility of PdO films sensor response. 
The possibility of work at quite low temperatures will allow decreasing in the energy con-

sumption of the analytical instruments. The detection of O
3
 and NO

2
 by palladium (II) oxide 

sensors can be applied in the fields of the human health and environment protection. Because 
the synthesis procedure is rather simple and compatible with planar processes of the microelec-

tronic industry PdO nanostructures have a good perspective to be one of the main materials 

for commercial fabrication of oxidizing gases (ozone, nitrogen dioxide, chlorine etc.) sensors.
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