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1. Introduction      

Feedback controls have applications in various fields including engineering, mechanics, 
biomathematics, and mathematical economics; see (Ogata, 1970), (de Queiroz, et al. 2000), 
(Murray, 2002), and (Seierstad & Sydsaeter, 1987) for more details. Lyapunov based control 
of mechanical system is a well-known technique. This includes Lyapunov direct/indirect 
methods. Such techniques can be employed to control the whole state variables or a part of 
the state variables. Sometimes there are some uncertainties or some reference trajectories 
which requires adaptive control. Back-stepping is a yet powerful approach to design the 
required controller. However, this approach leads to a complicated controller, especially 
when the chain of integrators is long. Back-stepping can also be used when the aim of 
control is the stability with respect to a part of the variables. These three concepts emerge in 
a mechanical system like a robot. Adaptive control can be carried out through two different 
approaches: indirect and direct adaptive control. Nevertheless there are some drawbacks in 
such control systems which are a matter of concern. For example, when there is the 
possibility of fault or it is considered to turn off the adaptation for saving energy, when the 
system seems to be relaxed at its equilibrium situation, the outcome can be dramatically 
destructive. Adaptively controlled systems with unknown parameters exhibit partial 
stability phenomenon when the persistence of excitation is not assumed to be satisfied by 
the designed controllers. Partial stability technique is most useful when a fully stabilized 
system losses some control engine or some phase variables are not actively controlled. Such 
situation is most applicable for automatic systems which need to work remotely without a 
proper access to maintenance; e.g., satellite, robots to work on other planets or under hard 
conditions which are required to continue their mission even if some fault happens, or when 
a minimum of controller is required. It is also applicable to biped robots when one of the 
engines is turned off, or weakened, for lack of energy or fault or when the robot is passively 
designed. It is worth noting that another useful aspect of partial stability and control is the 
possibility of controlling the required part of the phase variables without spending energy 
to control the part of the variables which is not relevant to the mission of the designed 
system. These concepts will be explained through some examples. The results will be 
illustrated by numerical computations. This chapter is organized as follows. In section 2 the 
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notion of stability and partial stability will be briefly discussed.  In section 3 the adaptive 
back stepping design will be introduced with two examples of fully stabilized and partially 
stabilized systems. The notion of single-wedge bifurcation will be discussed. In section 4, the 
question is: whether in mechanical system single-wedge bifurcation is likely to appear or 
not? If so, what sort of instability may occur when such bifurcation takes place? In this 
section an example of a simple mechanical system with unknown parameter will be studied. 
This mechanical system is a pendulum with one unknown parameter. The reason of 
considering such simple system is to emphasize that such undesirable situation is more 
likely to take place in more complicated mechanical systems when that is possible in a 
simple case. In section 5 a robot will be studied where only one of the phase variables is 
actively controlled while there are a reference trajectory and some unknown parameters. 
This falls into the category of adaptive stabilization with respect to a part of the variables. 
Such technique does not always leads to the objective of the control. We would like to see 
that how the geometric boundedness of the system can lead to a successful design. 

2. Stability and partial stability 

 Consider the differential equation  

 ( ).x f x=$   (1) 

For any initial value 
0
x  the solution 

0 0
( ) ( , )
t
x x t xφ =  is called the flow of the system (1). 

The point x∗  is called an equilibrium for (1) if ( )
t
x xφ ∗ ∗= for all 0≥t . Such points 

satisfy ( ) 0f x∗ = . Suppose that the vector field f  is complete so that the solutions exist for 

all time. We call x∗  an asymptotic stable equilibrium if for any neighborhood U around x∗  

there is another neighborhood V such that all solutions starting in V are bounded by 

U and converge to x∗  asymptotically. In order to check the stability, one needs to resort 

different techniques. Lyapunov has developed important techniques for the problem of 

stability, so-called direct and indirect methods. Lyapunov indirect method basically 

guarantees local stability of the nonlinear system. Here, the eigenvalues of the linearization 

of the system, about the equilibrium x∗  are examined. If all of them have negative real parts 

then the linearized system is globally stable. However, the original nonlinear system is 

typically stable only for small perturbations of initial conditions around the equilibrium. 

The set of admissible initial perturbations is usually a difficult task to determine. On the 

other hand, Lyapunov direct method examines the vector field directly. It is based on the 

existence of a so-called Lyapunov function, a positive-definite function defined in a 

neighborhood of the equilibrium x∗ , with a negative-definite time derivative. This 

guarantees the stability of the system in a neighborhood of x∗ .  

The case where the Lyapunov function is not negative-definite, but just negative can only 

guarantees the stability, but not asymptotic stability. However, through some invariant 

properties we can have asymptotic stability too. This is formulated in La' Salle invariant 

principle (Khalil, 1996). 

Now, we consider the system 
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 ( , ), ( , ) , , .p q sx f x w x y z R w R p q n+= = ∈ ∈ + =$  (2) 

Here, (0,0) 0f = , x  is the state and ( )w w x=  is the feedback controller such that 

(0) 0w = . The vector field f  is considered smooth. In the standard Lyapunov based 

stabilization with respect to all variables ( , )x y z=  around the equilibrium, lets say 0x = , 

we choose a control ( )w x  such that there exists a positive-definite Lyapunov function with 

a negative-definite time derivative  in a domain around the equilibrium, which then 
guarantees the asymptotic stability of 0x = . In the problem of stabilization with respect to a 
part of the variables the notion of y − positive-definite Rumyantsev function (Rumyantsev, 

1957) plays a key role. The domain of a Rumyantsev function is a cylinder 

 }{( , ) | || || , || || ,D y z y H z= ≤ ≤ ∞  (3) 

for some 0H > . 

Definition: The function :V D R→  is called a y − positive definite Rumyantsev function if 

there exists a continuous function ( )W y  with (0) 0W =  which is positive in cylinder (2) so 

that ( , ) ( )V y z W y≥  for all ( , )y z D∈ . 

Definition: The system ( , ( ))x f x w x=$  is called y − stable or stable with respect to y  if for 

any 0ε >  there exists 0δ >  such that for all initial conditions 
0
x  with 

0
|| ||x δ<  the 

solution ( )y t  satisfies || ( ) ||y t ε< . The system ( , ( ))x f x w x=$  is called asymptotically 

y − stable or asymptotically stable with respect to y  if, in addition, there exists a number 

0Δ >  such that for all initial condition 
0
x  with 

0
|| ||x < Δ  the solution ( )y t  satisfies 

lim ( ) 0
t
y t→∞ = . 

There are several approaches towards analyzing the partial stability. These approaches are 
given by (Rumyantsev, 1957); (Rumyantsev, 1970); and  (Rumyantsev & Oziraner, 1987); see 
also (Vorotnikov, 1998). 
There are two major directions to prove asymptotic y − stability: the method of sign-definite 

time derivative Rumyantsev function and the method of sign-constant time derivative 
Rumyantsev function. The former requires a Rumyantsev function with a y − negative-

definite time-derivative, whereas the later considers a Rumyantsev function with a 
y − negative time-derivative. For simplicity, we refer to these methods by terms sign-

definite and sign-constant method respectively. See (Rumyantsev, 1957), (Rumyantsev, 
1970) and (Vorotnikov, 1998) for more details. The method of the sign-constant is based on 
two concepts of the boundedness and precompactness; see (Andreev, 1991), (Andreev, 1987) 
and (Oziraner, 1973). 

3. Adaptive back-stepping design  

Consider the following system with one fixed unknown parameter 

 
1

2

( , , ),

( , , ).

x f x y

y f x y u

θ ∗=⎧
⎨

=⎩

$
$

 (4) 
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Assume 
1
(0,0, ) 0f θ =  for all θ . Adaptive back-stepping has two steps. First a feedback 

ˆ( , )y xκ θ=  is designed with ˆ(0, ) 0κ θ =  for all θ̂ , using an estimation θ̂  for the unknown 

parameter θ ∗ . The estimation θ̂  is updated according to the adaptation ˆ ( , )G xθ θ=$
 such 

that the x − equation is stabilized. In the next step we need to specify the actual controller 

u and parameter adaptation so that ˆ( ) ( ) ( ( ), ( ))t y t x t tς κ θ= − and ( )x t  converge to zero as 

time goes to infinity. As an example, consider the system  

 
( ),

.

x y x

y u

θ ϕ∗= +⎧
⎨

=⎩

$
$

 (5) 

Here, ,x y R∈  are state variables, u is the controller and Rθ ∗ ∈  is the unknown parameter. 

Suppose φ  is smooth and (0) 0φ = . Using the back-stepping technique, one can construct 

the following controller and parameter adaptation. 

 
( )( )

( )[ ]⎪⎩

⎪
⎨
⎧

++=

−+−+−−−=

,ˆ)(')(')(ˆ

,ˆ)()(ˆ)(')(')(

θφμςφθ

θφςμφφμςν

xxxx

xxxxxu

$  (6) 

to achieve the following closed-loop system. 

 ( )
( )( )⎪

⎪
⎩

⎪⎪
⎨

⎧

−++−=

−++−−=

++−=

∗

∗

.
~

)((')(')(
~

),(
~~

)((')(')(

),(
~

)(

θθφμςφθ

φθθθφμςνς

φθςμ

xxxx

xxxx

xxx

$
$

$
 (7) 

Here, ˆθ θ θ= −# is the error of estimation. One can observe that in such system θ# is bounded 

and indeed converges to some fixed value depends on initial cinditions. This fixed value 
defines a non-adaptive controlle so called limit controller which is accordingly 
corresponding to a non-adaptive closed system so called limit system. Surprisingly, such 
limit system is not guaranteed to be stabilized. Sometimes such limit system attracts a large 
subset of all initial conditions. The occurrence of this situation is called single-wedge 
bifurcation. The term single-wedge reffers to the fact that the shape of all initial conditions 
absorbed to such destabilized non-adaptive limit systems looks like a wedge. The system 
(7), dramatically undergoes a singl-wedge bifurcation; that is a transcritical bifurcation 
corresponding to a destabilized limit system, possibly with finite escape time, and with a 
large basin of attraction; see (Townley, 1999) and (Rokni, et al. 2003) for more details on this 
issue and derivation of (6)-(7). The problem is not merely about the destabilizing limit 
system, that is also  about the finite escape time. 
Now, we focus on the system 

 .,,),(
),,,(

),,,(
nqpRwRzyx

uwxhw

wxfx
sqp =+∈∈=

⎪⎩

⎪
⎨
⎧

=

=
+

∗

$
$ θ

 (8) 
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Here wx, are the phase variables, θ ∗  is a vector of unknown parameters, and mu R∈ is the 

controller. Suppose (0,0, ) 0, (0,0,0) 0f hθ = =  for all θ . The aim is to design a controller 

u such that the closed-loop system is stabilized with respect to y while other variables 

including parameter adaptation stay bounded. We use the back-stepping design, but at each 
step we only aim to stabilize y . We use the partial stability approach described in section 2 

to design a controller u together with a y − positive definite function V with y − negative-

definite V$ . In case of sign constant V$ , we also need the boundedness property of non-
stabilized variables. Consider the following example. 

 

[ ]

.

.

),(

),,(

,

2

1

2

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=
+=

+=

∈=

∗

∗

uw

zycwz

zybwy

Rzyx
T

$
$
$

φθ

φθ  (9) 

Suppose φ  is smooth and 0)0,0( =φ . The adaptive partial stabilization of this system has 

two stages. First we stabilize the −x equation with respect to y by assuming that w is the 

controller. At this stage we can define ))(ˆ()ˆ,( 11 yhbxw +−== − φθθκ  where θ̂  is the 

estimation for θ . Here h  satisfies ( ) 0yh y > . Next, we stabilize two variables 

ˆ( , )w xς κ θ= − and y using a suitable controller u . This leads to 

 ( ) .

.ˆ'ˆˆ

),(ˆ)(ˆˆ

))(('ˆˆ 

12
1

11
1

1

2111
1

1

1
111

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

=

−⎥
⎦

⎤
⎢
⎣

⎡
+−−

∂
∂

−

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

++−=

−−

−−−

−−

φφφθφφθςθ

ςμφθφθςφθ

ςφθθφ

y
z

bh
y

b

yhcbcbc
z

b

yhbh
y

bbbyu

$

 (10) 

Here, μ is another function satisfying ( ) 0ςμ ς > . It can be shown that under some mild 

conditions on φ , in this closed-loop system, the error of parameter estimation ˆθ θ θ= −#  

converges to some value depending on initial conditions. The variable w  converges to zero 
and z stay bounded. This system exhibits destabilized limit systems, but no single-wedge 
type behavior. 
Partial stability phenomena frequently appear in mechanical systems, for example, in 
rotating bodies. One classical example is Euler’s equations for tumbling box when one or 
more controller is omitted. Another well-known case of partially stabilized systems is 
adaptively controlled systems without persistence of excitation. Sometimes the system 
capability requires partial stabilization and sometimes the control strategy implies that. In 
mathematical model of certain biological systems of n −  spices a chain of integrators 
appears with the controller located at the last integrator; see (Murray, 2002). Such systems 
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are referred to as strict feedback form and are locally asymptotically stabilizable about the 
nominal equilibrium via a recursive design. Such controller is usually very complicated and 
contains many unnecessary cancellations; see (Krstić, et al. 1995) for some techniques for 
avoiding unnecessary cancellations. However, it might not be necessary to stabilize all the 
spices. If that is required, or enough, to fully control a part of these spices while the other 
stay bounded, then the designed controller will be simpler and more economic. In these 
types of systems, unknown parameters are likely to appear. Therefore, that is vital to study 
the possibility of single-wedge bifurcation to avoid destabilizing when the adaptation turns 
off. In this chapter we focus on mechanical cases, but the method can be applied to other 
fields too. 

4. Simple pendulum  

A simple pendulum with fixed given length and mass can be represented by 

 ,sin uk =−+ φφαφ $$$   (11) 

Here, φ  is the angle between the rod and the vertical axis, and 0α >  represents the 

friction. The pendulum is inverted when 0k >  and is not inverted when 0k < . We assume 

k R∈  to cover both situations. The absolute value of k  is proportional to the gravitation 
constant which is assumed to be fixed but unknown. The aim is to design an adaptive 

controller which works for any value of k . Note that the case 0k = , no gravity, is not 

generic. The purpose of the control is 0),( →φφ $  asymptotically. The focus is the 

possibility of single-wedge bifurcation. Suppose that there is no friction; that is 0α = . 

Suppose k̂  is the estimation of k  and ˆk k k= −#  is the error of the estimation. Through a 
recursive back-stepping design we can find an adaptive controller with a tuning function for 

parameter adaptation. We denote φ=x  and φ$=y . Then, the equation (11) becomes  

 

⎩
⎨
⎧

+−=
=

.sin

,

uyxky

yx

α$
$

 (12) 

It needs to remind that we assumed 0α = . We use the adaptive back-stepping approach to 
design an adaptive controller. At first step, we consider y  as the controller for 

x − equation. Using 
2

1
2V x=  as the Lyapunov function the time derivative of 

1
V  is negative 

definite by choosing ( )y h x= − , where h satisfies ( ) 0xh x > . Then, we apply the change of 

variable ( )y h xς = + . In the new system of coordinate, the equation (12) becomes 

 

⎩
⎨
⎧

+′−++=

−=

.))())((sin)
~ˆ(

),(

uxhxhxkk

xhx

ςς

ς

$

$
 (13) 

Now, we propose the Lyapunov function 2 2 22V x kς= + + # . The time derivative of V  is 

 [ ] .ˆsin
~

)(')()('sinˆ)( ⎥⎦
⎤

⎢⎣
⎡ −++−+++−= kxkuxhxhxhxkxxxhV

$$ ςςς  (14) 
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We choose 

 

⎪⎩

⎪
⎨
⎧

=

+−−−−=

.sinˆ

),(')()('sinˆ)(

xk

xhxhxhxkxu

ς

ςςμ
$

 (15) 

Here, μ is a function satisfying ( ) 0ςμ ς > , then 

 ( ) ( ).V xh x ςμ ς= − −$  (16) 

The three-dimensional auxiliary closed-loop system is 

 

( ),

sin ( ),

sin .

x h x

k x x

k x

ς

ς μ ς

ς

⎧ = −
⎪⎪ = − −⎨
⎪

= −⎪⎩

$
#$

$#
 (17) 

The closed-loop system (17) is partially asymptotically stabilized with respect to ( , )x ς . To 

see this, one can observe that the auxiliary closed loop system (17) is k −# bounded. This 

boundedness property together with the fact that V  is ( , , )x kς −# positive definite while V$  

is sign constant results the required partial stability. Therefore, the origin of the actual 

closed-loop system (11) and (15) is partially asymptotically stabilized with respect to ),( φφ $  

regardless the actual value of k  and its initial condition. This stabilization is global.  In Fig. 

1 ( )x t and ( )tς are drawn for 
2 3( )h x x x x= + + and 

2 3( )μ ς ς ς ς= + + for initial condition 

( , , ) (2,6, 6)x kς = −# . 

 
 7 
 
 
 
 
 
 
 
 
 
-2 
 
 

 

 
0                                                  7 
                      (a) 

 
   3 
 
 
 
 
 
 
 
 
 
  -1 

 

 
0                                                   7 
                           (b) 

Fig. 1. ( )x t and ( )tς are drawn for 2 3( )h x x x x= + + and 2 3( )μ ς ς ς ς= + + for initial 

condition ( , , ) (2,6, 6)x kς = −# . The horizontal axis is time. The vertical axis in (a) is ( )tς and 

in (b) is ( )x t . 
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The closed-loop system (17) has a one dimensional manifold of equilibria defined 

by ( , ) 0x ς = . Every equilibrium on this manifold has one zero eigenvalue due to the 

degeneracy appeared in k −# equation as a result of adaptive back-stepping design. The 

stability type of equilibria on this manifold is characterized by two more eigenvalues given 

by the linearization of the vector field around those equilibria. One can observe that the 

arbitrary equilibrium (0,0, )k∞
#  has two eigenvalues given by the polynomial 

 2

1 1 1 1
( ) 1 0,h h kλ μ λ μ ∞+ + + + − =#   (18) 

where 
1

'(0)h h=  and 
1

'(0)μ μ= .  The single-wedge bifurcation may take place when 

1 1
1 0h kμ ∞+ − =# , and 

1 1
0h μ+ > . This later condition is always the case as long as both 

linear parts of h  and μ  are not simultaneously zero. We denote this critical equilibrium 

with (0,0, )
c
k# . We use the change of variables  

 1

1 1

1 1
, .

x p
M M

hq μς
− ⎡ ⎤⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥⎢ ⎥ ⎢ ⎥ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (19) 

Here, the column of M  are the eigenvectors of the linearization matrix of the ( , )x ς − part of 

the vector field (17) around the critical equilibrium corresponding to the eigenvalues 

1 1 1
0hλ μ= − − <  and 

2
0λ =  respectively. Such transformation keeps k#  invariant. In order 

to analyze the closed-loop system (17) around its critical equilibrium, we first represent the 

system (17) in terms of ( , , )p q k#  and then reduce the resultant system to the center 

manifold. Here, the center manifold is given by ( , )p H q k= # . The center manifold is 

invariant and tangent to the linear eigenspace corresponding to the eigenvalue
2

0λ = . 

Therefore, 

 .
H H

p q k
q k

∂ ∂
= +
∂ ∂

$#$ $ #  (20) 

The lengthy, but straightforward procedure of center manifold calculation leads to the 

following truncation of the reduced system 

 

2 2

1 2

2 2

1

(| , | ),

(| , | ).

q q qk qO q k

k q qO q k

β β

γ

⎧ = + +⎪
⎨

= +⎪⎩

# #$
$# #

 (21) 

Here, 

 
2

1 2 1 2

1 2 1 1

1 1 1 1

1
, , ,

h h
h

h h

μ μ
β β γ

μ μ
+

= = = −
+ +

  (22) 
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where, 
2

2 ''(0)h h=  and 
2

2 ''(0)μ μ= . It can be observed that the reduced system (21) is 

degenerate. We utilize the singular time reparametrization (Dumortier & Roussarie, 2000); 

that is 
1

t
q
τ= to achieve the divided out system 

 

2

1 2

2

1

(| , | ),

(| , | ),

dq
q q k O q k

d

dk
k q O q k

d

β β
τ

γ
τ

⎧ ′= = + +⎪⎪
⎨
⎪ ′= = +⎪⎩

# #

# # #
 (23) 

which is generically hyperbolic around the origin. The singular time reparametrization 

keeps the orbits but the direction of which are reversed when 0q < . In order to have single-

wedge bifurcation for the closed-loop system (17), it is sufficient that the origin of the system 

(23) become a node, either stable or unstable. The characteristic equation of the origin of the 

system (23) is 

 2

1 2 1
0.λ β λ β γ− − =   (24) 

The sign of the discriminant of this algebraic equation is equivalent to the sign of 

 2 2

2 2 2 2
,A Bh C hδ μ μ ω= + + −  (25) 

where, 

 4 2 2 2

1 1 1 1 1 1 1
, , 2 , 4 4 .A h B C h h hμ μ ω μ= = = = +  (26) 

The origin of the divided out system (23) is a center when 0<δ . This implies that the 
center manifold (21) has a semi-center at the origin. This causes that the critical equilibrium 

of the closed-loop system (17) to have a semi-center. However, when 0>δ , the origin of 
the divided out system (23) is a node; therefore, the critical equilibrium of the closed-loop 

system (17) undergoes a single-wedge bifurcation. It can be observed that 0<δ  is 
corresponding to the stripe 

 1 1

2 2

1 1 1 1

2 2
1 1 ,

2

C
h

h h A h h

μ μ
μ− + < + < +  (27) 

in 
2 2

( , )hμ − parameter space. It is worth noting that the second order derivatives of h  and 

μ  control the occurrence of the single-wedge bifurcation. When
2 2

0hμ = = , we have 

0δ <  and there will be no single-wedge bifurcation. When 
2 2

|| ( , ) ||hμ is large enough, that 

is  
0.5

2 2 1 1 1
| / (2 ) | 2 / (1 / )C A h h hμ μ+ > + , the parameter δ  become positive and single-

wedge bifurcation takes place. With
2

0μ = , the critical values of 
2
h  are 

0.5

2 1 1 1 1
2 / (1 / )ch h hμ μ= ± + , and for

2
0h = , the critical values of 

2
μ  are 

0.5

2 1 1 1
2 / (1 / )c h hμ μ= ± + . 
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In Fig. 2, the single-wedge bifurcation appeared in the reduced system (23)  is shown for the 

case 2 3( ) 2h x x x x= + +  and 2 3( ) 2μ ς ς ς ς= + + . Here 
1 2 1

4, 0.5, 1β β γ= = = − . The 

wedge region is the set of all initial conditions attracting to the origin where the limit system 
is unstable. The black curves are orbits converging the bifurcation point. The wedge is the 
lower right area limited by the border, tick horizontal line and one of the orbits. 
Remark 1: The single-wedge bifurcation generically appears due to the nonlinear terms in 
feedbacks. One might argue that by applying linear feedbacks such situation can be 
avoided. However, linear feedbacks are applying through devices which may introduce 

some amount of nonlinearities. The width of the stripe defined by (27) depends on 
1
h  and 

1
μ  and is bounded by 0.5

1 1 1
4 / (1 / )h hη μ= + . The linear coefficients 

1
h  and 

1
μ  determine 

the local convergence. When they are small the convergence will slow down. One can 
observe that if we expect similar rate of local convergence for both x  andς , then 

1
4 2 / hη =  approximately. For large enough 

1
h  the area where the single-wedge 

bifurcation does not take place will narrow down. To extend this region one needs to slow 
down the convergence process which may not be desirable. Another reason to consider this 
situation is to illustrate that how such behavior happens in a simple system. In a more 
complicated case, such dramatic behavior may occur generically. 
 

    1

     -1
 

-0.5                                                               0.5 

Fig. 2. The single-wedge bifurcation is shown for 2 3( ) 2h x x x x= + +  and 

2 3( ) 2μ ς ς ς ς= + + . The horizontal axis is k# and the vertical axis is q . The tick horizontal 

line represents the manifold of equilibria. 

Remark 2: In our analysis, we assumed that 0α = . By some algebraic calculation, it can be 

observed that including the term yα  with 0α ≠  will only shift the value of 
1

μ  by the 

amount of α . It can be understood from equation (21) that the limit system corresponding 

to 0k∞ >#  is unstable, but due to the linear part
2
k qβ ∞
# , the limit system will be only 

unstable and finite escape time will not arise. It suggests that the closed-loop inverted 
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pendulum with limit controller and without parameter adaptation can stay stabilized if it 

will not fall into the basin of attraction of the equilibrium (0,0, )
c
k# .  

5. Biped robots  

A passive bipedal robot with elastic elements has been studied in (Asano & Wei Luo, 2007), 

where a feedback control has been designed. Here we consider the same model when there 

is an unknown parameter. The governing equation is 

 .),()( Su
q

Q
qqhqqM =

∂
∂

++ $$$  (28) 

Here [ ]1 2 2
q bθ θ=  are the geometrical variables of the robot, ( )M q  is the inertia matrix, 

( , )h q q$  is the vector of Coriolis centrifugal and gravity forces. The elastic energy is defined 

as 

 ,)(
2

1 2

02 bbkQ −=  (29) 

where, 
0
b  is the normal length of the leg and k  is an unknown parameter; see (Asano & 

Wei Luo, 2007) for more details. 

The vector [ ]0 0 1
T

S =  requires that the walk is passive and only the elastic element is 

under control. We introduce the following variables 

 [ ] [ ]1 2 3 1 2 2 0 0
, , .X x x x b Y X X b Sθ θ= = = =$  (30) 

This leads to 

 
⎪⎩

⎪
⎨
⎧

+−−−=

=
−−− .)(

,

1

0

11 SuMXXkMhMY

YX

$
$

 (31) 

We omitted the arguments of the functions for simplicity, but all changes in variables need 

to be applied in functions arguments. Suppose 
d d
X Sx= is the reference signal. We define 

the error by 
d

e X X= − . The equation (31) becomes 

 

⎪⎩

⎪
⎨
⎧

+−−−−=

−=
−−− .)(

,

1

0

11 SuMXeXkMhMY

YXe

d

d

$
$$

 (32) 

We proceed with adaptive back-stepping technique to partially stabilize the system with 

respect to 
3 3

( , )e e$ . Suppose 2

3 1
| |e V≤  is an 

3
e − positive definite Rumyantsev function with 

time derivative 

www.intechopen.com



 Automation and Robotics 

 

84 

 ).(11
1 YX

e

V
e

e

V
V d −∂

∂
=

∂
∂

= $$$  (33) 

The first step of back-stepping approach can be proceeded by considering Y  as the 

controller of X − equation. We can choose 

 ( ).
d

Y X eμ= +$  (34) 

The time derivative of 1V  will become 

 ).()(1
1 ewe

e

V
V −=

∂
∂

−= μ$  (35) 

By choosing a suitable function μ  we achieve an 
3
e − positive definite w . Now, we 

introduce an auxiliary variable 

 ( ( )).
d

Y X eς μ= − +$  (36) 

For simplicity we take  

 2

1 3

1

2
V e=  (37) 

In this new coordinates we get the following auxiliary system 

 [ ]⎩
⎨
⎧

+−−−−−−=

−−=
−− .)(')(

),(

0

11

3

333

ueeXXeXkMhMS

ee

dd

T ημς

μς
$$$$

$
 (38) 

Here, 1TS M Sη −= . Suppose ˆk k k= + # , where k̂  is the estimation of k  and k#  is the error 

of estimation. We introduce the following Rumyantsev function 

 
1 2 3
( ) ( ) ( ).V V e V V kς= + + #  (39) 

Without loss of generality we can take 

 2 2

2 3 3

1 1
, .

2 2
V V kς= = #  (40) 

The time derivative of V  becomes 

 [ ]
.)(ˆ~

]'')(ˆ[

)(

0

1

3

30

11

3

33

⎥⎦
⎤

⎢⎣
⎡ −−−−+

+−+−−−−−−+

−=

−

−−

XeXMSkk

ueXXeXMkhMS

eeV

d

T

dd

T

ς

ηςμμμς

μ

$

$$

$
 (41) 

We choose the controller and the parameter adaptation as 
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 ( )
).(ˆ

,'')(ˆ

)(

0

1

30

11

3

XeXMSk

eXXeXMkhMS

u

d

T

dd

T

−−−=

−+−−−−−−−

−=

−

−−

ς

ςμμμ

ςνη

$
$$  (42) 

We choose a suitable function ν such that 
3

0ης ν > . These leads to 

 
3 3

( ) (. ).
V

V e
e
μ ης ν ς

∂
= − −

∂
$  (43) 

The function V is positive definite with respect to 
3 3

( , , )e kς # , but (43) states that its time 

derivative is negative semidefinite, because  k# is not included in (43). One can observe that 

two angels 
1 2
,θ θ are always bounded; see (Asano & Wei Luo, 2007). It is also clear that the 

vector field (31) is smooth. We can also assume that feedbacks are smooth. Therefore, the 
non-stabilized variables stay bounded. So we can construct the cylinder (3) and employ the 
boundedness property stated in section 2 to achieve the required partial stability. 

6. Conclusion 

We have seen that in relatively simple mechanical systems like a pendulum, having an 
unknown parameter may leads to an adaptive controller which undergoes an undesirable 
behaviour, dramatically. According to the questions addressed in introduction of this 
chapter, we have found that the destabilising limit system with a large basin of attraction 
does not perform a finite escape time. Instead, that will be only unstable. It is clear that 
when the pendulum is not inverted, we do not expect to see such situation. That is apparent 
from the centre manifold analysis too. It is worth noting that, lack of adaptation, does not 
mean that there is no control. It only means that the controller is converged to a limit 
controller, but the system is still closed-loop. For inverted pendulum, such non-adaptive 
limit controller works perfectly, as long as the system does not fall into the region of 
attraction of the critical limit system.  This shows a drawback of back-stepping approach. 
There is still a question: how such situation can be overcome without further knowledge of 
the system?  
When we design a partially stabilized system, the method of sign definite and sign constant  
work in two different ways.  When the time derivative of Rumyantsev function is not 
negative definite, one would employ boundedness or precompactness. None of them can be 
directly applied to the system, without any further knowledge of the system’s dynamics or 
geometry. In case of section 5, assuming that two angels are both bounded during procedure 
and that the vector field is smooth, we can conclude that the closed-loop system is indeed 
stabilized with respect to leg’s length. Otherwise, such conclusion would not be 
straightforward. The difficulty relates to differences between the appearance of non-
stabilized variables and the unknown parameters. One can assume that non-stabilized 
variables satisfy the precompactness property. In another assumption, one can observe that 
the parameter estimation stay bounded if the controller is designed properly. However, in 
many systems, these two sets of non-stabilized variables and parameter estimation may 
belong to different categories satisfying precompactness or boundedness. In the example of 
section 5, both stayed bounded and we achieved the aim of stabilization. However, this 
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method has a drawback. Stabilization with respect to one variable and the boundedness of 
others does not guarantee that the system works properly, since they are just bounded. One 
would not worry about the parameter estimation as long as that is bounded and converges 
to some value depending on initial conditions, but the phase variables may exceed the 
mechanical capacity of the system. Therefore, after designing a partially adaptive controller 
for a system, one needs to work out on mechanical advantage and disadvantage of the 
closed-loop system. Such procedure is not accomplished in section 5. Another issue in 
controller designed by (42) is the asymptotic convergence. This is always the case when we 
have some unknown parameter.  
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