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Abstract

In this chapter, we study the task of obtaining and using the exact cumulative bounds of
various network reliability indices. A network is modeled by a non-directed random
graph with reliable nodes and unreliable edges that fail independently. The approach
based on cumulative updating of the network reliability bounds was introduced byWon
and Karray in 2010. Using this method, we can find out whether the network is reliable
enough with respect to a given threshold. The cumulative updating continues until
either the lower reliability bound becomes greater than the threshold or the threshold
becomes greater than the upper reliability bound. In the first case, we decide that a
network is reliable enough; in the second case, we decide that a network is unreliable.
We show how to speed up cumulative bounds obtaining by using partial sums and how
to update bounds when applying different methods of reduction and decomposition.
Various reliability indices are considered: k-terminal probabilistic connectivity, diameter
constrained reliability, average pairwise connectivity, and the expected size of a sub-
network that contains a special node. Expected values can be used for unambiguous
decision-making about network reliability, development of evolutionary algorithms for
network topology optimization, and obtaining approximate reliability values.

Keywords: network reliability, factoring method, network connectivity, random graph,
diameter constraint, probabilistic connectivity, pairwise connectivity, network topology
optimization, estimation, cumulative updating

1. Introduction

The network reliability analysis is one of the primary tasks in the course of the network topology

design and optimization. Usually, random graphs are used when modeling networks with

unreliable elements [1–7]; therefore, the network reliability is defined as a connectivity measure

in a random graph. There are many reliability indices of networks, for example, probabilistic

connectivity [4], average pairwise reliability [5, 6], and diameter constrained reliability [7].

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The most widespread network reliability index is the probabilistic connectivity of the corres-

ponding random graph. Depending on the number of terminals (selected nodes that must be

connected), there are three types of this measure such as two-terminal, all-terminal (ATR) and

k-terminal reliabilities. The average pairwise reliability (APR) describes the network reliability

from the point of connection between every two nodes, while a network may be still discon-

nected. The reliability of a network with a diameter constraint (DCR) is defined as the proba-

bility of each pair of nodes connectivity by paths that travel through a limited number of

communication channels. This index is more useful, especially for P2P networks [8], wave-

length division multiplexing networks, wireless sensor networks, and so on.

Another reliability index we consider in this chapter is the mathematical expectation of the size

of a connected subgraph that contains a special node (MENC) [2], which describes the quality

of monitoring area coverage.

Despite the fact that problems of exact reliability computations are NP-hard [9, 10], it is

possible to conduct the exact calculation for networks of practical interest dimension, taking

into account some special features of network topologies. For large-scale networks, various

methods of reliability evaluation are widely used [11, 12]. Won and Karray suggested the

cumulative updating of reliability bounds for uniqueness of decision on network feasibility

[13]. Originally, this approach was presented for ATR. In this chapter, we present our results on

cumulative updating of other reliability indices, and some improvements for ATR bounds

cumulative updating. In addition, the main ideas of constructing the cumulative bounds for

random graph characteristics are discussed along with examples of their usage in obtaining

better evaluation of reliability indices and improving bionic optimization algorithms.

2. The basic notations

We simulate a network with perfectly reliable nodes and unreliable links by an undirected

random graph G = (V,E) with given presence probabilities 0 ≤ ei ≤ 1 of the edges. The notations

which are used in this chapter are given below. Most of them coincide with the notations from

[14].

G—Undirected probabilistic network;

V—Set of n nodes;

E—Set of m edges;

ei; eij – i-th edge or edge that connects i-th and j-th nodes, depending on context;

pj – Operating probability of j-th edge;

wi – Weight of node i, WT = (w1,…,wn);

W(G) – Total weight of nodes of G;

R(G) – All-terminal reliability of G, that is, probability that every two nodes are connected;

K—Set of terminal nodes;
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Rd
K Gð Þ—Diameter constrained reliability of G, that is, the probability that every two nodes

from K are connected by a path that travel through not more than d edges;

LB, UB—Lower and upper bounds of G reliability. In case of ATR, we use the original notation

form [13]: RL, RU;

R0—Predefined threshold for the network reliability value;

N(G) (M(G))—Mathematical expectation of the number of disconnected (or connected) pairs of

nodes in G;

CS(G; s)—Mathematical expectation of a number of nodes in a connected subgraph that

contains a node s; if s = 1, then CS(G);

R—Average pairwise reliability of G;

C—Edge chain composed of edges e1,…,ek;

G/C (G/e)—Network G with a contracted chain C (edge e);

G\C (G\e)—Network G without chain C (edge e); and

G∗

e—Network G with an absolutely reliable edge e;

3. Factoring method and cumulative updating of network reliability

bounds

The most common exact method for calculating various network reliability measures is the

factoring method. According to this method, we divide the probability space, which consists of

all particular network realizations, into two sets based on the presence or absence of a network

element. Further on we refer to such a network element as a factored element, or a pivot

element. As a result, for a given network G and a factored element e, we will obtain the two

networks: G∗

e , where e is absolutely reliable, and G\e, where e is absolutely unreliable, so we

could remove it. The probability of G∗

e is equal to the pivot element reliability, and the proba-

bility of G\e is equal to the pivot element failure probability. For a reliability index Rel of the

initial network, the following expression holds (the total probability law):

Rel Gð Þ ¼ peRel G
∗

e

� �

þ 1� pe
� �

Rel G\eð Þ (1)

Then the obtained networks are subject to the same factoring procedure. Recursions continue

until either an unreliable network is obtained (0 is returned) or an absolutely reliable network

is obtained (1 is returned). For ATR (Figure 1), expression (1) turns to:

R Gð Þ ¼ peR G=eð Þ þ 1� pe
� �

R G\eð Þ: (2)

We can speed up the factoring process by calculating the intermediate networks reliabilities

directly, that is, without further factorization. For ATR calculation, the five-vertex graph reli-

ability formula can be used [13]. Another way to accelerate the reliability computing by using
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various reduction [4] and decomposition [17] methods, such as serial-parallel transformation

on each recursive call of the factoring procedure, biconnected decomposition, and other

methods.

The idea of the cumulative updating method is an incremental updating of exact lower (LB)

and upper (UB) reliability bounds and comparing them with a given reliability threshold R0. If

LB > R0, then the network is reliable. If UB < R0, then the network is unreliable. The LB must

necessarily be non-decreasing, and the UB must necessarily be non-increasing. Another oblig-

atory condition is the equality of LB, UB at the last step and exact reliability value R. One

possible way of bounds updating is the usage of the factoring method. When a final graph or a

disconnected graph is obtained, we can update bounds [13].

As a rule, any algorithm of calculation of mathematical expectation for a non-negative function

μ of a random graph G practically comes to summarizing non-negative values. According to

the definition of mathematical expectation in the discrete case [14]:

E μ Gð Þ
� �

¼
X

H∈ Γ

P Hð Þ � μ Hð Þ, (3)

where Γ is a set of all possible final realizations of G that are obtained during factorization.

If some realizations Γ0 are obtained along with their probabilities, and a function μ is obtained

for all these realizations, then the LB is greater or equal to the corresponding partial sum.

Now let us assume that for μ, its possible minimal μ
m

� �

and maximal μ
M

� �

values are known.

In this case, we easily obtain the following bounds:

LB ¼
X

H∈Γ0

P Hð Þ � μ Hð Þ þ μ
m

1�
X

H∈ Γ0

P Hð Þ

 !

; UB ¼
X

H∈ Γ0

P Hð Þ � μ Hð Þ þ μ
M

1�
X

H∈ Γ0

P Hð Þ

 !

: (4)

Finally, both bounds will obviously come to an exact value.

From (4), we easily obtain the equations for improving bounds when the new (i-th) realization

Hi is obtained and μ Hið Þ is calculated:

Figure 1. The factoring method.
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LBi ¼ LBi�1 þ P Hið Þ � μ Hið Þ � μm

� �

; UBi ¼ UBi�1 � P Hið Þ � μM � μ Hð Þ
� �

: (5)

For ATR, μm ¼ 0 and μM ¼ 1, so we arrive to the equations presented by Won and Karray in

[13], while for MENC μm ¼ 1 and μM ¼ n, where n is a total number of nodes in a graph. Initial

values of bounds are equal to these values.

4. Improvements for ATR bounds cumulative updating

4.1. The chain branching

Our methods named chain branching (CB) and chain reduction (CR) [15] could be used [16] .as

a basis for two kinds of the ATR bound updating (UAB) algorithms named UAB based on CB

(UAB_CB), and UAB based on CR (UAB_CR). These methods can be used if a network

contains a chain, that is, a sequence of adjacent two-degree nodes. The CB reduces the calcula-

tion of ATR for calculating the ATRs of networks obtained from G by removing a pivot chain,

or removing it and contracting its terminal nodes, while CR reduces it for calculating the ATR

of the network GR, in which, this chain is substituted by a single edge. Let a chain C consist of k

edges, its terminal nodes are s and t, and let an edge est has a reliability pst, then [16]

R Gð Þ ¼
Y

k

i¼1

pi þ pst

X

k

i¼1

1� pi
� �

Y

j 6¼i

pj

2

4

3

5 � R G=Cð Þ þ 1� pst
� �

X

k

i¼1

1� pi
� �

Y

j 6¼i

pj � R G\Cð Þ: (6)

The best choice is the usage of the longest chain as a pivot. However, it requires finding of all

the chains. We may accelerate the calculation by choosing a chain (or an edge) incidental to a

node with a minimal degree for obtaining a new chain.

4.2. The usage of Cutnodes

Let a network G have a cutnode u that divides G into two subnetworks G1 and G2, therefore,

R Gð Þ ¼ R G1ð ÞR G2ð Þ. RL 1ð Þ and RU 1ð Þ are lower and upper bounds for R G1ð Þ, respectively. Like

wise, RL 2ð Þ and RU 2ð Þ are the lower and upper bounds for R G2ð Þ, respectively. Then RL 1ð Þ�

RL 2ð Þ
≤R Gð Þ ≤RU 1ð Þ � RU 2ð Þ.

Let us estimate the ATR of subnetworksG1 andG2 in turn starting fromG1. While estimating the

ATR of G1, we have no information about the ATR of G2, thus RL
2ð Þ ¼ 0 and RU 2ð Þ ¼ 1, and RL

for R(G) is 0, while RU for R(G) is RU G1ð Þ. After some steps of estimating R G1ð Þ, we switch to

estimating RL 2ð Þ and RU 2ð Þ, thus improving RL and RU for G, and so on. Therefore, we calculate

the bounds for R G1ð Þ and R G2ð Þ separately (possibly in parallel). Now let us continue with

applying this scheme to calculating the bounds for R G1ð Þ and R G2ð Þ by the factoring method.

Similar to [15], we suppose that some networks H1, H1, …, HI are obtained from G1, and

networks K1, K2,…, KJ from G2 by factorization (1). Let us denote xi ¼ P Hið Þ, yi ¼ R Hið Þ,

1 ≤ i ≤ I, and si ¼ P Kið Þ, ti ¼ R Kið Þ, 1 ≤ i ≤ J. Then [16]:
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R G1ð Þ ¼
X

I

i¼1

xiyi ¼ 1�
X

I

i¼1

xi 1� yi
� �

; R G2ð Þ ¼
X

J

i¼1

siti ¼ 1�
X

J

i¼1

si 1� tið Þ: (7)

Statement 1 For all a,b such that 1 ≤ a ≤ I, 1 ≤ b ≤ J, the following inequalities hold:

X

a

i¼1

xiyi

X

b

i¼1

siti ≤R Gð Þ ≤ 1�
X

a

i¼1

xi 1� yi
� �

" #

1�
X

b

i¼1

si 1� tið Þ

" #

: (8)

Proof of the statement can be found in [16], as well as the algorithm with the use of cutnodes

(UAB_C).

4.3. The usage of two-node cuts

Now let us describe the UAB modification that uses two-node cuts. Let the network G has a

node cut u,v that divides it into two subnetworks G1 and G2 (Figure 2). For any networkH that

contains the nodes u and v we will denote a network that is obtained by contracting these

nodes as H0.

For the first time, the approach based on two-node cut was presented by Kevin Wood [17] in

1989. It describes how to perform the reliability-preserving triconnected decomposition of a

network for calculating its k-terminal reliability. Later in 2006, we have introduced a general

method which allows using an arbitrary node cut for calculating all-terminal reliability [18, 19].

This method makes possible to reduce the reliability calculation to the calculation of reliabil-

ities of a group of networks each one with a smaller dimension. The total number of these

networks is 2*BW, where BW is the Bell number and W is the number of nodes in the cut. A

particular case of two-node cut along with numerical experiments to demonstrate the effi-

ciency for the ATR calculation was presented in [16, 20], and in [21]—for the k-terminal

reliability calculation. Despite the fact that the method from [17] presents a graph transforma-

tion for further factoring, and the method from [20] presents an expression for the network

reliability, both of them practically lead to similar calculations of the same complexity. Another

result was with the ATR calculation using special kind of node cuts [22]: the so-called

Figure 2. The network G with two-node cut and auxiliary networks.
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longitudinal and cycle cuts. All the listed results, which we have obtained, are described in

detail in [19]. Following is the corresponding Eq. [20] for the ATR without proof:

Theorem 1 The following equation holds:

R Gð Þ ¼ R G1ð Þ R G0
2 u; vð Þ

� �

� R G2ð Þ
� �

þ R G2ð Þ R G0
1 u; vð Þ

� �

� R G1ð Þ
� �

þ R G1ð ÞR G2ð Þ: (9)

The equation for three-node cut is sufficiently more complicated [18, 19]:

R Gð Þ ¼
1

2
R G1∣23

1

� �

R G12∣3
2

� �

þ R G13∣2
2

� �

� R G1∣23
2

� �� �h

þR G12∣3
1

� �

R G1∣23
2

� �

þ R G13∣2
2

� �

� R G12∣3
2

� �� �

þ R G13∣2
1

� �

R G12∣3
2

� �

þ R G1∣23
2

� �

� R G13∣2
2

� �� �

�R G1ð Þ R G12∣3
2

� �

þ R G13∣2
2

� �

þ R G1∣23
2

� �� �

� R G2ð Þ R G12∣3
1

� �

þ R G13∣2
1

� �

þ R G1∣23
1

� �� �

þR G1ð ÞR G2ð Þ� þ R G1ð ÞR G123
2

� �

þ R G123
1

� �

R G2ð Þ,

(10)

where nodes 1, 2, and 3 composes the threee-node cut, G
x∣yz
i is a graph that is obtained by

merging y and z nodes in Gi, and G
xyz
i is obtained by merging x, y, and z nodes. The expression

for four-node cut has also been obtained [19], but we do not present it due to its huge size.

However, our results on using an arbitrary node cut for all-terminal reliability calculation were

published only in Russian [18, 19], and only the two-node cut case was presented in English

[16, 20]. Maybe, this is the reason that these results are not so widely known, and therefore, the

same ideas were proposed again by Juan Manuel Burgos and Franco Robledo Amoza [23, 24]

in 2016. As we have done it in [16–20], in [23, 24], the authors show how to calculate the all-

terminal reliability of a network with a node cut via reliabilities of a group of smaller networks,

but in a somewhat different way. As a result, Eqs. (9–10) were presented.

Let us describe how we can use expression (9) and update the ATR bounds separately for both

subgraphs G1 and G2 (Figure 2) for obtaining the ATR bounds of the whole graph G.

Suppose that some networks H1,…, HI are obtained from G1 during the factoring process. If

this factoring does not involve edges incidental to u or v, then parallel factoring in G0
1 u; vð Þ

leads to obtain H0
1 u; vð Þ,…, H0

I u; vð Þ. Let us introduce the following denotations: xi ¼ P Hið Þ,

yi ¼ R Hið Þ, x0i ¼ P H0
i u; vð Þ

� �

, and y0i ¼ R H0
i u; vð Þ

� �

, for 1 ≤ i ≤ I. As in both G1 and G0
1 u; vð Þ, the

factoring is executed by the same pivot edges, we have x0i ¼ xi. Obviously y0i ≥ yi because

H0
1 u; vð Þ differs from Hi by the edge (u,v) that has reliability 1 in H0

1 u; vð Þ. Similarly, by the

factoring in G2 by edges that are not incidental to x or y, we obtain the networks K1,…, Kj, and

by the factoring in G0
2 u; vð Þ, we obtain K0

1,…, K0
J . Let us denote siP Kið Þ, ti ¼ R Kið Þ,

s0i ¼ P K0
i u; vð Þ

� �

, and t0i ¼ R K0
i u; vð Þ

� �

for 1 ≤ i ≤ J. Similar to the above case, we have s0i ¼ si,

t0i ≥ ti. Let L ¼ max I; Jf g, and let xi ¼ yi ¼ y0i ¼ 0 for I þ 1 ≤ i ≤L, si ¼ ti ¼ t0i ¼ 0 for J þ 1 ≤ i ≤L.

Let us obtain RL1, i, RU1, i, RL
0
1, i, RU

0
1, i, RL2, i, RU2, i, RL

0
2, i, RU

0
2, i for 1 ≤ i ≤L:
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RL1i ¼
X

i

j¼1

xjyj, RU
1
i ¼ 1�

X

i

j¼1

xj 1� yj

� �

, RL0
1
i ¼

X

i

j¼1

xjyj0 , RU
01
i ¼ 1�

X

i

j¼1

xj 1� yj0
� �

,

RL2i ¼
X

i

j¼1

sjtj, RU
2
i ¼ 1�

X

i

j¼1

sj 1� tj
� �

, RL0
2

i ¼
X

i

j¼1

sjtj0 , RU
02
i ¼ 1�

X

i

j¼1

sj 1� tj0
� �

:

As is shown in [13], these values are the upper and lower bounds for reliabilities of the

corresponding networks; these bounds are exact for i = L. In the case i = 0, the lower bounds

are 0 and the upper bounds are 1.

Note that RL01, i ≥RL1, i, RU
0
1, i ≥RU1, i, as y

0
i ≥ yi; RL

0
2, i ≥RL2, i, RU

0
2, i ≥RU2, i, as t

0
i ≥ ti.

Now we obtain RLj, and RUj for odd and even j separately. For j = 2i, 0 ≤ i ≤ L:

RU2i ¼ RU1
i RU

02
i þ RU01

i RU
2
i � RU1

i RU
2
i ,

RL2i ¼ RL1i RL0
2
i � RL2i

� �

þ RL2i RL0
1
i � RL1i

� �

þ RL1i RL
2
i :

(11)

For j = 2i + 1,0 ≤ i ≤ L � 1:

RU2iþ1 ¼ RU1
iþ1RU

02
i þ RU01

iþ1RU
2
i � RU1

iþ1RU
2
i , RL2iþ1

¼ L1iþ1 RL0
2
i � RL2i

� �

þ RL2i RL0
1
iþ1 � RL1iþ1

� �

þ RL1iþ1RL
2
i :

(12)

Statement 2 For any 1 ≤ j ≤ 2 L, we have

RUj�1 ≥RUj ≥R Gð Þ ≥RLj ≥RLj�1: (13)

If j = 2 L, then the second and the third inequalities become equalities. The proof of the

statement can be found in [16], as well as the algorithm (UAB_2NC) with two-node cuts.

Note that both CB and CR can be used for speeding up the 2NC algorithm under the condition

that the nodes u and v do not belong to a pivot chain. In the case of CR RU1
j ≔RU1

j � xj 1� pð Þ,

RU01
j ≔RU01

j � xj 1� pð Þ, where p is a multiplier by which the reliability of a reduced network

must be multiplied in CR [4].

4.4. Case studies

We have compared the algorithms presented with node cuts UAB_C and UAB_2NC to the

algorithm CR from [13] that does not take possible cutnodes or two-node cuts into account.

The results [16] of the comparison are presented in Tables 1–3. The CR was used while

factoring for better performance, and the five-node networks were considered as simple ones.

The PC with Intel Core Duo 2.93 GHz was used for testing.

We have chosen the two networks G1 and G2 for testing UAB_C, and the two networks G3 and

G4 for testing UAB_2NC.
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The network G1 consists of two 9-vertex complete graphs which are connected by a cutnode.

Thus, it contains 17 nodes and 72 edges.

The network G2 consists of two 5 � 5 lattices which are connected by a cutnode. As a cutnode,

we choose the corner. The resulting network contains 49 nodes and 80 edges. Table 1 shows

the results of numerical experiments.

The network G3 (48 nodes and 79 edges) is composed of two 5 � 5 lattices which are connected

by two nodes (Figure 3).

Network R0 Algorithm Time Recursions

G1 0.9 UAB_CR 39 s 5,245,491

G1 0.9 UAB_C <1 ms 2504

G1 0.94 UAB_CR 34 s 639,562

G1 0.94 UAB_C <1 ms 2643

G2 0.5 UAB_CR 2 s 259,879

G2 0.5 UAB_C 60 ms 4322

G2 0.901 UAB_CR 3 min 22 s 24,765,569

G2 0.901 UAB_C 45 ms 3233

Table 1. Comparison of UAB_CR and UAB_C.

R0 UAB_CR UAB_2NC

Time (s) Recursions Time (s) Recursions

0.5 2.2 257,084 0.08 8696

0.6 43.2 5,055,553 0.18 19,399

R G3ð Þ — — 0.28 27,180

0.92 13 1,532,293 0.08 8725

0.922 2.5 281,565 0.08 8696

Table 2. Results of the numerical experiments for the network G3.

R0 UAB_CR UAB_2NC

Time (s) Recursions Time (s) Recursions

0.2 0.12 16,814 0.1 10,963

0.3 27 3,630,494 0.87 80,756

R G4ð Þ — — 8,8 805,358

0.996 113 14,878,088 0.02 1747

0.998 0.36 45,374 < 1 ms 35

Table 3. Results of the numerical experiments for the network G4.
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The network G4 (22 nodes and 108 edges) is composed of two 11-vertex complete graphs

which are connected by two nodes without edge connecting them. A similar network that is

composed of two 5-vertex complete graphs is presented in Figure 4.

The edges G1 and G4 are equally reliable with p = 0.5, while the edges G2 and G3 are equally

reliable with p = 0.9. R G1ð Þ ¼ 0:9307194, R G2ð Þ ¼ 0:883248, R G3ð Þ ¼ 0:903168801959, and

R G4ð Þ ¼ 0:982472649148.

Tables 2 and 3 present the results for G3 and G4, respectively. The third row contains the

results when the threshold value coincides with the exact reliability value. The results for

the factoring algorithm with chain reduction are shown in the second column. The results for

the UAB_2NC are shown in the third column.

As can be seen, the approach proposed has a great advantage. The efficiency of UAB as it is

depends on the closeness of the threshold value R0 to the reliability value R(G).

5. Cumulative updating of diameter constrained network reliability

For the DCR, expression (1) takes the following form:

Rd
K Gð Þ ¼ peR

d
K G∗

e

� �

þ 1� pe
� �

Rd
K G\eð Þ: (14)

Figure 3. The union of two 5 � 5 lattices by two nodes.

Figure 4. The union of two complete five-node networks by two nodes without connecting edge.
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We denote this method as a simple factoring method (SFM). Cancela and Petingi have pro-

posed a modified factoring method for calculating DCR [7], which is much faster than the

already described classical factoring method in the diameter constrained case (14). The Cancela

and Petingi factoring method (CPFM) operates with a list of paths instead of graphs. For any

terminals s, t, the list Pst dð Þ of all the paths with a limited length between s, t is generated. By Pd

the union of Pst dð Þ for all the pairs of terminals is denoted. P(e) is composed of the paths of Pd

which include the edge e. The list of CPFM arguments are given below [7]:

• npst: the number of paths of length at most d between s and t in G;

• linksp: the number of non-perfect edges (edges e such that p(e) < 1) in the path p, for every

p∈Pd.

• feasiblep: this is a flag, which has the value False when the path is no longer feasible, that is,

it includes an edge which failed; and True otherwise;

• connectedst: this is a flag, which has the value True when s and t are connected by a perfect

path of length at most d and False otherwise;

• connectedPairs: the number of pairs of terminals which are connected by a perfect path of

length at most d.

Pseudocode of the method proposed for the DCR bounds cumulative updating [27], which is

based on CPFM, is presented below:

Input: G = (V;E), d, Pd, P(e), np(s; t), links(p), feasible(p), connected(s,t), connectedPairs, RL = 0,

RU = 1, Pl = 1.

Function FACTO (np(s,t), links(p), feasible(p), connected(s,t),connectedPairs, Pr)

if RL > R0 or RU < R0 then

e is an arbitrary edge: 0 < pe < 1

contractEdge (np(s; t), links(p), feasible(p), connected(s,t),connectedPairs, Pr)

deleteEdge (np(s; t), links(p), feasible(p), connected(s,t),connectedPairs, Pr)

end FACTO

Function contractEdge(np(s; t), links(p), feasible(p), connected(s,t),connectedPairs, Pr)

Pr = Pr * pe
for each p = (s,..,t) in P(e) such that feasible(p) = true do

links(p) = links(p) - 1

if connected(s,t) = false and links(p) = 0 then

connected(s,t) true

connectedPairs = connectedPairs + 1

if connectedPairs = |K|*(|K|-1)/2 then RL = RL + Pr

FACTO (np(s,t), links(p), feasible(p), connected(s,t), connectedPairs, Pr)

end contractEdge

Function deleteEdge(np(s,t), links(p), feasible(p), connected(s,t), connectedPairs, Pr)

Pr = Pr *(1-pe)

For each p = (s,…,t) in P(e) such that feasible(p) = true do
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feasible(p) = false

np(s,t) = np(s,t) - 1

if np(s,t) = 0 then RU = RU - Pr

FACTO (np(s,t), links(p), feasible(p), connected(s,t), connectedPairs, Pr)

end deleteEdge

For the speeding up of DCR calculation, it is possible to apply methods of reduction and

decomposition. In our previous studies [25–27], we have obtained such methods which can

calculate the DCR faster. These methods are the analogue of the well-known series-parallel

transformation for CPFM, and the pivot edge selection strategy. Also, we have obtained

decomposition methods for calculating DCR in the case with two terminals. The methods

obtained allow us to significantly reduce the number of recursive calls in CPFM and the

complexity of DCR computation. In the above algorithm, we assume that the series-parallel

reduction has been already performed and the pivot edge selection strategy is used.

Below we show how RL and RU are changing during the procedure proposed for the Intellinet

network topology (Figure 5). The edge reliability is equal to 0.7 for each edge and the diameter

value is equal to 12. The threshold value was equal to the exact DCR value, which was previously

Figure 5. The Intellinet network.
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calculated. The calculation time was about 12 min. Experiments were performed on Intel Xeon

E31240 3.3 GHz, 8 cores (Figure 6).

6. Special problems of updating reliability bounds

When special methods of graph reduction or decomposition are applied for the speeding up of

calculations, the corresponding equations for updating the bounds must be used. Derivation of

such equations for different functions μ(G) is based on taking into account all ”inner” changes

of bounds that are concealed inside intermediate steps thus leading to final results of such a

reduction or a decomposition. For example, when “branching by chain” [15] is applied,

consequent factoring by edges of a chain is used for derivation, and each factoring may require

a change of bounds.

Now let us turn to an example of a simple reduction, which is removing a dangling node. Let

the graph G have some attached trees in its structure is shown in Figure 7.

In the case of the ATR, we have the trivial equality R Gð Þ ¼ peR G\eð Þ, where e is the edge that

connects the dangling node to the graph. As removing e with probability 1� pe leads to graph

Figure 6. The behavior of DCR bounds for the Intellinet network.

Figure 7. The graph with attached trees.
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disconnection, the upper bound must be decreased by 1� pe. The lower bound rests un-

changed, but probabilities of all further realizations of G\e must be multiplied by pe. If there

are some attached trees as shown in Figure 7, then the ATR of the graph G is equal to the ATR

of this graph without all attached trees G0ð Þ multiplied by the product of reliabilities of all the

edges in these trees (let us denote it as Pr): R Gð Þ ¼ Pr � R G0ð Þ. Thus, we continue with the

graph G0, LB does not change, Pr must be included as a multiplier in probabilities of further

realizations, and UB is reduced by probability of at least one edge of attached trees, that is,

1-Pr. If the reduction takes place at the initial step, then the upper bound starts from Pr.

The case of APR is not so simple. It is known that the task of obtaining this reliability index is

equivalent to the one of obtaining mathematical expectation of the number of disconnected

pairs of nodes in a random graph (EDP, see [28, 29]). Indeed, the following equations are valid:

R Gð Þ ¼
C2
n �N Gð Þ

C2
n

; N Gð Þ ¼ C2
n 1� R Gð Þ
� �

: (15)

From these equations, bounds are easily obtained:

LBAPR ¼
C2
n �UBEDP

C2
n

, UBAPR ¼
C2
n � LBEDP

C2
n

: (16)

In [14], the following equation was derived with deleting the dangling node t that is incidental

to the node s:

N Gð Þ ¼ N G0ð Þ þ 1� pst
� �

wtW G\estð Þ: (17)

Here wt is the weight of the node t, initially 1. This weight shows an expected number of nodes

that are merged in this node during the graph transformations: when using the factoring

method, for example, one should remember the number of nodes that are merged if we assume

that an edge between them is reliable. This weight is used for calculating the number of

disconnected pairs of nodes when the graph is divided. Let W(G) be the total weight of the all

nodes (initially, it is equal to the number of nodes) in G. G0 equals G with the only difference:

the weight of the node s becomes equal to ws þ pstwt.

From this, we obtain the following changes in the bounds: LBEDP is increased by 1� pst
� �

wt W Gð Þ � wt½ � and the UBEDP is decreased by pstwt W Gð Þ � wt½ �. Contrary to case of the ATR,

the result of removing attached trees highly depends on their structures, so dangling nodes

must be removed one at a time. The only known exception with the derived equation is the

case of the attached chain [6].

7. Using cumulative bounds for network reliability approximation

A simple approximation of the function μ(G) through its bounds is their average: μ(G) =

(LB + UB)/2. However, the bounds tend to the exact solution with different rates. It seems to
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be reasonable assuming that cross of lines, obtained by the linear approximation of curves for

LB and UB, may be a better approximation of μ(G). Let us have the bounds LBi and uBi at a

step i > 0 and let μi Gð Þ be the corresponding approximation. The following proportion takes

place:

μM �UBi

� �
: LBi � μm

� �
¼ UBi � bμi Gð Þ

� �
: bμi Gð Þ � LBi

� �
: (18)

Hence, we have

bμi Gð Þ ¼
μM � LBi � μm �UBi

μM �UBi � μm þ LBi
: (19)

Let us name this approximation as the approximation based on trends (ABT).

In the case of ATR, μm ¼ 0 and LB ¼ UB ¼ μ Gð Þ, so

bRi Gð Þ ¼
LBi

1�UBi þ LBi
, (20)

while in the case of MENC, μm ¼ 1 and μM ¼ C2
n, so

cCS i Gð Þ ¼
C2
n � LBi �UBi

C2
n �UBi � 1þ LBi

: (21)

At the last step, LB ¼ UB ¼ μ Gð Þ, and from (19) we have that the proposed approximation also

equals this value.

In Figures 8–10, the behavior of bounds for the EDP of 4x4 lattice (p = 0.7), for the MENC of the

same lattice with c-node 1, and for the probability of the flow transmission (PFT) between two

Figure 8. The behavior of bounds and approximations of EDP, the exact value is 20.915633.
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diagonal corners of this lattice with throughput of all edges 1 and the edges reliability uni-

formly distributed between 0.5 and 1, are presented, respectively.

As we can see the ABT has become better than the average of LB and UB from the first step or

very fast.

We consider the practical usage of cumulative bounds and ABT in the following section.

8. Using cumulative bounds in network topology optimization

When optimizing the network topology by a certain criteria, a fitness function (FF) must be

calculated for each alternative. In our case (k-terminal reliability, MENC, and APR) this means

using NP-hard algorithms for its obtaining. Note that using approximate algorithms may lead

to wrong decisions when structures with close values of FF are compared.

Figure 9. The behavior of bounds and approximations of MENC, the exact value is 12.562672.

Figure 10. The behavior of bounds and approximations of PFT, the exact value is 0.196600.
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We propose using the cumulative bounds for decision-making about whether a new solution

obtained by crossover or mutation deserves including into population.

The ideas are simple (without the loss of generality, we assume that a task is maximizing some

function of an unreliable network):

1. A wittingly inappropriate solution may be rejected before carrying out the exhaustive

calculation of the corresponding FF. If the upper bound of the FF becomes smaller than

the FF value of the worst solution in the current population, then this potential solution is

rejected.

2. At initial stages, a new solution may be included into the population based on the LB

value. If it exceeds the FF value of the worst solution in the current population, then

this new solution substitutes the worst one with assigning ABT as an approximate value

of the FF.

Note that inevitable narrowing of bounds of FF in population leads to seldom updating of the

population and to a better approximation of FF.

The experiments [30, 31] with network topology optimization by the criteria of the ATR and

the DCR show that using the cumulative bounds allow the speeding up of calculations up to

two times without loss of precision or with negligible loss (about 10�7).

9. Conclusion

The general approach of obtaining the cumulative bounds of random graph functions is

presented. We have shown the possibility of computing the cumulative bounds by partial

sums and updating the cumulative bounds in case of applying different methods of reduction

and decomposition. For example, various indices of the network reliability were considered:

the all-terminal reliability, the diameter constrained reliability, the average pairwise connectiv-

ity, and the expected size of a subnetwork that contains a special node. Also, we have

described how the cumulative bounds approach can be used for network reliability evaluation

and development of evolutionary algorithms for the network topology optimization. Future

works can include methods of computing the cumulative bounds for other reliability indices

along with methods of reduction and decomposition, further improvement of evolutionary

algorithms for the network topology optimization, and parallel algorithms for the network

reliability analysis.
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