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Abstract

One of the gas-phased methods of the levitational gas condensation (LGC) process was 
developed to obtain nanopowders with high purity. The instrument designed by unique 
concept using magnetically levitated melted droplet of metal is easily operated to syn-
thesize nanopowder with highly defected surface. The complex compounds are also eas-
ily prepared using micron powder feeding (MPF) system in the instrument. The metals, 
ceramics, and carbon-coated metal nanoparticles prepared using the LGC are introduced 
in this chapter. Various applications such as magnetic and catalytic properties are also 
introduced. Nanoparticles prepared using LGC showed significantly enhanced catalytic 
activities during chemical reaction due to the high level of defects on their surface struc-
ture. The new heterogeneous catalysts of the solid nanoparticles were introduced in this 
chapter.

Keywords: levitational gas condensation (LGC), catalytic activities, metals and metal 
oxide nanoparticles, carbon encapsulated nanoparticles

1. Introduction

Among the various methods for preparing nanopowders, almost all of the processes face 

important challenges, such as poor control of size distribution, surface contamination, the 

agglomeration of the particles, and so on [1–5]. Many attempts have been made to develop 
processes and techniques that can synthesize nanoparticles with specific functional properties 
[4–6]. Dry methods such as the levitational gas condensation (LGC) process have been devel-

oped to obtain high-purity nanopowders while suppressing the agglomeration of the produced 

particles [7–15]. The catalytic effects of nanopowders are influenced not only by the reduced 
size of the particles but also by their increased surface area [16, 17]. The surface of metal oxides 
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exhibits nonstoichiometry, resulting from oxygen defect structures [17]. Particles prepared by 

the LGC process show enhanced catalytic activities due to the high level of defects on their 

surface structure. In this chapter, the synthesis processes and resulting properties of various 

nanoparticles prepared by LGC are introduced. The sections are focused on three aspects:

1. Levitational gas condensation (LGC): The unique instrument used for the synthesis of the 

nanoparticles is introduced in this section [18–20].

2. Magnetic metal and carbon-encapsulated metal nanoparticles: The produced magnetic 

metal (Ni and Fe) and carbon-encapsulated metal (Ni@C and Fe@C) nanoparticles showed 

a noncollinear magnetic structure between the core and surface layer of the particles. The 

morphologies and the dispersion stability kinetics in the solvents are introduced. Also, the 

carbon-encapsulated metal nanoparticles were successfully applied as a catalyst for the mul-

ticomponent Biginelli reaction [7, 9, 12, 18–23].

3. Nonmagnetic metal and metal oxides: Cu oxides, Bi, and NiO nanopowders prepared 

by LGC are introduced. Cu oxide and NiO alloy nanopowders are widely applied as 

heterogeneous catalysts in oxidizing processes used in organic synthesis. Nanopowders 

of bismuth (Bi) with its low melting temperature were applied as a sensor electrode for 

detecting heavy metals in water [9, 14, 17, 24, 25].

2. Levitational gas condensation (LGC)

The LGC method is a kind of gas-phased method in which an electric current is flowed to 
two inductor coils, which are each wound opposite directions. The electric current following 

in different direction in each coil induces a magnetic field and creates a magnetic moment, 
which opposes gravity on the inside lower part of the coil [11, 18]. To synthesize a nanopow-

der, a melted metal is continuously evaporated and condensed in the levitated condition, sus-

pended in the magnetic field. This method is shown in Figure 1(a). In this study, we modified 
the inductor with a downward spiral type of coil, so that the levitation region produced by 

the magnetic field would be more stable for the melted droplet by generating an equivalent 
magnetic flux density, as shown in Figure 1(b).

The total LGC system is illustrated in Figure 2. The nanoparticles formed at the surface of the 

liquid droplet are then flowed to a filter by the gas stream using a vacuum pump:

2.1. Levitational gas condensation (LGC) starting materials with a melting 

temperature of over 900°C

Metallic atoms were evaporated from an overheated surface and condensed by cold inert gas and 

then collected from the filter. To stabilize the powder surface and prohibit oxidation, the pow-

ders were passivated with thin oxide layers. The LGC apparatus consists of a high-frequency 

induction generator, levitation and evaporation chamber, and oxygen concentration control unit. 
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The operating values used for the induction generator were 6, 5, 4.5, and 3 kW for the Ni, Fe, Cu, 

and Ag, respectively [7–15]. These values depended on the melting temperature as well as the 

magnetic permeability of the metals. The melting temperature of iron (1535°C) is higher than 

Figure 1. (a) The mechanism of forming nanoparticles and the contour maps of magnetic flux density depending on 
shape of inductors for a cylinder type and (b) a spiral type and its strength at in-plane (a~b) and vertical (c~d) direction 

[11].
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that of Ni (1450°C). However, the high magnetic permeability of Ni affects the magnetic force 
and levitation of the melted droplets. Accordingly, the input power for Ni needs to be increased 

up to 6 kW, the maximum power for the inductor. Preparing pure Ti nanopowders using the 

LGC is impossible. To do so, the temperature of the inductor must be increased up to 2000°C; 

however, the starting materials have to be very thin and strongly passivated by a layer of tita-

nium oxide. The seed materials need to be fully melted before levitation, because only liquid 

seeds can be suspended in the inductor, due to their lower density. However, it takes too long 

time to melt the Ti seed to produce liquid droplet for levitation.

We also supplied the starting materials for the melted liquid droplet during synthesis. We 

utilized a metal wire feed system, which is very convenient for fabricating nanopowder 

continuously. The amount of material fed over time can be controlled. The average size of 

the nanopowder is increased with increasing feed speed because of the increased amount 

of material introduced to the liquid droplet. The optimal feeding speed is between 10 and 

30 mm/s during fabrication. If the feeding speed is very slow, below 10 mm/s, the size of the 

liquid droplets decreased, and they disappear. In contrast, if the feeing speed is increased to 

over 30 mm/s, the prepared powders have a wire shape because the particles are connected 

with each other. By adding oxygen to the inert gas, metal oxide particles or metal particles 

oxidized on the surface may be obtained. Figure 3 shows metal and metal oxide particles 

prepared by LGC. The gas condensation (GC) method was used to obtain nanocrystalline 

powders of pure metal and nano-oxides with different compositions. Oxide nanopowders, 
such as Fe

3
O

4
, γ-Fe

2
O

3
, and Cu

2
O, were produced by the LGC of metal wires at elevated pres-

sure in an (Ar + O
2
) atmosphere [8, 16].

High-purity Ni@C and Fe@C nanopowders were synthesized using the LGC method. The 

LGC apparatus consisted of a high-frequency induction generator, operating at 6 kW for Ni 

and 5 kW for Fe, a reaction chamber for the levitated liquid seed, and a unit to control the 

Figure 2. The concept of system for LGC.
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methane (CH
4
) concentration. The starting materials were Ni and Fe wires with a diameter of 

4 mm. The Ni and Fe wires were fed into a melted droplet using the wire feeding system at a 

feeding rate of 2 mm/min. An ingot of 85 mg, which was used as the seed material for the levi-

tation and the evaporation reactions, was melted by using electric induction. The pressure of 

the mixed Ar and CH
4
 gas in the chamber was 100 Torr. CH

4
 was 10% of the mixture gas. The 

inductor was heated up to a temperature of 2000°C, and the metallic atoms were evaporated 

from the overheated surface of the liquid droplet and condensed by cold inert gas and then 

collected into the filter. At the same time, the molecular CH introduced into the chamber was 
converted to atomic C and H with high activity under high temperature. The highly active 

C atoms react with the Ni and Fe atoms, and the H atoms are converted to H molecules. The 

newly created H gas is vented out of the reaction chamber by continuous vacuum operation. 

The results indicated that all of the as-made materials were composed of nanocapsules with 

uniform particle size at and below 10 nm. The nanocapsules consisted of outer multi-shells 

of carbon [26–28].

2.2. Starting materials with a melting temperature below 900°C: Zn, Sn, Bi, and ZnO

For most metals, the optimal design of the material heating method allows a metal drop to 

be heated and kept in a noncontact condition in the evaporation zone by high-frequency 

magnetic field. However, this method does not ensure the optimal heating of light-volatile 
metals such as Zn, Sn, and Bi. Therefore, another material evaporation method using a refrac-

tory crucible was applied, for heating and evaporation. This method is generally suitable for 

Figure 3. TEM images for metals and ceramic nanopowders.
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evaporating materials with high vapor pressures at moderate temperature. Figure 4 shows 

a simple diagram of the device for obtaining light-volatile metal nanopowders. The appa-

ratus consists of a high-frequency induction generator operating at 2.5 kW, a levitation and 

evaporation chamber, and an oxygen concentration control unit [11]. The wire feeding veloc-

ity (V
Zn

) and mixed Ar and O
2
 gas pressure in the chamber were 50 mm/min and 100 Torr, 

respectively. The mechanism of ZnO formation using the LGC method was analyzed. First, 

a liquid droplet, which is levitated against gravity by the magnetic force due to the coupled 

induction coils, is heated up to the temperature of 1560°C at 2.5 kW. Then Zn clusters are 

evaporated from the overheated surface of the liquid droplet and condensed by cold inert 

gas and collected into the filter. At the same time, molecular O
2
 introduced into the chamber 

is converted to atomic O with high activity under high temperature. The highly active O 

atoms can diffuse into the Zn clusters and react with the Zn atoms. A large amount of the Zn 
phase was observed at and below an oxygen flow rate of V

O2
 = 0.05 ℓ/min, whereas mixtures 

of ZnO and small amounts of the Zn phase were observed under O
2
 flow rates in the range 

from V
O2

 = 0.11ℓ/min to V
O2

 = 0.21 ℓ/min. However, at and above 0.21 ℓ/min of O
2
 flow rate, 

levitation was impossible. Some metals, such as Bi and Sn, have insufficient tensile strength 
to prepare wire. In these cases, the micron-sized powders were used as the parent materials. 

The powder starting materials were supplied by a powder feeding (PF) system. A detailed 

explanation of the PF is provided in Section 2.3.

Bi powders were prepared using metal bismuth powder as the starting material [28]. The pow-

der was supplied by the feeding system into a graphite crucible at a rate of 20 mg/min. The 

crucible was heated by induction currents up to T = 700–900°C. Bi particles entering the cru-

cible were evaporated within 1–2 sec and carried by argon flow from the hot zone. The argon 
flow rate was varied in the range of 80–170 ℓ/h, at pressures in the range of 70–300 torr. The 
dependence of the mean sizes of the bismuth particles on gas pressure at a flow rate of 80 ℓ/h 
was 25, 70, and 120 nm for 70, 150, and 300 torr, respectively. Thus, the optimal conditions for 

obtaining Bi powder were realized at an argon pressure of 70 torr and a rate of 80 ℓ/h. A simple 
diagram of the process for forming nanoparticles from light-volatile seed in a crucible to pro-

duce volatile nanoparticles is represented in Figure 5.

Figure 4. High-resolution TEM images of carbon encapsulated (a) Ni and (b) Fe.
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2.3. Powder starting materials: NiFe2O4 and Ti-Ni

The wire feeding (WF) system was used for synthesizing metal, ceramic, and carbon-encap-

sulated materials. This system easily supplies seed parent materials continuously. However, 

it was impossible to synthesize several complicated metal-doped materials such as ferrites, 

perovskite, garnet, metal-doped ZnO, Ti-Ni, and Al-Ni-Co using the wire feeder in the LGC 

system, because the parent materials could not be prepared as wire. A newly modified micron 
powder feeding (MPF) system overcomes this problem of the LGC system [15, 20]. The MPF 

system can be used for synthesizing brittle metals, alloys, and complex doped materials. 
Commercial elemental powders of Ti (99.9 at.%, ~500 μm), Ni (99.9 at.%, ~500 μm), and Fe 

(99.9 at.%, ~ 500 μm) were used as the starting powders for the synthesis of Ti-Ni alloy and 

Ni-ferrite nanopowder, using the LGC. The Ti and Ni powders were mixed by pestle and 

mortar to achieve the desired equi-atomic composition and were then incorporated into the 

micron powder feeding system, which consisted of a rotating part to supply the Ti and Ni 

micron powders to the melted droplet and a vibrating part for mixing the powder. The Ti and 

Ni micron powders were fed into the powder feeding system at a feeding rate of 38 mg/min.  

An 83 mg Ti-Ni alloy ingot, which was used as the seed material for the levitation and  

Figure 5. (a) Elementary diagram of the process for forming nanoparticles from light-volatile seed in a crucible and 

(b) TEM images for the Sn, Bi, and ZnO nanoparticles prepared by LGC using light-volatile seed.

Properties and Catalytic Effects of Nanoparticles Synthesized by Levitational Gas Condensation
http://dx.doi.org/10.5772/intechopen.72158

57



evaporation reactions, was melted by an electric induction heating with an applied power of 

6 kW at an argon gas pressure of 100 torr. The evaporated powders were filtered and finally 
passivated by partial oxidation. The starting materials were the mixed micron powders of Ni 

and Fe, which has a size ranging from 100 to 500 μm. The amount of micron powder fed into 

the liquid seed droplet was controlled at 80 mg/min. The mixed Ar and O
2
 gas pressure in the 

chamber was 100 torr [15, 20] (Figure 6).

3. Magnetic metal and carbon-encapsulated metal nanoparticles

3.1. Magnetic properties of Ni, Fe, Ni@C, and Fe@C

Magnetic nanoparticles have attracted much attention because of their use in nano-fluids for 
biomedical application, thermally conductive fluids, various catalysts, etc. However, metal-
lic nano-fluids end to be inherently vulnerable to oxidation, dissolution, and agglomeration 
during synthesis. In particular, agglomeration of the particles in a solvent is a serious prob-

lem when preparing nano-fluids. To overcome these problems, encapsulating the particles 
in a protective shell has been recommended to improve the chemical stability of the metal 

Figure 6. (a) Micron powder feeding (MPF) system and (b) wire feeding (WF) system in the LGC instrument. TEM 

images for (c) Ti-Ni alloys and (d) NiFe
2
O

4
.
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nanoparticles and their dispersion stability in the solvent. It is also worth noting that after 

encapsulation with a carbon coating layer, these materials are not prone to agglomeration 

because the coating reduces their magnetic interaction. In addition, the surface diffusion pro-

cesses can preserve the chemical and structural properties of the nanopowder for a long time 

in many chemically aggressive conditions. A graphitic carbon shell in particular is regarded 

as an ideal coating since it is light and shows high stability in both chemical and physical 

environments [29–31].

The contents of the Ni and Ni@C nanoparticles synthesized by LGC using the micron pow-

der feeding system were confirmed by XRD pattern. The XRD results for Ni and Ni@C 
showed the lattice parameters and the positions of the main peaks of the Ni powders. A 
small amount of NiO phase and amorphous graphitic layers was found in the XRD patterns 
and in the TEM images as mentioned in Section 1 [18]. The diffraction peaks at 44.4°, 51.8°, 
and 76.3° are due to the (1 1 1), (2 0 0), and (2 2 0) planes of fcc-Ni, respectively. The Ni pow-

ders synthesized by the LGC method showed low saturation magnetization. These results 

were attributed to the spin-canting effect and oxide phase on the surface [32]. The magnetic 

properties would be weak due to the antiferromagnetic NiO phase on the powder surface. 

The saturation magnetization was Ms. = 42 emu/g, as shown in Figure 7(a). The slightly 

shifted hysteresis loop for the Ni sample can be explained by exchange bias between the 

ferromagnetic core of Ni and the antiferromagnetic surface of the NiO. The initial magneti-

zation curve is not explained by the size effect. In previous studies, the virgin magnetization 
curve slightly spills over the limited hysteresis loop at 655 Oe. We assume that this effect is 
enhanced when the size of the particles is reduced, as suggested in a previous study. With 

decreasing particle size, the defects and the different magnetic structure on the surface of 
the particles are increased. The nature of this irreversibility in high magnetic fields follows a 
physical model and can be explained by a spin-glass or spin-canting behavior. The hysteresis 

loop of the as-made M@C materials in magnetic fields up to 2 T reveals their intrinsic mag-

netic behavior, indicated by the magnetization (M), the remanent magnetization (Mr), and 

the coercive force (Hc) of the M@C samples. The saturation magnetization demonstrates that 

Figure 7. M-H loops for (a) Ni and (b) carbon-encapsulated Ni measured at 20°C.
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the carbon-coated Ni nanocrystallites exhibited a superparamagnetic behavior at room tem-

perature, which is related to the demagnetization effect arising from the additional energy of 
the magnetic fields outside the graphitic carbon encapsulation as shown in Figure 7(b). The 

coercive force (Hc) and magnetization (M) were 76.6 Oe and 19.6 emu/g, respectively. The 

ratio of remanence to the saturation magnetization (Mr/M) was 0.04. The low magnetization 

compared with the Ni nanoparticles without the carbon shell is due to the coexistence of 

nonmagnetic carbon and the large percentage of surface spin due to the disordered magne-

tization orientation of the nanoparticles. The magnetic properties are influenced by both the 
particle size and the surface properties of the particle [33, 34].

A typical hysteresis loop of the Fe nanopowder at room temperature shows a saturation mag-

netization of Ms = 157 emu/g and coercivity of Hc = 836 Oe as shown in Figure 8(a). An 

estimated single domain size of 14 nm for spherical iron particles with no shape anisotropy 

is reported. The size of the iron nanopowder is large enough to show very large value of 

coercivity. The hysteresis loops of the as-made Fe@Cs in magnetic fields up to 1 T reveal their 
intrinsic magnetic behavior, as shown in Figure 8(b).

The hysteresis loops indicate that the carbon-coated Fe nanocrystallites exhibit superpara-

magnetic behavior at 50 and 300 K. The magnetization was not saturated in the applied fields 
up to 1 T, as shown in Figure 6(b). In the nanoparticles, one can observe superparamagnetic 

behavior, which is related to the demagnetization effect arising from the additional energy 
of the magnetic fields outside the graphitic carbon encapsulation. The coercive force (Hc) 
and the magnetization (M) at 50 K were 130 Oe and 69.6 (emu/g), respectively. In a previous 

study, the Mössbauer spectrum for Fe@C nanopowder was measured at room temperature. 

The relative fraction of the α-Fe, Fe3C, and γ-FeC phases was determined to be about 27.6, 
26.3, and 46.1%, respectively. The low magnetization compared with metal nanoparticles 

without a carbon shell was due to the coexistence of nonmagnetic carbon and the large per-

centage of surface spins due to the disordered magnetization orientation of the nanoparti-

cles. The magnetic performance of the Ni@C and Fe@C samples was demonstrated in a liquid 

Figure 8. M-H loops for (a) α-Fe and (b) carbon-encapsulated Fe measured at 20°C.
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phase (in ethanol and polyethylene glycol) by placing a magnet bar near the glass bottle. The 
carbon-encapsulated magnetic metals moved under the magnetic force. This suggests that 

Ni@C and Fe@C materials would be ideal adsorbents and catalyst supports because they are 

magnetically separable [35].

3.2. Dispersion stabilities of Ni, Fe, Ni@C, and Fe@C

To evaluate the dispersion stability and agglomeration phenomena of the carbon-encap-

sulated Ni and Fe nanoparticles in solvents of ethanol and ethylene glycol (EG), their 

time-dependent sedimentation behavior was investigated using transmission profile mea-

surements obtained with a Turbiscan Lab [36–38]. The transmission profiles were taken 
every 1 h for 60 h when the suspending medium was ethanol. It was found that the trans-

mission intensity decreased at the sample top owing to clarification and increased at the 
sample bottom due to sedimentation. A very stable Ni@C dispersion was observed without 
showing any clarification or sedimentation in EG. In contrast, a progressive fall signal was 
observed as a function of time in the middle region of Ni nanoparticles which had an aver-

age particle size of 20 nm. This can be explained by flocculation-induced particle growth. 
Figure 9(a) shows the Turbiscan screen data taken every 1 h for 3 days. The time-dependent 

transmission rates on the top, middle, and bottom show the same tendencies. The clarifica-

tion in the top region and the progressive fall in the middle region of the ΔT signal were 
not observed in all suspensions. These imply that flocculation due to a coalescing reaction 
between the nanoparticles was insignificant. A very stable Fe@C dispersion, without any 
clarification on the top layer or sedimentation on the bottom layer, was observed in ethanol 
and EG. The viscosity of the solvent affected the dispersion stability kinetics. The disper-

sion stability of the solvents increased in the following order: water, ethanol, and ethylene 

glycol (or poly ethylene glycol). Figure 9(b) shows the effect of the solvent on the disper-

sion stability, as measured by using Turbiscan Lab, as well as the calculated mean value 

of the kinetics for each transmission (ΔT) profile as a function of time. The suspensions 
prepared in water displayed a rapid change in the mean ΔT values. As a result, sedimenta-

tion of the Fe@C nanoparticles in suspensions of water commenced as soon as the suspen-

sion was prepared. For the suspensions prepared in ethanol and EG, the variation in the 

mean ΔT was much less. However, this value increased continuously. Visual inspection 
confirmed that the suspension was stable, but sedimentation slowly occurred. However, 
coalescence between the Fe@C nanoparticles rarely occurred in the suspension because 

the carbon shell layer prevented agglomeration of the particles. The variation in the mean 

ΔT for the suspension prepared in EG was the smallest. The mean value of ΔBS increased 
when the particles were smaller than the wavelength of the incident light (880 nm). The 

tendency of ΔBS was similar to those of ΔT. From these results, for three kinds of solvent, 
we determined EG to be the most suitable solvent [38, 39].

3.3. Catalyst for the multicomponent Biginelli reaction

In this study, we introduce the catalytic effects of the Ni and Ni@C nanopowders observed 
during the synthesis of S-enantiomer from 3,4-dihydropyrimidine (DHPM). The synthesis 
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of 4-Aryl-substituted DHPM compounds by the Biginelli reaction has attracted great atten-

tion in synthetic organic chemistry due to their pharmacological and therapeutic properties 

such as antibacterial and antihypertensive activity as well as their behavior as calcium chan-

nel blockers. Given the versatile biological activity of DHPM, development of an alternative 

synthetic methodology is of paramount importance [40–42]. This has led to the development 

of several new synthesis strategies involving combinations of Lewis acids and transition 

metal salts such as mainly homogeneous catalysts, which give high yields. However, in 

spite of their potential utility, many of these methods involve expensive reagents, long reac-

tion times, high temperatures, and stoichiometric amounts of catalysts and result in unsat-

isfactory yields. Therefore, discovering a new, inexpensive catalyst for the Biginelli-type 

reaction under neutral and mild conditions is of prime importance. The starting materials 

used in this study were ethyl acetoacetate (I) (0.25 mmol), benzaldehyde (II) (0.25 mmol), 

and urea (III) (0.3 mmol). First, the benzaldehyde (II) (0.25 mmol), urea (III) (0.3 mmol), 0.1 g 

of catalyst (Ni or Ni@C), and chiral modifier of L-proline (0.025 mmol) were mixed and react 
in ethanol (50 ml) at 70°C for 2 hours. In the second step, ethyl acetoacetate (I) (0.25 mmol) 

was added and reacted under microwave for 3h. The ratio of the s-enantiomer in the as-

prepared sample was characterized by high-performance liquid chromatography (HPLC) 

with a chiral column (Chiralcel OD-H) [13].

Figure 9. Variations in the mean ΔT for the (a) Ni and Ni@C suspensions and (b) Fe and Fe@C suspensions prepared in 
various solvents (ethanol and ethylene glycol).
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Vigorous agitation appeared to be an extremely important factor influencing stereo selectiv-

ity. The results of stereo selectivity are represented in Table 1. The simultaneous use of a 

heterogeneous catalyst along with the chiral modifier allowed the ratio between stereoisomer 
in the Biginelli reaction to be changed in some experiments in favor of the S-enantiomer, with 

an excess of about 19.6%. The best results were obtained when using carbon-encapsulated Ni 

nanoparticles as the catalyst, L-proline as the chiral modifier, and methanol as the solvent. 
The catalytic reaction with Ni@C showed higher stereo selectivity than with Ni. The carbon 

shell influences the catalytic effect during synthesis [43].

4. Nonmagnetic metal and metal oxides: Cu oxide, Bi, and NiO

4.1. Catalytic activities of Cu oxide and ZnO

Cu oxides are widely applied in various organic syntheses such as reduction and oxidation 

processes, various condensation processes, for the syntheses of complex compounds, etc. 

The surface of the nanocrystalline Cu oxide includes a defect structure, resulting in non-

stoichiometry. Such materials in themselves have the advantages of both homogeneous and 

heterogeneous catalysts. The aim of our investigation was the development of an effective 
catalytic and reaction systems based on nanocrystalline Cu oxides, with high reactivity at 

ambient temperature. To test the catalytic reaction, both the reaction of the liquid-phase 

oxidation of 2,3,5-trimethyl-1,4-hydroquinone (TMHQ) and the catalase activity were cho-

sen. The oxidation of TMHQ is an intermediate stage of the hydroxylation of 2,3,6-trimethyl 

phenol in the synthesis of tocopherol. The process of TMHQ oxidation was carried out in a 

thermostatically controlled chamber, under agitation in a mixed water and methanol solu-

tion (1:1 in volume) at 50 ± 0.2°C. The rate of air supply was 6.2 ℓ/h. The reaction was car-

ried out using the parent material (0.66 mmol) and the nanopowders (1 mmol). To compare 

the catalytic properties of the Cu oxides, powders with various sizes were synthesized. The 

size control of the powder was carried out by altering the feeding velocity of the Cu wire 

from 20 to 80 mm/min. Phase control of the Cu, Cu2O, and CuO was carried out by control-

ling the pressure of the inert gas. In Table 2, the crystallite conditions of the copper oxides 

are displayed. The dehydrogenation (oxidation) of the TMHQ in solution was to practically 

form 2,3,5-trimethyl-1,4-quinone (TMQ) (selectivity on TMQ > 99.5%). The kinetic curves of 

TMHQ oxidation in the presence of the nanocrystalline Cu oxide particles (Samples 1, 2, and 

3) are given in Figure 10. Samples containing mainly pure Cu (Cu 78%, Сu
2
O 22%, sample a)  

Catalysts Yield (%)

Racemic

HPLC Δ (ee. %)

S-enantiomer R-enantiomer

Ni 47 53.2 45.8 7.4

Ni@C 70 59.8 40.2 19.6

Table 1. Synthesis of 3,4-dihydropyrimidine based on the Biginelli reaction using nanosized catalysts of Ni and Ni@C.
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in the structure showed rare catalytic reaction. Catalytic activity depended on both the aver-

age particle size and the oxide phase such as the concentration of Cu
2
O in the nanopowders. 

Sample 1 with mainly Cu
2
O phase and an average size of 90 nm performed as catalyst with 

theoretical yield. Samples 2 and 3 with an average size of 35 nm showed significantly active 
effect. These samples contained a small quantity of CuO, not exceeding 0.15 mol fraction. The 
results of the oxidation of TMHQ are represented in Table 2. The catalytic yield of Sample 

1 compared with Samples 2 and 3 was relatively very low. The Samples 2 and 3 with the 

same range of particle sizes included different ratios of Cu and Cu oxide phase. The yield of 

Figure 10. Kinetic curves for the dehydrogenation of TMHQ using Cu oxide catalysts with average particle size of 35 

and 90 nm.

Average particle 

size (nm)

Conditions for synthesis: feeding 

speed, draft velocity (l/min), and 

pressure in chamber

Phase composition, wt. % Oxidized yield 

of TMHQ

H
2
O

2
 

conversion
Cu Cu

2
O CuO

a 20 Slow feeding (20~30 mm/s)

0.0 ≤ V
O2

≤ 0.05, 80 torr
78 22 — No

reaction

10.2

1 90 Fast feeding (60 mm/min)

V
O2

 = 0.2, 120 torr

4 96 — Initial 60.1

2 35 Slow feeding(20~30 mm/min)

V
O2

 = 0.2, 100 torr

— 100 — Active 99.8

3 35 Slow feeding (20~30 mm/min)

0.1 ≤ V
O2

≤ 0.15, 100 torr
10 85 5 Active 82.3

Table 2. The concentration of Cu oxide nanopowders, the reaction yields for dehydrogenation of TMHQ, and hydrogen 

peroxide (catalase activity).
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TMHQ oxidation depended on the particle size and amount of the Сu
2
O phase. Obviously, 

oxidation of the parent material substantially occurred under the action of the fixed oxygen, 
which was activated in the matrix of nanopowders [44–46].

The catalase activity is an informative parameter about the catalytic properties of the materials 

in the redox process. It was simulated by measuring the ability of the catalase in the decom-

position of hydrogen peroxide to isolate molecular oxygen. Decomposition of the hydrogen 

peroxide was carried out in a thermostatically isolated chemical reactor (10 ml). A mixture of 

water and methanol (1:1 in volume) was agitated with a stirring rod at 50 ± 0.2°C. The reaction 

was carried out with hydrogen peroxide (1.7 mmol) and nanopowder (2 mg). The catalytic 

activity of the Co, Mn, Fe, and Cu hydroxides was also estimated by catalase activity. The aim 

of this work was to solve a scientific problem related to the chemical intoxication mechanisms 
of water phenol solutions and its derivatives during their cleaning. The data in Table 2 show 

the results PF the catalase activities for the same nano-Cu oxide samples. The reaction of 

Sample 2 with a size of 35 nm, containing mainly Cu
2
O, showed much higher activity than 

Sample 1 with a size of 90 nm and the same oxide phase. The size of the particles was the 

most significant factor. The particle size affects the surface state. The specific surface areas of 
Samples 1, 2, and 3 were 17, 35, and 38 m2/g, respectively. The specific surface area is related to 
the particular manufacturing method. The LGC method produces nano-scaled powders with 

high specific surface area [47].

The photocatalytic activity of the ZnO was evaluated based on the photodegradation of phenol 

aqueous solutions under different irradiation conditions. For experiments under UV-visible 
light, 100 mL of 50 ppm phenol in aqueous solution with 0.5 g catalytic powders was loaded 

in a glass container and stirred with a magnetic stirrer a under irradiation form, a Hg-Xe 
lamp. Total organic carbon (TOC) values as a function of time were measured after filtration 
under reduced pressure. Figure 11 shows the photo mineralization of phenol with UV-visible 
light (solar simulator) in the presence of ZnO. Obviously, when ZnO is added to the phenol, 

the total organic carbon (TOC) value was reduced to 60% [48–51].

4.2. Electrochemical analyses using Bi nanopowder

The anodic stripping voltammetry (ASV) method is a powerful electrochemical technique 

for trace metal analysis. The traditional electrodes for ASV measurements are mercury-drop  

electrode and a mercury-film electrode, due to high sensitivity of the mercury [52–56]. 

However, mercury is very toxic. The toxicity of the mercury has led its usage to be com-

pletely banned in some countries. In this study, we focused on searching for alternative 

environment-friendly electrode materials. The Bi-film electrode has been considered replac-

ing the mercury-film electrode due to its nontoxicity. The properties of Bi materials show 
not only excellent resolution of neighboring peaks but also insensitivity to the dissolved 

oxygen in the solution. However, there are still some problems to use the electrode such as a 

low detection limit comparing to mercury electrode and complication of preparing electrode 

including processes of additional washing or polishing of the carbon surface and dissolving 

Bi ions into the solution for the pre-deposition of the Bi on the film electrode. In order to over-

come the above weaknesses of the Bi-film electrode, a Bi nanopowder-labeled electrode with 
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a larger electrochemical active surface area was fabricated [57–59]. In this study, the nano-

Bi-fixed electrode sensor and a nanosized Bi-binding technology were developed to improve 
the electrochemical characteristics of Bi for detecting heavy metals. For this purpose, the Bi 

nanopowder was synthesized using the LGC method and was then coated on a conductive 

carbon layer using a Nafion solution. Figure 12 illustrates the attached Bi working electrode 
and the analysis system setup for measuring Zn, Cd, Pb, and Ta [14, 24, 58–62].

The working electrode was prepared using conductive carbon ink (DongYoung Chemical 

Co., LTD, in South Korea) painted flexible polyester film by a semiautomatic screen printing 
instrument. Then the prepared carbon ink with a thickness of 80 μm on painted thick film was 

Figure 12. Illustration for working electrode and total system for electrochemical analyses.

Figure 11. Photo mineralization of phenol with sunlight (TOC: total organic carbon content at times) in the presence of 

ZnO (Hg-Xe lamp with a wavelength of 200 ∼ 2500 nm and 1 kW of power).
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partially covered by an insulating layer. Bi nanopowders were well dispersed into 20 ml of 

distilled water using an ultrasonic treatment. A Nafion solution (Fluka) was added in to the 
Bi-dispersed suspension for strong chemical bonding between nanopowder and the carbon 

paste. Finally, the Bi nanopowder-dispersed suspension was dropped onto the working area 

and dried in the air at room temperature. As the concentration of Nafion in suspension was 
increased, the value of pH was decreased due to the strong acidity of the Nafion.

When the Bi nanoparticles were dispersed in distilled water without Nafion, the zeta poten-

tial showed a positive value [14]. However, as Nafion was added in the suspension, the zeta 
potential changed to a negative value. The amount of Nafion should be optimized to be 200 μℓ  
for dispersion stability and the phase stability of Bi nanoparticles. The sensor electrodes  

were prepared using the screen-printed carbon surface with the Bi nanoparticles strongly 

attached by Nafion. A platinum wire and a saturated calomel electrode (SCE) were used as 
a counter electrode and a reference electrode, respectively. The supporting electrolyte was a 

0.1 M NaAc and 0.025 M HCl solution of pH 5.0. The prepared nanoparticles are confirmed by 
XRD as shown in Figure 13(a). Also, the screen-printed Bi nanoparticles dispersed in Nafion 
on the electrode could be observed by TEM, as shown in Figure 13(b).

Figure 14 shows results of the anodic stripping voltammograms (ASV) using the Bi nanopow-

der-attached electrode for measuring various concentrations of Cd and Pb ions in solution. 
The ASV showed well-defined peaks at −0.85 V and −0.65 V corresponding to the oxidation 
of Cd and Pb, respectively. Figure 15 demonstrates the dependence of the stripping peak 

current density Ip on the Cd and Pb concentrations over a range of 3~30 ppb (deposition 

potential = −1.35 V and deposition time = 3 min). From the linearity between the metal con-

centration and the peak current, the values of the sensitivity of the nano-Bi-fixed electrodes 
were determined to be 9.01 ± 0.012 and 7.15 ± 0.007 μA/ppb·cm2 for Cd and Pb, respectively. 

The estimated detection limits of the nano-Bi-fixed electrode were 0.31 and 0.42 ppb for Cd 
and Pb, respectively, on the basis of the signal-to-noise characteristics (S/N = 3) under a 10 min 

accumulation. These values are much lower than the domestic and the international content 

limits of Cd and Pb ions in drinking water, which are listed in Table 3, indicating the excellent  

Figure 13. XRD pattern for (a) Bi nanopowders and (b) SEM image for screen-printed Bi.
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detection of the Bi nanopowder-fixed electrode. Consequently, the low toxicity of the Bi 
nanopowder-fixed electrode with high sensitivity about heavy metals promises the develop-

ment of an attractive sensor for monitoring toxic chemical species in environmental matrices 
with a clean methodology [62].

4.3. Catalytic effect of NiO in the Biginelli and Hantzsch reaction

Nickel oxide powders were obtained by the gas condensation method in an argon-oxygen mix-

ture flow. The argon flow rate was 130 ℓ/h, oxygen concentration 8.5 vol %, pressure equal 
to 90 torr, and Ni feed rate 1.8 g/h. XRD analysis showed the following phase composition: 
NiO 90.7%, Ni 9.3%, and mean size of nickel oxide particles 13 nm. According to the electron 

microscopy, the particles proved to have a nearly uniaxial shape. The nickel phase detected 

Figure 15. Dependence of the stripping peak current density Ip on the Cd and Pb concentrations over the range of  

3 ~ 30 ppb (deposition potential = −1.35 V; deposition time = 3 min).

Figure 14. Square wave anodic stripping voltammograms experimentally measured on the nano-Bi-fixed electrode for 
various concentrations of Zn, Cd, and Pb ions.
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by the XRD method appears to result from the incomplete oxidation of some particles, and it 
is located in the center of the particles, while the outer layers must certainly be in an oxidized 

state (Figures 16 and 17).

The NiO nanoparticles were applied for the synthesis of both dihydropyridine (DHP) and 

dihydropyrimidine (DHPM) as mentioned in Section 3.3. The most plausible pathway for 

DHP prepared by the Hantzsch reaction has been shown to involve the interaction of benz-

aldehyde with one molecule of β-dicarbonyl compound 1 to give chalcone 3, while another 
molecule of β-dicarbonyl compound 1 is transformed into enamine 2. In route A, enamine 
2 is condensed with an aldehyde and ethyl acetoacetate 1 in the reflux in a suitable solvent 
(methanol or ethanol) [63–65]. Route B involves the reaction of chalcone 3 with enamine 
2, and it seems to give better yields of products and easier purification. In the presence 
of aqueous ammonia, compound 3 undergoes a partial decomposition into benzaldehyde 

and diketone 1, thus giving a rise to the formation of symmetrical analogues nitrendipine 

16a, b. When the Hantzsch reaction is carried out at 22–25°C in the presence of L-proline 
and nanosized NiO, the ratio of enantiomers of nitrendipine is changed in favor of the 

S-enantiomer by 3.4%.

The Biginelli reaction for synthesizing DHPM was carried out in the presence of L-proline and 

nanosized NiO (obtained by the Institute of Metal Physics) to change the ratio of enantiomers 

of 3S in Section 2.3 is changed in favor of S-enantiomer by 15.4%. Our future plans involve 

studying the factors that affect enantiofacial discrimination for the Hantzsch and Biginelli 
reaction, such as the nature of nanosized metal oxides or chiral modifiers, reaction time, tem-

perature, and solvent. We also plan to synthesize new nanosized metals and their oxides, as 

well as chiral modifiers.

Heavy metal unit Korea IBWA FDA WHO/FAO

Cd

Pb

ppb

ppb

5

50

5

5

5

5

3

10

Table 3. Domestic and international content limits of cd and Pb ions in drinking water.
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5. Conclusion

Ceramics, such as NiO, ZnO, and Cu
2
O, magnetic nanoparticles, including γ-Fe

2
O

3
, Fe

3
O

4
, 

and NiFe
2
O

4,
 and metals, such as Cu, Ni, Zn, Sn, Ag, Au, Bi, and carbon-encapsulated metals 

(Ni and Fe), were synthesized by levitational gas condensation (LGC) method using wire 

feeding (WF) and micron powder feeding (MPF) systems. The magnetic properties have 

Figure 17. Chromatogram of a racemic mixture of (a) DHPM, enriched with S-enantiomer by 15.4%. The product was 

obtained in the presence of L-proline and NiO nanopowder mic mixture of (b) DHP, enriched with S-enantiomer by 

3.4%.

Figure 16. TEM image of NiO nanopowder.
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been characterized using a vibrating sample magnetometer (VSM). The size and shape of 

the nanopowders were investigated by transmission electron microscopy (TEM). The sur-

face effect influenced the magnetic behaviors of nanopowders. Bi metals were dispersed in 
Nafion. The Bi particles could be applied as sensor electrode instead of mercury-based elec-

trolyte. The particle size of carbon-coated metal with diameters in the range of up to 10 m 

was smaller than those of metals without a carbon shell. The dispersion stability kinetics of 

carbon-coated nanopowders showed good dispersion. The best results were obtained when 

using carbon-encapsulated Ni nanoparticles as a catalyst, L-proline as a chiral modifier, and 
methanol as a solvent. The catalytic reaction of Ni@C showed enhanced stereoselectivity. 

Also, the simultaneous use of the heterogeneous catalyst and chiral modifier may lead to 
an increase in the selectivity of the Biginelli reaction. Nanoparticles prepared using LGC 

showed significantly enhanced catalytic activities during chemical reaction due to the high 
level of defects on their surface structure.
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