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Abstract

Warming is expected to lead to drier environments worldwide, especially in the tropics, 
and it is unclear how crops will react. Drought tolerance often varies at small spatial 
scales in natural ecosystems, where many of the wild relatives and landraces of the main 
crops have been collected. Through a series of examples, we will show that collections of 
wild relatives and landraces, many of those deposited at germplasm banks, may repre-
sent this desired source of variation, as they are genetically diverse and phenotypically 
variable. For instance, using a spectrum of genotyping and phenotyping approaches, we 
have studied the extent of genetic and phenotypic diversity for drought tolerance in wild 
and landraces of common bean (Phaseolus vulgaris L.) and compared it with the one avail-
able at cultivated varieties. Not surprisingly, most of the naturally available variation 
to cope with drought in the natural environments was lost through domestication and 
recent plant breeding. It is therefore imperative to exploit the reservoir of wild relatives 
and landraces to make crops more tolerant. Yet, it remains to be seen if the rate at which 
this naturally available variation can be incorporated into the cultivated varieties may 
keep pace with the rate of climate change.

Keywords: drought tolerance, environmental adaptation, genomic signatures of 
selection, agroecological models, divergent selection

1. Common bean: a model to explore the usefulness of wild relatives 

and landraces as a resource for the future

In the present chapter, we review the utility of genome-environment association approaches 

to infer the potential of wild accessions and landraces to make tropical crops more resis-

tant to climate change, using the food crop common bean (Phaseolus vulgaris L.) as a 

model. Wild bean is thought to have diversified and adapted locally in South and Central 

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Figure 1. Geographic distribution of wild relatives (light gray) and landraces (dark gray) of common bean and its diversity in terms of seed size, colors, and patterns. 
Modified from Cortés et al. [12].
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America from an original range in Central America [1, 2], after which domestication in 

the southern and northern ends of each region gave origin to Andean and Mesoamerican 

domesticates, respectively [3–7]. Both genepools followed somewhat parallel pathways of 

dissemination through the world, generating new secondary centers of diversity in Africa  

and Asia [8].

Common bean is a source of nutrients and protein for over 500 million people in Latin America 
and Africa, and more than 4.5 out of 23 million hectares are grown in zones where drought 
is severe, such as in northeastern Brazil, coastal Peru, the central and northern highlands 

of Mexico, and Eastern and Southern Africa [9, 10]. This situation may worsen as increased 

drought due climate change will reduce global crop production in >10% by 2050 [11]. Increasing 

drought tolerance in common bean varieties is therefore needed. Characterizing geo-refer-

enced landraces and wild accessions of common bean at the genetic level (e.g., Figure 1) and 

quantifying SNP allelic associations with a bioclimatic-based drought index offer an efficient 
path to identify adaptive variation suitable to breed new drought-tolerant varieties.

In the following two sections, we first explain the theoretical bases behind genome-environ-

ment associations, as well as its caveats, (Section 2) and later we exemplify it with concrete 
cases that used geo-referenced landraces and wild accessions of common bean to infer natu-

rally available adaptive variation (Section 3).

2. Strategies to infer adaptability of wild relatives and landraces to 

their natural habitats

Understanding the genomic signatures associated with environmental variation provides 

insights into how species adapt to their environment [13–15]. Recent genomic studies in wild 

populations have demonstrated that genome-environment associations, which are associa-

tions between single-nucleotide polymorphism (SNP) alleles and accessions’ environment of 
origin, can indeed be used to identify adaptive loci and predict phenotypic variation. For 

instance, Turner and Bourne [16] predicted genetic adaptive variation to serpentine soils in 

Arabidopsis lyrata, Hancock and Brachi [17] identified climate-adaptive genetic loci among a 
set of geographically diverse Arabidopsis thaliana, Fischer and Rellstab [18] predicted adaptive 

variation to topo-climatic factors in Arabidopsis halleri, Pluess and Frank [19] predicted genetic 

local adaptation to climate at a regional scale in Fagus sylvatica, and Yeaman and Kathryn [20] 

detected convergent local adaptation in two distantly related species of conifers.

This genome-environment association approach has also been explored in some crop acces-

sions as a prospection strategy of germplasm, alternative to traditional phenotyping. For 

example, Yoder and Stanton-Geddes [21] were able to capture adaptive variation to ther-

mal tolerance, drought tolerance, and resistance to pathogens in Medicago truncatula; Lasky 

and Upadhyaya [22] predicted genotype-by-environment interactions to drought stress and 

aluminum toxicity in Sorghum bicolor; and Berthouly-Salazar and Thuillet [23] uncovered 

genomic regions involved in adaption to abiotic and biotic stress on two climate gradients in 

Cenchrus americanus.
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Nonetheless, since genomic signatures associated with habitat heterogeneity can result 

from causes other than adaptation and selection [24, 25], for example, random genetic drift 

(Figure 2), and are also influenced by differences in ancestral variation and recombination in 
the genome [27–29], some further approaches need to be undertaken to clarify the truth nature 

of the divergent regions. For instance, the origin of habitat-associated variants from novel 

or standing genetic variation leads to distinctively different patterns of genomic divergence 
[30–32]. One approach that can help to distinguish these underlying causes of divergence 

is comparing summary statistics (i.e., Tajima’s D) from different genomic sections because 
demographic processes usually leave genome-wide signatures while selection tends to 

imprint more localized regions [33]. Specifically, habitat-mediated purifying selection is asso-

ciated with localized low values of nucleotide diversity (π) [34] and Tajima’s D [35] and high 

scores of the Watterson’s theta (θ) estimator [36] because only low-frequency polymorphisms 

can avoid being eliminated by widespread directional selection. Although recent population 

bottlenecks tend to achieve the same reduction in nucleotide variation, this pattern is expected 
at a more genome-wide level. Similarly, local adaptation tends to homogenize haplotypes 
within the same niche, fix polymorphisms in different populations, and eliminate low-fre-

quency polymorphism. Consequently, few haplotypes with high frequency are retained, cor-

responding to high values of nucleotide diversity (π) and Tajima’s D and low scores of the 

Figure 2. Multiple causes explain genome-environment associations. External processes, such as divergent selection, 

which is the main focus when assessing adaptation in wild relatives and landraces of crops, is only one of many possible 

causes. At the same time, the genomic background may be homogenized by gene flow [26]. Similarly, background 
selection and genomic features in regions of reduced recombination rate and shared ancestral polymorphism (more 

prone to genetic drift due to their reduced effective population size) could induce hotspots of spurious genome-
environment associations. Therefore, besides external processes driven by natural selection, both inherent properties of 

the genome and the demographic and evolutionary history of the crop influence the extent of the genome-environment 
associations. Modified from Ravinet, Faria [64].
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Watterson’s theta (θ) estimator [33]. Although independent domestication events, extensive 

population structure, and population expansions after bottlenecks can produce the same pat-
terns, these demographic processes also imprint genomes at a more genome-wide level.

In the following two subsections, we explain how to implement genome-environment associa-

tions in order to infer adaptability of wild relatives and landraces to their natural habitats (Section 
2.1) and discuss ways to account for causes, other than adaptation and selection that may be 

shaping the genomic landscape of signatures associated with habitat heterogeneity (Section 2.2).

2.1. Using genome-environment association scans to identify loci associated with 

bioclimatic-based indexes

First of all, in order to account for possible demographic effects, subpopulation structure must 
be determined in geo-referenced landraces and wild accessions using principal coordinate 

analysis (PCoA) implemented in the software Trait Analysis by aSSociation, Evolution and 
Linkage, Tassel v.5 [37]. The same dataset and software can be used to perform association 

analyses between the SNP markers and bioclimatic-based indexes (e.g., [12, 38, 39]).

As a rule of thumb, a total of 10 generalized (GLM) and mixed linear models (MLM) should be 
compared [40]. Within each model family, five models are usually built as follows: (1) model with 
the genepool identity and the first two PCoA axes scores as covariates; (2) models with the within-
genepool subpopulation identity (e.g., [41]) and the first two PCoA axes scores as covariates; (3) 
model with the first two PCoA axes scores as covariates; (4) model with the within- genepool sub-

population identity (e.g., [41]), as covariate; and (5) model with the genepool identity as covari-
ate. All five MLMs usually use a centered IBS kinship matrix as a random effect to control for 
genomic background implementing the EMMA and P3D algorithms to reduce computing time 

[42]. QQ-plots of the P-values should be inspected to assess whether excessive numbers of false 

positives are generated and choose in this way the optimum model. Significant associations are 
determined using strict Bonferroni corrections of P-values at alpha = 0.001, leading, for example, 
to a significance threshold of 4.4 × 10−8 in a usual dataset of ca. 23,000 SNP markers (0.001 divided 
by the number of markers) or -log10(4.4 x 10−8) = 7.36. The construction of customized PCoA and 
Manhattan diagrams can be carried out with the software R v.3.3.1 (R Core Team).

Finally, candidate genes for habitat adaptation can be identified within the 1000 bp sections 
flanking each SNP marker that is associated with a bioclimatic-based index by using the cor-

responding reference genome (e.g., [5]) and the PhytoMine and BioMart tools in Phytozome 

v.12 (phytozome.jgi.doe.gov).

2.2. Accounting for genomic constrains by inspecting genome-wide patterns of 
variation

In order to identify causes other than adaptation and selection that may be shaping the genomic 

landscape of signatures associated with habitat heterogeneity (i.e., genomic  constrains and 

genetic drift), sliding window approaches (e.g., window size = 1 x 106 bps, step size = 200 kb) 
can be implemented to describe patterns of variation and overall divergence across the 
genome. For instance, SNP density, nucleotide diversity as measured by π [34], Watterson’s 
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theta (θ) estimator [36], and Tajima’s D [35] can be computed using the software Tassel v.5 
[37] and customized R scripts. Results of all windowed analyses are usually plotted against 
window midpoints in millions of base pairs (Mb) in the software R v.3.3.1 (R Core Team). The 
centromeres can be marked to visualize the extent of the centromeric repeats and its correla-

tion with overall patterns of diversity and divergence.

It is advisable to calculate bootstrap-based means and 95% confidence intervals around the 
mean for some summary statistics (i.e., SNP density, π, θ, and Tajima’s D) when computed 
in sliding windows that contained or did not contain at least one marker that was associated 

with a bioclimatic-based index. For this, each summary statistic of windows containing and 

not containing associated SNPs should be randomly resampled with replacement (bootstrap-

ping) across windows within grouping factor (associated vs. no associated). The overall mean 

is then stored for each grouping factor. This step should iterated at least 1000 times using 
customized R scripts. Bootstrapping must be performed independently for each summary 

statistic in order to eliminate correlations among these.

3. The adaptive potential of wild relatives and landraces in common 

bean

In common bean, ecological gradients related with drought stress are associated with diver-

gent selection at the genetic level, after accounting for genepool and subpopulation struc-

ture. This divergent selective pressure might be a consequence of local-level rainfall patterns. 
Specifically, in tropical environments near the equator with bimodal rainfall, a mid-season 
dry period occurs that can last to 2–4 weeks. In contrast in the subtropics, a dry period of 

three or more months can occur. In response to this mid-cycle drought of the subtropics,  

P. vulgaris enters a survival mode of slow growth and reduced physiological activity until 

rainfall resumes and flowering occurs [43]. Beans growing in wetter conditions on the other 
hand are less frequently subjected to these environmental pressures and have a fitness advan-

tage to mature in a shorter length of time. Given these ecological differences, and consistent 

with genomic signatures of divergent selection, the reaction typically associated with drought 

tolerance although favorable under dry conditions seems detrimental under more humid 

conditions. The awareness about this trade-off may aid the breeding of new drought-tolerant 
varieties specifically adapted to unique microenvironments (e.g., [44]) and local regions rather 

than varieties eventually obsolete, originally intended for a wider range of environments.

In the next two subsections, we summarize the concrete evidence supporting these statements 

(Section 3.1) and explain how we can discard other fortuitous causes that may also explain 
the same pattern (Section 3.2), based on the approaches that we introduced in the previous 
section (Section 2).

3.1. The signatures of adaptation in common bean are widespread throughout the 

genome

SNP markers are good at recovering the well-described Andean and Mesoamerican genepool 
structure and the five within-genepool subpopulations observed in wild common bean [41]. 
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Because of this, in a previous research from us with more than 22,000 SNP markers, QQ-plots 
from the association analyses between those SNP markers and a bioclimatic-based drought 
index [12] indicated that GLM analyses likely had excessive rates of false positives, whereas 

MLM models controlling for population structure and using a kinship matrix reduced more 

effectively the false-positive rate.

In that particular case, the MLM model with the first two PCoA axes scores used as covariates 
was the best at controlling for false positives. This model yielded a total of 115 SNP markers 
associated with the bioclimatic-based drought index at a Bonferroni-corrected significance 
threshold of 7.36 –log10(P-value). These markers explained on average 51.3% ± 0.4 of the vari-
ation in the bioclimatic-based drought index. The 115 SNPs were clustered in 90 different 
regions, defined as overlapping 1000 bp sections that flanked associated markers (Figure 3). 

Associated SNPs and regions were widespread in all 11 common bean chromosomes.

Following the previous example, chromosomes Pv3 and Pv8 had the highest number of 

associated SNPs with 21 and 32 SNPs clustered in 16 and 21 different regions, respectively. 
Chromosomes Pv1, Pv2, Pv4, Pv5, Pv6, and Pv9 contained an intermediate number of associ-
ated SNPs with 11, 6, 11, 7, 12, and 9 SNPs clustered in 11, 6, 8, 6, 8, and 9 different regions, 
respectively. Chromosomes Pv7, Pv10, and Pv11 had the fewest number of associated SNPs 
with 3, 2, and 1 SNPs clustered in 3, 1, and 1 different regions, respectively. Chromosome Pv8 
had more regions with at least two associated SNPs than any other chromosome, and these 
regions had more associated SNPs than in any other chromosome for a total of five regions with 
an average number of associated SNPs of 3.2. The single region that contained more associated 
SNPs was also situated in chromosome Pv8 with six SNPs explaining on average 51.1% ± 0.3 of 
the variation in the bioclimatic-based drought index. After chromosome Pv8, Pv3 was also out-

standing having four regions (with at least two associated SNPs) with an average number of 
associated SNPs of 2.5. Therefore, a total of 75 regions, comprising 99 SNP markers associated 
with the bioclimatic-based drought index, contained at least 1 gene, for a total of 77 genes. Most 

genes were in chromosomes Pv1, Pv3, and Pv8 with 11, 14, and 16 genes. Only two regions, 

at chromosomes Pv1 and Pv8 and containing a total of seven different SNPs, spanned two or 
more genes. The one in Pv8 was the region with more associated SNPs (six in total). One of the 
two genes in this region encoded an Ankyrin repeat-containing protein, which was associated 

with osmotic regulation via the assembly of cation channels in the membranes [45]. Among 

other identified candidate genes, there was a phototropic-responsive NPH3 gene [46] in Pv3.

3.2. Rampant divergent selection: interpreting genomic signatures of adaptation in 

common bean beyond genomic constrains

As a follow-up of the previous example, associated genomic windows were enriched for SNP 
density and positive Tajima’s D scores. This conclusion was achieved after implementing a 
sliding window analysis to explore the patterns of genome-wide diversity (Figure 3). Marker 

density decayed drastically toward the centromeres. This decay in diversity proportional to 

the decay in the rate of recombination was first described in D. melanogaster and has been 

confirmed in many organisms since then. The correlation was initially understood as an effect 
of genetic hitchhiking, but background selection has been increasingly appreciated as a con-

tributing factor [28], perhaps in many cases the dominating one.
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Figure 3. Patterns of genome-wide diversity in common bean accessions based on SNP markers. A sliding window analysis was used to compute (A) SNP density, (B) 

nucleotide diversity as measured by π, (C) Watterson’s theta estimator (θ), and (D) Tajima’s D. Results of all windowed analyses are plotted against window midpoints in 
millions of base pairs (mb). Black and gray colors highlight different common bean (pv) chromosomes. Gray-dashed horizontal lines indicate genome-wide averages. Gray 
vertical boxes indicate the 1000 bp flanking region of each marker that was associated with the bioclimatic-based drought index. Horizontal gray lines with a central filled 
gray dot at the top of the figure mark the centromeres according to Schmutz, McClean [5].
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Average marker density was 44 SNPs per million base pairs (95% CI, 4–143). Average nucleo-

tide diversity as measured by π was 0.3 per million base pairs (95% CI, 0.2–0.4). Average 
Watterson’s theta (θ) was 0.20 per million base pairs (95% CI, 0.19–0.21). Average Tajima’s D 
was 0.68 per million base pairs (95% CI, 0.05–1.22). These very same statistics were compared 
between 1 Mb sliding windows that contained (associated) or did not contain (no associated) 

at least one marker that was associated with the bioclimatic-based drought index. Genomic 

windows containing at least one associated SNP had overall higher SNP density (79 ± 6 vs. 
39 ± 2), lower values for Watterson’s theta (θ) scores (0.2016 ± 0.0001 vs. 0.2026 ± 0001), and 
more positive Tajima’s D scores (0.71 ± 0.02 vs. 0.678 ± 0.009) than windows without associ-
ated markers. Nucleotide diversity, as measured by π, was slightly elevated in associated 
windows when compared with no associated windows (0.322 ± 0.006 vs. 0.317 ± 0.003).

Selective process, such as purifying selection and local adaptation (divergent selection), dif-
ferentially imprints regions within the same genome, causing a heterogeneous departure of 

genetic variation from the neutral expectations and from the background trend [28]. Divergent 

selection tends to homogenize haplotypes within the same niche, fix polymorphisms in dif-
ferent populations, and eliminate low-frequency polymorphism. Consequently, few haplo-

types with high frequency are retained, corresponding to high values of nucleotide diversity 

and Tajima’s D and low scores of the Watterson’s theta (θ) estimator [33]. We have identified 
these signatures in the various genomic regions associated with a bioclimatic-based drought 

index. Therefore, it is unlikely that independent domestication events, extensive population 

structure, and population expansions after bottlenecks are responsible for these patterns 
because the mixed linear model that we used to identify the genome-environment associa-

tions accounted for population structure, while demographic processes would leave genome-

wide signatures in both, associated and no associated windows.

4. Conclusions

Wild accessions and landraces of common bean occupy more geographical regions with 

extreme ecologies [2] and extensive drought stress [12] than cultivated accessions. Those 

regions include the arid areas of Peru, Bolivia and Argentina, and the valleys of northwest 

Mexico. Hence, a broad habitat distribution for wild common bean has exposed these gen-

otypes to both dry and wetter conditions, while cultivated common bean has a narrower 
distribution and is traditionally considered susceptible to drought. These differences in the 
ecologies of wild and cultivated common bean have been associated with higher genetic 

diversity in the former group when surveying candidate genes for drought tolerance such as 

the ASR [47], DREB [48], and ERECTA [49] gene families, once population structure [41] and 

the background distribution of genetic diversity have been accounted for.

Also, as identified through the genome-environment association approach that was illustrated 
in this chapter, there are notorious differences between the adaptations of wild accessions and 
landraces found in arid and more humid environments, in congruence with natural diver-

gent selection acting for thousands of years. Several of these differences might be valuable for 
plant breeding. Therefore, we reinforce, as was envisioned by Acosta and Kelly [50], that wild 
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accessions and landraces of common bean be taken into account to exploit naturally available 

divergent variation for drought tolerance. We envision that this lesson from common bean 

will inspire the exploitation of wild relatives and landraces of other crops to face the threats 

imposed by current climate change.

5. Prospects

This chapter ultimately illustrates that genomic signatures of environmental adaptation (e.g., 

[51]) are useful for germplasm characterization, potentially enhancing future marker-assisted 

selection and crop improvement. We envision that genome-environment association studies 

coupled with estimates of genome-wide diversity will become more common in the oncom-

ing years. These types of studies will likely go beyond estimates of drought tolerance, as 

exemplified here, to also include estimates regarding frost stress (i.e., [52–54]), nutrient limi-

tation [55, 56], as well as other threats imposed by climate change [57, 58] in different types 
of ecosystems (e.g., [59]) and screened by a variety/wide range of genotyping techniques 

[60–63]. Genomic selection models [64] could also incorporate at some point environmental 

variables in order to improve the prediction of phenotypic variation and the estimation of the 

genotype-by-environment interactions [65] in the light of linkage disequilibrium (LD) [66] 

and various stochastic models [67, 68].

Acknowledgements

We are grateful with Daniel G. Debouck and the Genetic Resources Unit at the International 

Center for Tropical Agriculture for donating the seeds and sharing the geographic coordi-
nates of the plant material that was refer to in this study. This research was supported by 

the Lundell and Tullberg grants to AJC. The Geneco mobility fund from Lund University is 
acknowledged for making possible the synergistic meeting between AJC and MWB in the 
spring of 2015 at Nashville, TN.

Author details

Andrés J. Cortés1,2* and Matthew W. Blair3

*Address all correspondence to: acortes@corpoica.org.co

1 Department of Biological and Environmental Sciences, University of Gothenburg, 
Gothenburg, Sweden

2 Colombian Corporation for Agricultural Research (Corpoica), Rionegro, Colombia

3 Department of Agricultural & Environmental Science, Tennessee State University, TN, 
Nashville, USA

Climate Resilient Agriculture - Strategies and Perspectives50



References

[1] Bitocchi E et al. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) 

is revealed by sequence data. Proceedings of the National Academy of Sciences. 
2012;109(14):E788-E796

[2] Rodriguez M et al. Landscape genetics, adaptive diversity and population structure in 

Phaseolus vulgaris. The New Phytologist. 2016;209(4):1781-1794

[3] Gepts P, Debouck D. Origin, domestication and evolution of the common bean (Phaseolus 

vulgaris L.). In: Van Shoonhoven A, Voysest O, editors. Common beans: Research for 
crop improvement. Wallingford: Commonwealth Agricultural Bureau; 1991. pp. 7-53

[4] Kwak M, Gepts P. Structure of genetic diversity in the two major gene pools of 
common bean (Phaseolus vulgaris L., Fabaceae). Theoretical and Applied Genetics. 

2009;118(5):979-992

[5] Schmutz J et al. A reference genome for common bean and genome-wide analysis of dual 
domestications. Nature Genetics. 2014;46(7):707-713

[6] Bitocchi E et al. Molecular analysis of the parallel domestication of the common bean 

(Phaseolus vulgaris) in mesoamerica and the Andes. New Phytologist. 2013;197(1):300-313

[7] Cortés AJ. On the origin of the common bean (Phaseolus Vulgaris L.). American Journal of 

Plant Sciences. 2013;4(10):1998-2000

[8] Asfaw A, Blair MW, Almekinders C. Genetic diversity and population structure of com-

mon bean (Phaseolus vulgaris L.) landraces from the east african highlands. Theoretical 

and Applied Genetics. 2009;120(1-12)

[9] Broughton WJ et al. Beans (phaseolus spp.) - model food legumes. Plant and Soil. 
2003;252(1):55-128

[10] Darkwa K et al. Evaluation of common bean (Phaseolus vulgaris L.) genotypes for drought 

stress adaptation in Ethiopia. The Crop Journal. 2016;4(5):367-376

[11] Tai APK, Martin MV, Heald CL. Threat to future global food security from climate 
change and ozone air pollution. Nature Climate Change. 2014;4:817-821

[12] Cortés AJ et al. Drought tolerance in wild plant populations: The case of common beans 
(Phaseolus Vulgaris L.). PLoS One. 2013;8(5):e62898

[13] Hoffmann AA, Sgro CM. Climate change and evolutionary adaptation. Nature. 2011; 
470(7335):479-485

[14] Stinchcombe JR, Hoekstra HE. Combining population genomics and quantitative genet-
ics: Finding the genes underlying ecologically important traits. Heredity. 2008;100:158-170

[15] Savolainen O, Lascoux M, Merilä J. Ecological genomics of local adaptation. Nature 
Reviews Genetics. 2013;14(11):807-820

Naturally Available Genetic Adaptation in Common Bean and Its Response to Climate Change
http://dx.doi.org/10.5772/intechopen.72380

51



[16] Turner TL et al. Population resequencing reveals local adaptation of Arabidopsis lyrata to 

serpentine soils. Nature Genetics. 2010;42(3):260-263

[17] Hancock AM et al. Adaptation to climate across the Arabidopsis thaliana genome. Science. 
2011;334(6052):83-86

[18] Fischer MC et al. Population genomic footprints of selection and associations with 
climate in natural populations of Arabidopsis halleri from the alps. Molecular Ecology. 

2013;22(22):5594-5607

[19] Pluess AR et al. Genome-environment association study suggests local adaptation to 

climate at the regional scale in Fagus sylvatica. The New Phytologist. 2016;210(2):589-601

[20] Yeaman S et al. Convergent local adaptation to climate in distantly related conifers. 
Science. 2016;353(6306):1431-1433

[21] Yoder JB et al. Genomic signature of adaptation to climate in Medicago truncatula. 

Genetics. 2014;196(4):1263-1275

[22] Lasky JR et al. Genome-environment associations in sorghum landraces predict adap-

tive traits. Science Advances. 2015;1(6)

[23] Berthouly-Salazar C et al. Genome scan reveals selection acting on genes linked to stress 
response in wild pearl millet. Molecular Ecology. 2016;25(21):5500-5512

[24] Nei M. The neutral theory of molecular evolution in the genomic era. Annual Review of 

Genomics and Human Genetics. 2010;11:265-289

[25] Cortés AJ et al. Genome-wide patterns of microhabitat-driven divergence in the alpine 
dwarf shrub Salix herbacea L. In: On The Big Challenges of a Small Shrub: Ecological 
Genetics of Salix herbacea L. Uppsala: Acta Universitatis Upsaliensis; 2015

[26] Ravinet M et al. Interpreting the genomic landscape of speciation: A road map for find-

ing barriers to gene flow. Journal of Evolutionary Biology. 2017;30(8):1450-1477

[27] Strasburg JL et al. What can patterns of differentiation across plant genomes tell us about 
adaptation and speciation? Philosophical Transactions of the Royal Society B: Biological 
Sciences. 2011;367(1587):364-373

[28] Ellegren H, Galtier N. Determinants of genetic diversity. Nature Reviews. Genetics. 

2016;17(7):422-433

[29] Wolf JB, Ellegren H. Making sense of genomic islands of differentiation in light of spe-

ciation. Nature Reviews. Genetics. 2017;18:87-100

[30] Barrett RD, Schluter D. Adaptation from standing genetic variation. Trends in Ecology 
& Evolution. 2008;23(1):38-44

[31] Pritchard JK, Pickrell JK, Coop G. The genetics of human adaptation: Hard sweeps, soft 
sweeps, and polygenic adaptation. Current Biology. 2010;20(4):R208-R215

[32] Hermisson J, Pennings PS. Soft sweeps: Molecular population genetics of adaptation 
from standing genetic variation. Genetics. 2005;169(4):2335-2352

Climate Resilient Agriculture - Strategies and Perspectives52



[33] Wakeley J. Coalescent Theory: An Introduction. Cambridge: Harvard University; 2008. 
p. 41

[34] Nei M. Molecular evolutionary genetics. New York: 1987. p. 50

[35] Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. 

Genetics. 1989;123(3):585-595

[36] Watterson GA. Number of segregating sites in genetic models without recombination. 
Theoretical Population Biology. 1975;7:256-276

[37] Bradbury PJ et al. TASSEL: Software for association mapping of complex traits in diverse 
samples. Bioinformatics. 2007;23(19):2633-2635

[38] Cortés AJ. Environmental Heterogeneity at a Fine Scale: Ecological and Genetic 
Implications in a Changing World. Saarbrücken, Germany: LAP Lambert Academic 
Publishing; 2016. p. 60

[39] Cortés AJ. Local Scale Genetic Diversity and its Role in Coping with Changing Climate. 
In: Bitz L, editor. Genetic Diversity. InTech: Rijeka; 2017 140 pp

[40] Cortés AJ et al. Maintenance of female-bias in a polygenic sex determination system is 
consistent with genomic conflict. In: On The Big Challenges of a Small Shrub: Ecological 
Genetics of Salix herbacea L. Acta Universitatis Upsaliensis: Uppsala; 2015. p. 4

[41] Blair MW, Soler A, Cortés AJ. Diversification and population structure in common beans 
(Phaseolus vulgaris L.). PLoS One. 2012;7(11):e49488

[42] Zhang Z et al. Mixed linear model approach adapted for genome-wide association stud-

ies. Nature Genetics. 2010;42(4):355-360

[43] Beebe S et al. Selection for drought resistance in common bean also improves yield in 
phosphorus limited and favorable environments. Crop Science. 2008;48:582-592

[44] Cortés AJ et al. Small-scale patterns in snowmelt timing affect gene flow and the distribu-

tion of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity. 2014;113:233-239

[45] Voronin DA, Kiseleva EV. Functional role of proteins containing ankyrin repeats. Cell 
and Tissue Biology. 2008;2(1):1-12

[46] Pedmale UV, Liscum E. Regulation of phototropic signaling in arabidopsis via phos-

phorylation state changes in the phototropin 1-interacting protein NPH3. Journal of 

Biological Chemistry. 2007;282:19992-20001

[47] Cortés AJ et al. Molecular ecology and selection in the drought-related asr gene poly-

morphisms in wild and cultivated common bean (Phaseolus Vulgaris L.). BMC Genetics. 
2012;13:58

[48] Cortés AJ et al. Nucleotide diversity patterns at the drought-related DREB2 encod-

ing genes in wild and cultivated common bean (Phaseolus Vulgaris L.). Theoretical and 

Applied Genetics. 2012;125(5):1069-1085

[49] Blair MW, Cortés AJ, This D. Identification of an ERECTA gene and its drought adapta-

tion associations with wild and cultivated common bean. Plant Science. 2016;242:250-259

Naturally Available Genetic Adaptation in Common Bean and Its Response to Climate Change
http://dx.doi.org/10.5772/intechopen.72380

53



[50] Acosta JA, Kelly JD, Gepts P. Prebreeding in common bean and use of genetic diversity 

from wild germplasm. Crop Science. 2007;47(S3):S44-S59

[51] Cortés AJ. On the Big Challenges of a Small Shrub: Ecological Genetics of Salix herbacea L.  

Uppsala: Acta Universitatis Upsaliensis; 2015. p. 14

[52] Wheeler JA et al. The snow and the willows: accelerated spring snowmelt reduces per-

formance in the low-lying alpine shrub Salix herbacea. Journal of Ecology. 2016;104(4): 
1041-1050

[53] Wheeler JA et al. Increased spring freezing vulnerability for alpine shrubs under early 

snowmelt. Oecologia. 2014;175(1):219-229

[54] Wheeler JA et al. With a little help from my friends: Community facilitation increases per-

formance in the dwarf shrub Salix herbacea. Basic and Applied Ecology. 2015;16:202-209

[55] Little CJ et al. Small-scale drivers: The importance of nutrient availability and snowmelt 
timing on performance of the alpine shrub Salix herbacea. Oecologia. 2016;180(4):1015-1024

[56] Sedlacek J et al. What role do plant-soil interactions play in the habitat suitability and 
potential range expansion of the alpine dwarf shrub Salix herbacea? Basic and Applied 

Ecology. 2014;15(4):305-315

[57] Sedlacek J et al. Evolutionary potential in the alpine: Trait heritabilities and performance 
variation of the dwarf willow Salix herbacea from different elevations and microhabitats. 
Ecology and Evolution. 2016;6(12):3940-3952

[58] Sedlacek J et al. The response of the alpine dwarf shrub Salix herbacea to altered snowmelt 

timing: Lessons from a multi-site transplant experiment. PLoS One. 2015;10(4):e0122395

[59] Madriñán S, Cortés AJ, Richardson JE. Páramo is the world’s fastest evolving and coolest 
biodiversity hotspot. Frontiers in Genetics. 2013;4(192)

[60] Blair MW et al. A high-throughput SNP marker system for parental polymorphism 
screening, and diversity analysis in common bean (Phaseolus Vulgaris L.). Theoretical 

and Applied Genetics. 2013;126(2):535-548

[61] Kelleher CT et al. SNP discovery, gene diversity, and linkage disequilibrium in wild 
populations of Populus tremuloides. Tree Genetics & Genomes. 2012;8(4):821-829

[62] Galeano CH et al. Gene-based single nucleotide polymorphism markers for genetic and 
association mapping in common bean. BMC Genetics. 2012;13(1):48

[63] Cortés AJ, Chavarro MC, Blair MW. SNP marker diversity in common bean (Phaseolus 

Vulgaris L.). Theoretical and Applied Genetics. 2011;123(5):827-845

[64] Desta ZA, Ortiz R. Genomic selection: Genome-wide prediction in plant improvement. 
Trends in Plant Science. 2014;19(9):592-601

Climate Resilient Agriculture - Strategies and Perspectives54



[65] Cortés AJ, Blair MW. Genotyping by sequencing and genome – Environment asso-

ciations in wild common bean predict widespread divergent adaptation to drought. 

Frontiers in Plant Science. 2018;9(128)

[66] Blair MW, Cortés AJ, Farmer A, Assefa T, Penmetsa RV, Cook D, et al. Uneven recombi-
nation rate and linkage disequilibrium across a reference SNP map for common bean. 
PLOS ONE. 2018; DOI: pone.0189597

[67] Cortés AJ. Prevalence in MSM is enhanced by role versatility. In: Mazari A, editor. Big 
Data Analytics in HIV/AIDS Research. Hershey: IGI Global; 2018

[68] Cortés AJ. On how role versatility boosts an STI. Journal of Theoretical Biology. 2017;440: 
66-69

Naturally Available Genetic Adaptation in Common Bean and Its Response to Climate Change
http://dx.doi.org/10.5772/intechopen.72380

55




