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Abstract

Air gap breakdown voltage prediction by mathematical calculations instead of experi-
ments has been a long sought goal in the area of high-voltage engineering. In this
chapter, a prediction method is proposed based on the electric field features and support
vector machine (SVM). Two sets of electric field features are defined on the shortest
interelectrode path of sphere-sphere and rod (sphere)-plane gap to characterize their
spatial structures, which can be extracted from the electric field calculation results by
finite element method (FEM). A breakdown voltage prediction model is established by
SVM, while the input parameters are the electric field features, and the output parame-
ters are �1 and 1, respectively, characterizing withstanding and breakdown of an air
gap under the applied voltage. The proposed method is used to predict the power freq-
uency breakdown voltages of IEC standard sphere-sphere air gaps and the switching
impulse discharge voltages of large sphere-plane air gaps. The prediction results coincide
well with the experimental data, the mean absolute percentage error of the 260 sphere-
sphere gaps is within 2% and that of the 16 sphere-plane gaps is 3.2%. The results
preliminarily validate the validity and accuracy of the proposed method for air gap
breakdown voltage prediction.

Keywords: electric field features, air gap discharge, breakdown voltage prediction,
support vector machine (SVM), sphere-sphere gap, sphere-plane gap

1. Introduction

With the rapid development of numerical computation methods and calculation capability of

computers, the multi-physics coupling analysis has been widely applied in structure design

and condition assessment of electrical equipment [1–4]. The distributions of electric, magnetic,

stress, and thermal field can be calculated by commercial software, and multi-physics prob-

lems in complex structures can be simulated using powerful numerical techniques, so as to

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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guide the optimal design of machines and devices. However, up to now, the insulation design

of high-voltage equipment still depends on experimental verification.

The electric field distributions of complex geometries can be simulated very well, that is

because electric field can be defined according to Gauss’s law and Maxwell’s relation, with

clear constitutive relation and governing equations [5, 6]. Several numerical methods were

developed for electric field calculation, such as finite element method (FEM), finite volume

method (FVM), boundary element method (BEM), and those combining the advantages of

different methods, like the control volume-based finite element method (CVFEM) [7–9]. How-

ever, even though the electric field distribution can be calculated accurately, the insulation

strengths of dielectrics cannot be calculated or predicted, that is because there are no

governing equations to describe the discharge process. Hence, the insulation calculation or

prediction can be viewed as the short board for virtual design and manufacturing of high-

voltage electrical equipment.

The dielectrics used in electric power system include air, sulfur hexafluoride, transformer oil,

electroceramics, and silicone rubber, etc. while the most commonly used is the air. Even

though air discharge phenomena have been extensively studied for more than 100 years, both

experimentally and theoretically, the air discharge theory is still imperfect, and therefore the air

gap breakdown voltage prediction is still a great challenge and one of the most important

issues to be solved for external insulation design of power transmission and transformation

projects. The Townsend discharge theory [10], streamer discharge theory [11, 12], and leader

discharge theory [13–16] lay the foundation for the analysis and interpretation of air discharge

phenomena. These classical theories were summarized from experimental measurements and

observations, and they can be used to describe air discharge process. However, due to the

complexity and randomness of air discharge process, it is difficult to realize air gap discharge

voltage calculation with different gap configurations or under different voltage waveshapes

and atmospheric environment.

Currently, discharge tests are still the main method to obtain air gap breakdown voltages.

Various empirical [17, 18] and semiempirical [19, 20] formulas have been summarized for

applications. However, the experimental studies cannot exhaustively reproduce all the gap

configurations in actual engineering [21]. The discharge tests are usually conducted on air gaps

with typical electrodes, like the rod-plane gaps, to obtain the basic characteristics of long air

gap discharge, and the fitting formulas obtained by the experimental results are used to

predict the breakdown voltages of engineering gaps, such as the conductor-tower window

gaps, by taking the gap factor into consideration. However, the gap factors of different gap

configurations should be determined by time-consuming and costly full-scale tests. When

generalized to other gap structures, the fitting results are with certain deviations.

In order to find an alternative to replace the discharge tests, many scholars are devoted to the

studies of air discharge mechanisms and try to achieve air gap breakdown voltage prediction

by theoretical calculation. Based on air discharge theories and some simplifications and

assumptions, numerous physical models have been proposed to simulate the entire duration

of the discharge, including the first corona inception, streamer propagation, leader inception

and propagation, and final jump [22–30]. However, long air gap discharge researches are faced
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with some challenges, mainly including the inherent complexity of the discharge process and

the scientific modeling, the limitations of observation and measurement of various physical

quantities involved in the discharge process, and the uncertainty of the solutions obtained by

these semiempirical models [31]. Hence, there are obvious errors between the computed

results of these models and the experimental measurement results. At present, the research

hotspot is still concentrated on further revealing the physical mechanisms of the complex

discharge process, so as to establish more scientific simulation models, but the realization of

discharge prediction still needs long-term studies.

The idea of predicting air gap breakdown voltage by some artificial intelligence algorithms has

attracted interests of researchers for many years, but there are only a very few related studies

and applications. The artificial neural network (ANN) [32, 33], fuzzy logic system [34, 35], and

support vector machine (SVM) [36, 37] have been applied to predict the discharge voltages of

air insulation gaps. In [36, 37], a method based on electric field features and SVM was pro-

posed for discharge voltage prediction of air gaps, and it has been successfully applied to

predict the breakdown voltages of air gaps with typical and atypical electrodes [38–40] and the

corona onset voltages of rod-plane gaps, conductors, and valve hall fittings [41, 42]. Some

features were extracted from the calculation results of the electric field distribution of an air

gap to characterize its spatial structure, and the SVM was applied to establish the multi-

dimensional nonlinear relationships between these features and the air gap discharge voltage.

This method offers a possible way to achieve breakdown voltage calculation of air gaps, so as

to guide the external insulation design of high-voltage electrical equipment.

Under a given applied voltage waveform and specific atmospheric environment, air gap

breakdown voltage is determined by its structure, which can be characterized by the electro-

static field distribution. In previous studies, the electric field features were defined in the

hypothetic discharge channel between two electrodes, on the surface of typical high-voltage

electrode and on the shortest interelectrode discharge path, which contains different regions

classified from the perspectives of volume, area, and line. However, the discharge channel and

the electrode surface are difficult to be defined for air gaps with complicated configurations.

Only the shortest interelectrode path can be defined for two-electrode air gaps with arbitrary

structures. It is known that there is a one-to-one correspondence between the gap structure

and the electric field distribution. If the distribution characteristics of a three-dimensional

spatial electric field can be mapped to those along a one-dimensional path, it is possible to

define some effective features on this path to characterize the gap structure and establish their

relationships with the air gap breakdown voltage by SVM, so as to be applied for breakdown

voltage prediction of air gaps with arbitrary structures.

In this chapter, the above ideas are achieved preliminarily. Two sets of electric field features are

defined on the shortest path of sphere-sphere gaps and rod (sphere)-plane gaps, respectively,

with the U-shaped curve and monotonously decreased curve of the electric field distribution

along the shortest path. A prediction model is established by SVM, and the electric field features

on the shortest path are taken as the input parameters, while the output parameters are �1 and

1, respectively, characterizing whether a gap will withstand or breakdown under a given

applied voltage. This model is applied to predict the breakdown voltages of sphere-sphere air

Electric Field Features and Its Application for Air Gap Breakdown Voltage Prediction
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gaps and large sphere-plane air gaps, and the predicted results are compared with the experi-

mental data given in IEC 60052 and other references to verify its validity and accuracy.

2. Electric field features

2.1. Electric field distributions along the shortest path

The sphere-sphere air gaps given in IEC 60052 [43] (or IEEE Std 4 [44]) and the large sphere-

plane air gaps given in [45, 46] are taken as the samples for breakdown voltage prediction

studies in this chapter. The schematic diagrams of the sphere-sphere and the sphere-plane gaps

are shown in Figure 1, where d is the gap distance. For sphere-sphere gaps, the sphere

diameter D ranges from 5 to 200 cm, and the experimental breakdown voltages of these gaps

are given in [43, 44], with different sphere diameters and gap distances. For the large sphere-

plane air gap, it is composed of the sphere electrode with a mounting rod tube and the

grounded plane electrode. The experimental 50% discharge voltages of these gaps, with the

sphere diameter ranging from 25 to 95 cm and the gap distance ranging from 2 to 5 m, are

given in [45], under the standard switching impulse voltage.

Since the sphere-sphere and the sphere-plane air gaps are with axisymmetric structures, the

two-dimensional axisymmetric models are established by ANSYS, a finite element analysis

software, to calculate their electric field distributions. The high-voltage sphere electrodes are

applied unit voltage 1 V, and the grounded sphere electrode or the grounded plane electrode is

applied zero potential. Taking a sphere-sphere gap with D = 10 cm and d = 3 cm and a sphere-

plane gap with D = 45 cm and d = 3 m as examples, the cloud charts of their electric field

distributions are shown in Figure 2. It can be seen that the maximum electric field strength

appears at the bottom of the high-voltage sphere electrode, both for the short sphere-sphere

gap and the long sphere-plane gap.

Taking the 3 cm short sphere-sphere gaps and the 3 m long sphere-plane gaps with different

sphere diameters as examples, their electric field distributions along the shortest path are

Figure 1. Schematic diagrams of sphere-sphere and large sphere-plane air gaps.
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shown in Figure 3. For sphere-sphere gaps, the electric field distribution along the shortest path

is a U-shaped curve, while the field strengths near two sphere electrodes are higher than those

in the middle of the path. For sphere-plane gaps, the electric field distribution along the shortest

path is a monotonously decreased curve, while the field strength gradually decreases along the

path from the sphere electrode to the plane electrode. The field strength reduces quickly within

1 m from the sphere electrode, while on the path from position of 1 m to the plane electrode, the

field strength changes a little. In addition, the maximum field strength decreases with the

increase of the sphere diameter, both for sphere-sphere and sphere-plane gaps.

Figure 2. Electric field distribution cloud charts of sphere-sphere and sphere-plane gaps.

Figure 3. Electric field distributions along the shortest path of the short sphere-sphere gaps and long sphere-plane gaps.
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2.2. Definitions of electric field features

According to the electric field distribution characteristics of sphere-sphere gap and sphere-

plane gaps, two sets of electric field features are, respectively, defined for these two different

gap types. These features mainly include the electric field strength, electric field gradient,

square of electric field strength, electric field integral (electric potential), path length, and some

scaling parameters related to the above quantities used to characterize the electric field inho-

mogeneity.

2.2.1. Sphere-sphere air gap

Some equally spaced sampling points are selected along the shortest path, and the values of

their electric field strength are extracted to calculate the features. The electric field features for

sphere-sphere air gap are defined as follows:

(1) Electric field strength, including the maximum values (Ehmax and Elmax), respectively, on the

surface of the high-voltage and grounded sphere electrode; the minimum value Emin and the

average value Ea; and the variance and standard deviation of the electric field strength along

the shortest path (Estd2 and Estd):

Ehmax ¼ maxEi i ¼ 1; 2;⋯;mð Þ (1)

Elmax ¼ maxEi i ¼ mþ 1;mþ 2;⋯; nð Þ (2)

Emin ¼ minEi i ¼ 1; 2;⋯; nð Þ (3)

Ea ¼
X

n

i¼1

Ei=n (4)

Estd2 ¼
1

n

X

n

i¼1

Ei � Eað Þ2 ¼
1

n

X

n

i¼1

E2
i � E2

a (5)

Estd ¼
ffiffiffiffiffiffiffiffiffiffi

Estd2

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

E2
i � E2

a

s

(6)

where n is the number of the sampling points along the shortest path, Ei is the electric field

strength of the ith point, and m is the point number whose electric field strength is the

minimum value.

(2) Electric field gradient, including the maximum gradient Eghm on the path from the point of

Ehmax to that of Emin, the maximum gradient Eglm on the path from the point of Emin to that of

Elmax, and the average gradient Ega on the whole shortest path:

Eghm ¼ max �gradEij jð Þ i ¼ 1; 2;⋯;mð Þ (7)

Eglm ¼ max �gradEij jð Þ i ¼ m;mþ 1;⋯; nð Þ (8)
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Ega ¼
Xn
i¼1

�gradEij jð Þ=n (9)

where | | is the absolute value sign.

(3) Square of electric field strength (W and Wa), respectively, means the integral of the field

strength square on the shortest path and its expected value:

W ¼

ðd
0

E2dl ≈
Xn
i¼1

E2
i di (10)

Wa ¼
W

d
≈
1

n

Xn
i¼1

E2
i (11)

where d is the gap distance and di is the length of each segment between two sampling points

on the shortest path, di = d/(n-1).

(4) Electric field integral, that is, electric potential, including the field integral Vx on the path

whose field strength exceeds Ex = x%Ehmax, the potential Vh between the high-voltage sphere

electrode and the point of Emin, and the potential Vl between the point of Emin and the

grounded sphere electrode:

Vx ¼

ð

Ei ≥Ex

Eidl ≈
X
Ei ≥Ex

Eidi (12)

Vh ¼

ð

Emin ≤Ei ≤Ehmax

Eidl ≈
X

Emin ≤Ei ≤Ehmax

Eidi (13)

V l ¼

ð

Emin ≤Ei ≤Elmax

Eidl ≈
X

Emin ≤Ei ≤Elmax

Eidi (14)

(5) Path length Lx, including the length LEx of the path whose electric field strength exceeds

Ex = x%Ehmax, the length Lgx of the path whose electric field gradient exceeds Egx = x%Eghm, the

length LWx of the path where the sum of the electric field strength square equals to Wx = x%W,

and the distance Lmin from the high-voltage sphere electrode to the point of Emin:

Lx ¼
Xp
i¼1

di (15)

where p is the number of the points on the shortest path which meet the related conditions

about the electric field strength, gradient, and square and di is the length of each segment.

(6) Electric field inhomogeneity, characterized by some scaling parameters related to the above

five kinds of features. For electric field strength, these parameters include the field distortion

factor Ed; the ratio of Elmax to Ehmax, namely, Erlh; and the ratio of Emin to Ehmax, namely, Erm:
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Ed ¼ Ehmax=Ea (16)

Erlh ¼ Elmax=Ehmax (17)

Erm ¼ Emin=Ehmax (18)

For electric field square, the scaling parameter is a ratio Wrx of the sum of the electric field

strength square on the path where Ei ≥ Ex = x%Ehmax to W:

W rx ¼

P
Ei ≥Ex

E2
i di

W
, Ex ¼ x%Ehmax (19)

For electric field integral, the scaling parameters are the ratios of Vx, Vh, and Vl to the applied

voltage U, namely, Vrx, Vrh, and Vrl:

Vrx ¼ Vx=U (20)

Vrh ¼ Vh=U (21)

Vrl ¼ V l=U (22)

For path length, the scaling parameters are the ratios of LEx, Lgx, LWx, and Lmin to the gap

distance d, namely, LrEx, Lrgx, LrWx, and Lrmin. They all have the following expression:

Lrx ¼ Lx=d (23)

The x% is set as 90 and 75%; therefore, the electric field features are summarized in Table 1.

There are altogether 38 features for sphere-sphere air gap.

2.2.2. Sphere-plane air gap

For sphere-plane air gap with a monotonously decreased curve of the electric field distribution

along the shortest path, the electric field features are defined as follows:

Category Features Number

Electric field strength Ehmax, Elmax, Emin, Ea, Estd2, Estd 6

Electric field gradient Eghm, Eglm, Ega 3

Square of electric field

strength

W, Wa 2

Electric field integral V90, V75, Vh, Vl 4

Path length LE90, LE75; Lg90, Lg75; LW90, LW75; Lmin 7

Electric field inhomogeneity Ed, Erlh, Erm; Wr90, Wr75; Vr90, Vr75, Vrh, Vrl; LrE90, LrE75, Lrg90, Lrg75, LrW90,

LrW75, Lrmin

16

Table 1. Electric field features for sphere-sphere air gap.
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1. The maximum, the minimum, and the average value of the electric field strength (Emax,

Emin, and Ea) and the variance and standard deviation of the electric field distribution

along the shortest path (Estd2 and Estd). Their calculation formulas are similar to or the

same with Eqs. (1)–(6).

2. The maximum and the average value of the electric field gradient (Egm and Ega), whose

calculation formulas are similar to or the same with Eqs. (7)–(9).

3. The square of electric field strength (W and Wa), which can be calculated, respectively, by

Eqs. (10) and (11).

4. The electric field integral of the path on which the field strength exceeds x%Emax (Vx) and

its ratio to the applied voltage U (Vrx). Vx and Vrx can be calculated, respectively, by

Eqs. (12) and (20).

5. The length of the path on which the electric field strength exceeds x%Emax (Lx) and the

ratio of Lx to the gap length d (Lrx). Lx and Lrx can be calculated, respectively, by Eqs. (15)

and (23).

For long sphere-plane air gaps, x% includes 90, 75, 50, and 25%. Hence, there are altogether 25

features extracted from the shortest path used to characterize the electric field distribution of

the sphere-plane air gap.

3. Breakdown voltage prediction method

3.1. Basic ideas

The proposed method for air gap breakdown voltage prediction is based on electric field

features and SVM. A support vector classifier (SVC) is used to establish the prediction model.

The withstanding and breakdown of an air gap under a given voltage are, respectively,

denoted as �1 and 1. The input data of the prediction model are the abovementioned electric

field features extracted from the electric field calculation results under different applied volt-

ages, and the outputs are �1 and 1, respectively, means whether the gap will withstand or

breakdown under the applied voltage, so as to transform the breakdown voltage prediction

from a regression problem to a binary classification problem.

To be specific, if the critical breakdown voltage is Ub, the interval [(1�a)Ub, Ub] is defined as

withstand voltage interval, and [Ub, (1 + a)Ub] is defined as breakdown voltage interval.

The value of a is determined by experience, which is set as 0.1 in this chapter. Set the step

size as 0.01Ub, and then the applied voltage values are 0.9Ub, 0.91Ub, …, Ub, 1.01Ub, …,

1.1Ub. The SVM model should be trained by some training samples to make it have the

learning ability for accurate classification. By this binary classification method, one training

sample can be extended to 21 samples to train the SVM model. For test samples, if the

model outputs �1 to 1 under the applied voltage from Ub0-dU to Ub0, then Ub0 is the

predicted breakdown voltage.

Electric Field Features and Its Application for Air Gap Breakdown Voltage Prediction
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3.2. Brief introduction of SVM

SVM is a machine learning algorithm developed on the basis of VC dimension in statistical

learning theory and the principle of structural risk minimization [47]. The fundamentals of

SVM were detailed and introduced in [47, 48]. Here, a brief introduction is provided.

Set a known training sample as T = {(xi, yi)}, in which xi ∈ Rk, yi ∈ {�1, 1}, i = 1, 2, …, n. The

implementation of SVM is to solve an optimization problem based on the maximum margin

principle, which finds an optimal separating hyperplane to divide the sample data into two

diverse classes. By application of the kernel trick, SVM transforms the original sample data

into a high-dimensional Hilbert space H using nonlinear mapping. The training sample data

are transformed to TΦ = {(Φ(xi), yi)}, where Φ(xi) ∈ H, yi ∈ {�1, 1}, i = 1, 2,…, n. In this feature

space, the sample data can be linearly separated, and the decision function can be expressed as.

f xð Þ ¼ sgn wT � ϕ xið Þ þ b
� �

(24)

wherew and b are, respectively, the weight vector and bias term of the separating hyperplane (w ∈

Rk) and b is a real number. The symbol “sgn” is the signum function. When wT
∙xi + b>0, the output

is 1, while wT
∙xi + b<0, the output is�1. Meanwhile, wT

∙xi + b = 0 is the classification hyperplane.

The optimization problem can be expressed as

min
w, b, ξ

1

2
wk k2 þ C

X

n

i¼1

ξi

s:t: yi w � ϕ xið Þ þ b
� �

≥ 1� ξi, ξi ≥ 0, i ¼ 1, 2,⋯, n

8

>

<

>

:

(25)

where ξi is the slack variable and C is the penalty factor, which determines the balance between

the maximization of the margin and the minimization of the classification error [48].

In order to make the solution of the primal problem more simple and practicable, the Lagrange

function is introduced:

L w; b; ξ;α; β
� �

¼
1

2
wk k2 þ C

X

n

i¼1

ξi �
X

n

i¼1

αi yi w � xið Þ þ b½ � � 1þ ξi
� �

�
X

n

i¼1

βiξi (26)

where α = (α1, …, αn)
T and β = (β1, …, βn)

T are the Lagrange multiplier vectors. By solving the

partial derivatives of Eq. (26) for w, b, and ξi, according to the extremum conditions, the primal

optimization problem (25) can be transformed to the following dual problems:

max
α, β

�
1

2

X

n

i¼1

X

n

j¼1

αiαjyiyj xi � xj
� �

þ
X

n

j¼1

αj

s:t:
X

n

i¼1

αiyi ¼ 0

C� αi � βi ¼ 0, i ¼ 1, 2,⋯, l

αi ≥ 0, βi ≥ 0, i ¼ 1, 2,⋯, l

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(27)
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By solving Eq. (27), the decision function can be obtained.

It can be seen that the function of transformation Φ is realized by inner product (Φ(xi)�Φ(xj)).

The kernel function can be expressed as

K xi; xj
� �

¼ ϕ xið Þ � ϕ xj
� �� �

(28)

Hence, if the function K is selected, it is not necessary to choose the transformation Φ. K(xi, xj)

is used in training and classification instead ofΦ(x). The generalization performance of SVM is

determined by properly selecting kernel functions. In this chapter, the radial basis function

(RBF) kernel is selected as the kernel function of SVM for its good generalization performance

and high computational efficiency:

K xi; xj
� �

¼ exp �γ xi � xj
�

�

�

�

2
� 	

, γ > 0 (29)

where γ is the kernel parameter.

The penalty factor C and the kernel parameter γ determine the classification performance of

SVM. They can be optimized by grid search (GS) method or genetic algorithm (GA) based on

K-fold cross validation or leave-one-out (LOO) cross validation, so as to obtain the optimal

predictive model [36–39].

3.3. Implementation procedures of the prediction method

The flow chart of the prediction method is shown in Figure 4. The implementation procedures

are depicted as follows.

Firstly, the training samples with known gap structures and experimental data of breakdown

voltage are used to train the SVMmodel. The electric field features of each training sample are

extracted from the FEM calculation results of the electric field distribution. These features are

normalized to [0, 1] by

xi ¼
xi � xmin

xmax � xmin
(30)

where xi is a feature, xi is its normalized value, and xmin and xmax are, respectively, the

minimum and maximum values of xi. After normalization, the electric field features are taken

as the input data to train the SVM model, while the outputs are �1 and 1, respectively,

correspond to the applied voltage in the withstand interval and the breakdown interval. Based

on cross validation, the optimal penalty factor C and kernel parameter γ are searched by GS

method or GA to obtain an optimal prediction model. Trained by the known experimental

data, SVM establishes the multidimensional nonlinear relationships between the electric field

features and the air gap breakdown voltage.

Then, the optimal SVM model is used to predict the breakdown voltages of test samples. For

an air gap, an estimated breakdown voltage is set in the range [Umin, Umax]; the golden section

search method is applied for the breakdown voltage prediction [49]. For each applied voltage,
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the electric field features are extracted and input to the prediction model to judge whether the

output is �1 or 1. For example, the first applied voltage is Ut1 = Umax�0.618 � (Umax�Umin),

and then the electric field features of this air gap are calculated underUt1 and input to the SVM

model. According to the output of the model, namely, 1 or �1, the search interval will be

narrowed to [Umin, Ut1] to generate another applied voltage value, or otherwise, Ut2 =

Umin + 0.618 � (Umax�Umin) is applied to calculate the electric field features which will be

input to the SVM model to judge whether the output is �1 or 1. So repeatedly, the search

interval is narrowed constantly, and the iterative predictions are conducted until the convergence

condition Umax�Umin < ε is satisfied, where ε is the convergence precision. The breakdown

voltage prediction result is the average value of the last two applied voltages.

4. Breakdown voltage prediction of air gaps

The proposed method is applied to predict the power frequency breakdown voltages of

sphere-sphere air gaps and the switching impulse discharge voltages of sphere-plane air gaps.

The predicted results are compared with the experimental data given in references.

Figure 4. Flowchart of the prediction method.
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4.1. Power frequency breakdown voltage prediction of sphere-sphere air gaps

4.1.1. Training and test samples

The sample data of sphere-sphere air gaps are selected from IEC 60052 [43] and IEEE Std 4 [44].

The values of sphere diameter D are 5, 6.25, 10, 12.5, 15, 25, 50, 75, 100, 150, and 200 cm. The

shortest gap distance is 1 cm, for those with D ranging from 5 to 25 cm, and the longest gap

distance is 100 cm for that of D = 200 cm. There are altogether 271 sample data with different

sphere diameters and different gap distances.

The proper selection of training samples is of vital importance for the generalization perfor-

mance of the SVMmodel. Here, the training samples are selected according to the electric field

nonuniform coefficient f, that is, the ratio of the maximum field strength Emax to the average

field strength Ea = U/d, where U is the applied voltage. The maximum field strength of each

sphere-sphere gap can be calculated by FEM, and therefore the electric field nonuniform

coefficient f can be obtained.

According to the calculation results, all of these samples are slightly nonuniform electric field,

and the values of f range from 1.00 to 1.55. Taking 0.05 as the step size, the values of f can be

divided into 11 intervals. The samples belong to each f interval are collected together, and the

sample sizes corresponding to each f interval are summarized in Table 2. According to the

electric field nonuniform coefficient f, the 271 samples are divided into 11 groups. The training

sample set is constituted by random selection of one sample from each group. Hence, there are

11 training samples, and the other 260 samples are taken as the test samples to verify the

validity of the prediction method. Since the training sample selection is conducted by com-

puter program which has a certain randomness, three different selection results are succes-

sively taken as the training sample set to train the SVM model, and the three times of

prediction results are compared to validate the accuracy. The three groups of training samples

are shown in Table 3.

f interval Sample size

1.00–1.05 58

1.05–1.10 57

1.10–1.15 41

1.15–1.20 23

1.20–1.25 19

1.25–1.30 18

1.30–1.35 15

1.35–1.40 13

1.40–1.45 9

1.45–1.50 7

1.50–1.55 11

Table 2. Sample size of each f interval.
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4.1.2. Prediction results and analysis

Based on fivefold cross validation, the grid search method is applied to determine the optimal

parameters of the SVM model. The search ranges of the penalty factor C and the kernel

parameter γ are, respectively, set as [23, 29] and [2�8, 2�2], and the step sizes are both 20.1.

Taking the training sample set 1, for example, the parameter optimization results of C and γ by

GS method are shown in Figure 5. It can be seen that the best C = 90.5097, γ = 0.0167, under

which the SVM model, has the highest classification accuracy for the training samples, that is,

98.2684%. The GS-optimized SVM models under the three groups of training sample set

shown in Table 3 are used for breakdown voltage prediction of the 260 test samples.

For each test sample, the breakdown voltage is predicted by the golden section search method,

and the prediction results are compared with the experimental data given in [43, 44]. In order

to evaluate the prediction accuracy of the proposed method and the SVM model, three error

indices, including the root-mean-square error (RMSE), the mean absolute percentage error

(MAPE), and the mean square percentage error (MSPE), are used to examine the errors of the

prediction results, which can be calculated by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

Ut ið Þ �Up ið Þ

 �2

s

(31)

MAPE ¼
1

n

X

n

i¼1

Ut ið Þ �Up ið Þ

Ut ið Þ

�

�

�

�

�

�

�
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MSPE ¼
1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

Ut ið Þ �Up ið Þ

Ut ið Þ


 �2
v

u

u

t (33)

Training sample set 1 Training sample set 2 Training sample set 3

D (cm) d (cm) D (cm) d (cm) D (cm) d (cm)

5 1.4 5 2.2 5 1.6

5 2.2 6.25 3.0 10 2.0

10 4.5 12.5 1.4 15 7.0

15 6.0 12.5 2.8 25 10

25 5.5 12.5 5.0 25 12

25 8.0 25 1.5 50 13

50 8.0 50 17 100 24

50 17 75 19 100 36

75 5.5 150 45 150 7.5

75 10 200 38 150 20

200 100 200 90 150 65

Table 3. Three groups of training sample set.
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where n is the number of the test samples and Ut(i) and Up(i) are, respectively, the experimen-

tal and predicted breakdown voltages of the ith test sample.

The optimal parameters and the error indices of the three times of prediction results are

summarized in Table 4. It can be seen that the prediction results are with high accuracy, while

the MAPEs of the three times of prediction are, respectively, 1.88, 2, and 1.4%. Taking the

prediction results by training sample set 2, for example, the comparisons between the

predicted and experimental breakdown voltages of sphere-sphere air gaps with different

diameters are shown in Figure 6, where U is the breakdown voltage, D is the sphere diameter,

d is the gap distance, and T-value and P-value, respectively, mean the test value and the

prediction value of the breakdown voltage. For better comparisons, the prediction results of

training samples are also plotted in Figure 6.

It can be seen from Figure 6 that the predicted results coincide well with the experimental data,

the trends of the breakdown voltages with the gap distance are the same, and the errors are

within an acceptable range. The results shown in Table 4 and Figure 6 validate the feasibility

and accuracy of the proposed method for sphere-sphere air gap breakdown voltage prediction.

4.2. Switching impulse breakdown voltage prediction of sphere-plane air gaps

4.2.1. Training and test samples

The sample data of sphere-plane air gaps are selected from [45, 46]. The positive switching

impulse discharge tests of sphere-plane air gaps with the sphere diameter of 25, 45, 75, and

95 cm were conducted in [45]. The applied voltage waveform is the standard 250/2500 μs

switching impulse voltage. The experimental data were corrected to standard atmospheric

condition. In order to make the SVM model generalize to sphere-plane gaps with different

sphere diameters and gap lengths, seven test data shown in Table 5 are selected as the training

samples, where D is the sphere diameter ranging from 25 to 95 cm, d is the gap length ranging

from 2 to 5 m, and U50 is the 50% discharge voltage.

Figure 5. Parameter optimization results of C and γ by GS method.
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The SVM model trained by the seven sample data is applied to predict the 50% discharge

voltages of sphere-plane gaps with larger diameters, namely, 110, 150, and 200 cm. There are

altogether 16 test samples. The predicted results will be compared with the experimental data

cited from [46], as shown in Table 5. These experimental data also had been corrected to

standard atmospheric condition.

4.2.2. Prediction results and analysis

Based on LOO cross validation, the penalty factor C and the kernel parameter γ are optimized

by the GA method. The population quantity is set as 20, the maximum generation is 200, and

the crossover probability is 0.9. The search scopes of C and γ are, respectively, set as [10, 500]

and [0.005, 0.25]. The fitness function is the classification accuracy of SVM for training samples.

The parameter optimization results of C and γ by GA method are shown in Figure 7. It can be

seen that the best C = 85.3407, γ = 0.0926, under which the SVM model has the highest

classification accuracy for the training samples, that is, 97.2789%.

Figure 6. Comparisons between the predicted and experimental breakdown voltages of sphere-sphere air gaps (predic-

tion results by training sample set 2).

Results Training sample set 1 Training sample set 2 Training sample set 3

C 90.5097 78.7932 13.9288

γ 0.0167 0.0313 0.0625

RMSE 16.668 8.048 9.143

MAPE 0.0188 0.0200 0.0140

MSPE 0.0015 0.0140 0.0012

Table 4. Optimal parameters and error indices of the sphere-sphere air gap breakdown voltage prediction results.
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The GA-optimized SVM model is used to predict the U50 of large sphere-plane air gaps by the

golden section search method. The initial applied voltage interval [Umin, Umax] is set as 0–

4000 kV, and the convergence precision ε is set as 1 kV. The prediction results are summarized

in Table 6, where U50 is the experimental data extracted from [46], Up is the predicted

discharge voltage, and δ is the relative error.

It can be seen from Table 6 that the largest error of the prediction results is 9.7%, for the gap

with D = 110 cm and d = 3.9 m. This is probably due to different experimental arrangements

between [45, 46]. The U50 of sphere-plane gaps with D = 110 cm and d = 4 m in [46] is even

lower than that with D = 95 cm and d = 4 m in [45]. The SVM model is trained by the

experimental data cited from [45], and therefore the prediction results of sphere-plane gaps

with D = 110 cm may be larger than the experimental data obtained in [46]. Overall, the

prediction errors are acceptable in the view of engineering applications, while the MAPE of

the 16 test samples is only 3.2%.

The U50 prediction results and the experimental data are summarized in the same graph for a

better comparison, as shown in Figure 8. It can be seen that the predicted values of the

discharge voltage agree well with the experimental data, with similar trends and acceptable

errors. The results verify the validity and accuracy of the proposed model for discharge voltage

prediction of sphere-plane air gaps, with large sphere diameter and long gap length. Within

the range of certain precision, the prediction method can be used to replace the experiments, so

as to reduce the testing expenses.

Training sample set

D (cm) d (m) U50 (kV) D (cm) d (m) U50 (kV)

45 2 864 25 3 1020

3 1045 75 1222

4 1186 95 1504

5 1303 — — —

Experimental data of test samples

D (cm) d (m) U50 (kV) D (cm) d (m) U50 (kV)

110 3.9 1461 150 8.5 2408

4.5 1527 10 2497

5.7 1675 200 3 2290

6.5 1796 4 2540

7.5 1973 5 2711

150 4 2101 6 2745

5.5 2242 7 2836

7 2316 8 2927

Table 5. Training and test samples of the sphere-plane air gaps.
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5. Conclusions

Two sets of electric field features defined on the shortest interelectrode path are, respectively,

used to characterize the gap structure of the sphere-sphere air gap and the rod (sphere)-plane

air gap. These features are taken as the input parameters of the SVM model, which is used to

establish the breakdown voltage prediction model. The proposed method based on electric

Figure 7. Parameter optimization results of C and γ by GA method.

D (cm) d (m) U50 (kV) Up (kV) δ (%)

110 3.9 1461 1602 9.7

4.5 1527 1647 7.9

5.7 1675 1745 4.2

6.5 1796 1807 0.6

7.5 1973 1910 �3.2

150 4 2101 2036 �3.1

5.5 2242 2132 �4.9

7 2316 2266 �2.2

8.5 2408 2413 0.2

10 2497 2560 2.5

200 3 2290 2348 2.5

4 2540 2513 �1.1

5 2711 2595 �4.3

6 2745 2700 �1.6

7 2836 2778 �2.0

8 2927 2893 �1.2

Table 6. 50% discharge voltage prediction results of the sphere-plane air gaps.
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field features and SVM is applied to predict the breakdown voltages of sphere-sphere and

sphere-plane air gaps. Some conclusions can be drawn as follows:

1. The proposed electric field features extracted from the shortest interelectrode path are

effective to characterize the spatial structure of sphere-sphere and sphere-plane air gaps,

and the multidimensional nonlinear relationships between these features and the air gap

breakdown voltage can be established by SVM, so as to achieve breakdown voltage

prediction of air gaps without considering the complex and random discharge process.

2. Trained by only 11 sample data selected randomly according to the electric field

nonuniform coefficient f, the SVMmodel is able to accurately predict the power frequency

breakdown voltages of IEC standard sphere-sphere air gaps. The mean absolute percent-

age errors of the 260 test samples, with three times of prediction by different training

sample sets, are within 2%. The results validate the validity and accuracy of the proposed

method for breakdown voltage prediction of sphere-sphere air gaps.

3. The proposed method is able to predict the switching impulse discharge voltages of

sphere-plane air gaps, with large sphere diameters and long gap distances. The prediction

results agree well with the experimental data, with similar trends and acceptable errors.

The mean absolute percentage error of the 16 test samples is 3.2%, which is acceptable for

engineering applications. The results verify the feasibility of the proposed model for

discharge voltage prediction of large sphere-plane air gaps, which may be useful to

replace the time-consuming and costly discharge tests.

The authors are still engaged in improving this model. The following work will be carried out

in the future. Firstly, the electric field features will be simplified by some feature selection

approaches to make it easier for applications. Secondly, the applications of this method will

be extended to breakdown voltage prediction of more complex air gaps such as the practical

engineering gaps. It should be noted that new problems will inevitably appear in different

applications, and therefore this topic is worthy to be studied in-depth. We hope that it is

possible to achieve breakdown voltage prediction of arbitrary engineering gap configurations

Figure 8. Comparison of the predicted and experimental 50% discharge voltages of large sphere-plane air gaps.
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in the future, so as to guide the insulation design of high-voltage electrical equipment by

mathematical calculations rather than costly experiments.
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