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Abstract

Detachment structures occur widely in the crust, and it is the commonest and most 
important deformation type developed in the region between orogenic belts and basins. 
Organic-rich shale, as the weak layers, usually acts as slippery layers in detachment 
structural deformation systems. The “comb-like” and “tough-like” fold belts on the 
western side of the Xuefeng Mountain result from the multilayer detachment, and their 
formation is different from the typical Jura type structures. The reason is that there are 
several detachment layers and detachment systems in the stratigraphic column from the 
Neoproterozoic upwards to the Mesozoic in the study area. As the stress decoupling role, 
the shale slippery layers tend to undergo strong deformation in the detachment systems 
and impacted on pore structure evolution in the shale. In order to obtain the detach-
ment structural deformation and its influence on pore structure evolution in shale on 
the Middle and Upper Yangtze, the structural and textural, geochemical and mineralogi-
cal properties analysis, porosity and pore structure feature investigations are performed 
using shale samples collected from the same shale bed of the Longmaxi Formations 
(Lower Silurian) of Western of the Xuefeng Mountain, South China.

Keywords: Western of the Xuefeng Mountain, detachment deformation,  
tectonic deformed shale, Longmaxi shales, pore structure evolution

1. Introduction

Detachment structures occur widely in the crust, which is the result of the shearing occur-

ring between a competent rock and an uncompetent rock, include many different types of 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



structures such as detachment folds and hybrid fault-propagation folds. Recently, a series of 

models of the detachment has been brought forwards, and the kinematics and mechanism 

of detachment folds is also an important branch in the studies of the thrust tectonics [1–6]. The 

typical detachment folds are those in the Jura Mountain in the Alps orogenic belt, in the fore-

land region of the Appalachian orogenic belt and in the foreland region of Cordillera orogenic 

belt [1, 7, 8]. And, many researches have also been carried out on the thrust tectonics in China 

since 1960 [9–19]. The main characteristic of these detachment folds is that they formed on the 

uncompetent layers such as the Triassic evaporates in the Jura Mountain [20–22]. However, 

most studies focus on the structure with single detachment layer, with few studies on the 

effects of the multilayer detachment on the derived structures except for those researches in 
the Jura Mountain and the Zagros Mountain [23, 24].

The deformation zone between the Huayin Mountain and Xuefeng Mountain in the eastern 

Sichuan, located in Middle and Upper Yangtze, is characterized by the multilayer detachments 
in the late Mesozoic, with discordant features in various structural styles (Figure 1). In the study 

region, the strata from the Cambrian up to the Jurassic are all covering layers in the basin, and 
the “comb-like” and “tough-like” fold belts result from the multilayer detachment. In terms of 

basic structural styles and mechanism, Liu argued that these thin-skinned structures resulted 

from differential erosion of box folds under the stress outside [25]. Ding et al. and Ding and 

Liu suggested that the folds in this region [26, 27], especially those comb-like folds, were the 

kink bands controlled by the buckling at the regional scale. Liu and Liu preferred that these 

folds were produced by the compression in the early Mesozoic and superimposed by the late 

Figure 1. Geological map of western of the Xuefeng Mountain, South China.
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 extension [28]. Xu et al. divided this region into three structural layers [29], among which 

duplexes and fault-bend folds mainly form in the lower one, fault-bend folds and fault-propa-

gation folds mainly form in the middle one and the detachment folds, fault-propagation folds 

and break-through structures mainly occur in the upper layer. Guo et al. further pointed out 

discordance occurring in various layers [30]. Yan et al. argued that multi-detachment thrusting 

due to the progressive compression from the southeast to the northwest resulted in the develop-

ment of the structures in the study region. Two major detachment layers occur in these cover-

ing layers [10, 31], comprising the Lower Cambrian Niutitang Formation and Lower Silurian 
Longmaxi Formation (Figure 2). Organic-rich shale, as the weak layers, usually acts as slippery 

layers in detachment structural deformation systems in this study. The detachment layers in 

the study region show a wide range of deformation styles caused by shearing along the layers: 

A-type; S-C fabric; sheared puddings; cleavage and thrusts. The primary structure of deformed 

shale is damaged and the parallel bedding has almost disappeared due to deformation.

Previous studies have shown that the Upper and Middle Yangtze Plates have superior marine 
hydrocarbon geological conditions and immense potential for shale gas. Compared to North 

America, the geological conditions of gas shale reservoirs in South China are highly diver-

sified and complicated due to the detachment structural deformation, which transformed 
the structure of shale seams and resulted in structure deformed shale with unique reservoir 

properties [32–35]. For example, as the first commercial shale gas field outside the North 
America, one of the most important controlling geological factors in the Fuling shale gas 
field in southeastern margin of the Sichuan Basin was strong structural deformation of shale 
[32, 33, 36]. It is necessary to study how pore structure develops in gas shale influenced 
by tectonic deformation. Ma et al. investigated the pore structure of the mylonitized shale 

sample by FESEM and N
2
 adsorption analysis and found that the mylonitized shale has high 

specific surface area and high methane adsorption capacity [34]. Ibanez and Kronenberg 

have explained the deformational and microstructural changes under variable confinement 

Figure 2. Distribution of detachment layers and constitution of detachment systems in western of the Xuefeng Mountain, 

South China.
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for illite-rich shale [37]. Shale gas and coalbed methane (CBM) reservoirs are in formally 
grouped as unconventional because gas is trapped in part by sorption processes [38]. Several 

previous workers have focused on the pore characteristics and adsorption gas characteristics 

of tectonically deformed coals [39, 40], which provide references to the study on deformed 

shale. Although previous studies have provided useful insight to evolution of pore structure 

in shale during thermal maturity and in CBM related to deformation structures, the predic-

tion of structural deformation change in pore structure of shale in geological condition still 

remains quite challenging. In the present study, pore structure feature investigations are per-

formed using two sets of shale samples (deformed shale and undeformed shale) collected 

from the typical shale bed of the Longmaxi Formations (Lower Silurian) of Western of the 
Xuefeng Mountain, South China. The influence of structural deformation on pore structure 
was discussed.

2. Deformation of the detachment layers

There are two main detachment layers of shale in the covering layers in the study region, i.e., 

the Lower Cambrian Niutitang Formation and Lower Silurian Longmaxi Formation. These 
two detachment layers controlled the strong deformation of the study region during the late 

Mesozoic and showed different roles in different zones.

2.1. Deformation of the Cambrian system

The detachment layer is the Niutitang Formation (Є
1
n) in the Lower Cambrian, which is mainly 

composed of black carbonaceous shale and black shale and about 70–200 m thick. This layer 

crops out in the region between Shizhu and Anhua-Xupu Fault, but the strong shearing along 
the layer only occurred in the region between the Cili-Dayong Fault and the Anhua-Xupu Fault.

Different types of small shear folds and thrust faults character the deformation of the detach-

ment layer, including angular folds, congruous inverted folds, sheath folds and recumbent folds. 

B-type and A-type folds can be found (Figures 3 and 4). The fold hinges strike mainly northeast-

southwest. However, the fold hinges of sheath folds trend northwest-southeast, which indi-

cated the direction of shearing. The axial planes of these folds mainly dip to the southeast at the 
angle of 40–70°. Combined with sheath folds, top-to-the-northwest thrusting occurred along 

this detachment layer, which is similar to the deformation of the Xuefeng Mountain.

2.2. Deformation of the Silurian detachment layer

The Silurian detachment layer is composed of the Longmaxi Formation (S
1
l) of the Lower 

Silurian. It is the thickest detachment layer (more than 2000 m) in the study region, which is 

mainly composed of shale with some silty mudstone and siltstone. This layer mainly distrib-

utes in Shizhu and Baojing; it also crops out to the west of Anhua-Xupu Fault. Field observa-

tions showed that the deformation of this layer mainly occurred in the region between Shizhu 

and Baojing (the region where the so-called narrow syncline style folds developed).

The B-type folding characters the deformation of the Silurian detachment layer. The congru-

ent inverted fold is the main type of the folds in this layer (Figure 5). Most fold hinges strike 

Tectonics - Problems of Regional Settings50



Figure 3. Shear folds formed by shear deformation in the lower Cambrian detachment layer. (a) A-type shear folding; 

(b) pencil structure indicates SE-NW shear (location: Labachong, Luoyixi Town, Yongshun County, Hunan); (c, d) B-type 
shear folding (location: Mengfu Village, Liangshuijing Town, Yuanling County, Hunan).

Figure 4. Assemblage of thrust faults and shear folds in the lower Cambrian (location: Fumeng Village, Liangshuijin 
Town, Yuanling County, Hunan).
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northeast-southwest; some AB-type inverted folds whose hinges strike north-east are also 
found. The axial planes of these folds mainly dip to the southeast with dip angle ranging 
from 20 to 60°. And some inverted folds with axial plane dipping to the northwest are also 
developed. In addition, many minor thrust faults top to the northwest are also developed in 

the layer. These structures imply that the top-to-the-northwest thrusting parallel to the bed-

ding is the main deformation mechanism, and the inverted folds with axial plane dipping to 
the northwest resulted from the back thrusting.

3. The discussion on mechanism of regional tectonic deformation

Many previous studies divided the deformation between the eastern Sichuan Basin and the 
Xuefeng Shan into the narrow anticline style fold belt, narrow syncline style fold belt and the base-

ment-involved fold belt, which mainly resulted from the detachment folding and thrusting [10, 

26, 27, 41–45]. This study showed that the so-called narrow-anticline style and narrow- syncline 

style folds in the eastern Sichuan Basin were named just after their geometries at regional scale; 
the exact original mechanism for these folds is different from that of the Jura type structures.

As mentioned in above sections, the deformation in the study region could be divided into 

two parts, one is the deformation of the detachment layers and the other is the deformation 

of rocks in the hanging walls. The bedding parallel detaching and many small-scale A-type, 

Figure 5. B-type shear folds with SE dipping axial planes in the Silurian detachment layer (location: (a, b) Shaoha Village, 
Shaoha Town, Yongshun county, Hunan; (c, d) Heixi Town, Pengshui county, Chongqing).
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Figure 6. Widespread thrust folding in the eastern Sichuan Basin (location: Wanfo Village, Gaoleshan Town, Xianfeng 
County, Hubei).

Figure 7. Multi-layer detaching-thrusting deformation section shown by the seismic reflection. Tt
3
x, upper Triassic 

Xujiahe Fm; Tt
1
j, lower Triassic Jialingjiang Fm; Tp

2
, upper Permian; Tp

1
, lower Permian; Ts

2
, middle Silurian; Ts

1
, lower 

Silurian; To
1
m, lower Ordovician Meitan Fm; TЄ

2
, middle Cambrian; TЄ

1
, lower Cambrian.
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Figure 8. Block model of the deformation assemblage of multi-layer detachment and thrust fault between the Huayin 
Mountain and the Xuefeng Mountain. T-J, Triassic-Jurassic; T

1
-P

2
, lower Triassic-upper Permian; P

1
-D, lower Permian-

Devonian; S, Silurian; Є
2
-O, middle Cambrian-Ordovician; Є

1
, lower Cambrian; Z, Sinian; Pt, Precambrian (Banxi Gp); 

DS1, detachment layer and its number.

B-type and AB-type inverted folds, recumbent folds and small thrust faults character the defor-

mation of the detachment layers, which generally imply the top-to-the-northwest detachment. 

And, the symmetrical large open folds and large reclined folds character the deformation of 

the non-detachment layers, and most geomorphic highs are located at the large reclined folds, 

such as the Huayin Shan, Tongluo Shan, Mingyue Shan, Fangdou Shan and Qiyao Shan.

Most anticlines between the Fangdou Shan and the Huayin Shan (where the narrow-anticline 
style folds developed) are narrow with steep northwest limbs dipping at 70–85° and shallow 

dipping southeast limbs dipping at 40–65°. Between the anticlines are the open synclines. And 
most northeast trending anticlines between the Fangdou Shan to the west and the Xuefeng 
Shan to the east (where the narrow-syncline style folds formed) are large open asymmetrical 

folds with steep northwest limbs and shallow southeast limbs except for some folds with 
steep southeast limbs such as the asymmetrical folds in Wanzhou along the east bank of the 

Yangtze River. The field observation showed that thrust faults often developed in the cores 
and steep limbs of these asymmetrical folds, and the thrust faults in the cores did not cut 

through the folds (Figure 6); similar characteristics could be found in the seismic profiles 
(Figure 7). These large reclined folds resulted from the thrusting; however, the thrust faults 
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derived from the bedding parallel shearing along the underlying detachment layers led to 

the deformation of overlying rocks. The above deformation was the results of thrusting and 

detachment, called as detachment-thrusting mechanism.

The deformation between the Huayin Shan and the Xuefeng Shan is the typical of multi-

layer detachment. From the Cambrian System to the Jurassic System, the different deforma-

tions between four detachment layers and strata between detachment layers are discordant 

(Figure 8). The detachment and thrusting in every detachment layer controlled the defor-

mation of the overlying strata. The main detachment layers controlling the deformation are 

different in different belts from the east to the west in the study region. Previous studies 
suggested that the so-called narrow-anticline style fold belt between the Huayin Shan and 

the Xuefeng Shan was controlled by the Silurian detachment, and the narrow-syncline style 

fold belt was controlled by the detachment layer between marine covering layers and the 

metamorphic basement, and these two types of folds are all typical Jura type detachment 
folds [10, 46].

4. Detachment layers in shale of Longmaxi Formation and its 

structural deformation characteristics

To obtain information about the influence of tectonic deformation on shale pore character-

istics, the geochemical, mineralogical, structural and textural properties analysis, porosity 
and pore structure feature investigations are performed using two sets of shale (deformed 

shale and undeformed shale) collected from the same shale bed of the Longmaxi Formation 
(Lower Silurian) of southeast of Sichuan Basin, China. Previous studies have shown that the 
Upper and Middle Yangtze plates have superior marine hydrocarbon geological conditions 
and immense potential for shale gas. Compared to North America, the geological condi-

tions of gas shale reservoirs in South China are highly diversified and complicated due to 
the detachment structural deformation, which transformed the structure of shale seams and 

resulted in structure deformed shale with unique reservoir properties. The detachment lay-

ers in the study region show a wide range of deformation styles caused by shearing along 

the layers: A-type; S-C fabric; sheared puddings; cleavage and thrusts. As the main detach-

ment structure belt [35], the Longmaxi Formations shale layer developed multilayer subdi-
vided slip structural deformation. The primary structure of deformed shale is damaged and 

the parallel bedding has almost disappeared due to deformation. The plastic deformation 

of shale is obvious, and the cleavage structure and cleavage surface are smooth with fine-
grained powder coatings. The detachment fault mirrors (FMs), scratches and micro-fold 
deformation phenomena were commonly present in Longmaxi shale outcrops. A suite of 
samples were subset to two sets of deformed shale and undeformed shale for this study due 

to their variability of texture, fabric and structure properties (Figures 9 and 10). To evaluate 

the influence of detachment deformation on shale reservoir characteristics by comparing the 
deformed shale and undeformed sample subsets, 14 shale samples (9 undeformed samples 

from 3 beds) were collected from this Yongshun outcrop (Figure 9). However, not all the 14 

samples were examined. All samples were analyzed to determine the organic geochemistry 
and mineralogy, the undeformed samples taken from same bed have similar composition 
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characteristics and eight samples (three undeformed samples and five deformed samples) 
were selected for mercury injection capillary pressure (MICP) and low-pressure gas (LPG) 

adsorption to determine the pore structure, including the porosity, pore-size distribution 

(PSD), surface area (SA) and pore volume (PV).

The sample number was abbreviated as U1, U2, U3 (Undeformed shale) and D1, D2, D3, D4, 

D5 (Deformed shale), the deformed samples subsets to strong deformed shale (D1, D2, D3) 

and weak deformed shale (D4, D5). The samples of U3 were collected from the thick sandy 

shale, and the other samples were collected from the thin siliceous shale. The stratigraphic 

relationships of the samples are shown in Figure 9. The features of the experimental samples 
are shown in Table 1. Before geochemical and mineralogical analyses, samples crushed to 
180–200 mesh. The TOC content was collected using a Leco C/S-344 Carbon/Sulfur analyzer. 

The stable carbon isotope was determined using a Finnigan MAT 252 mass spectrometer. A 
3Y–Leica DMR XP microscopy equipped with a microphotometer was used to measure the 

vitrinite reflectance values (VRo) of samples. Each sample was determined at least by 30 mea-

surements on vitrinite particles. The crushed samples were mixed with ethanol, hand ground 
in a mortar and pestle and then smear mounted on glass slides for X-ray diffraction (XRD) 
analysis using a D/Max-III analyzer at 40 kV and 30 mA. The relative mineral contents were 
estimated and semi-quantified using the area under the curve for the major peaks.

Figure 9. Location of study area is in southeastern Sichuan Basin, Yongshun, China. And the detachment structural 
deformation control across the Longmaxi Formations shale in this area. (a) The stratigraphic relationships and structural 
deformation characteristics of the samples, (b) S-C structural deformation shale, (c) Sheath-like structure deformation 

shale (d) Fault mirrors (FMs) of the deformed shale.  : Deformed shale samples,  : Undeformed shale samples. The 

height of the notebook is 20 cm (a), length of the hammer is 38 cm (b) and the length of the pen is 14 cm (c). See Figure 2 

and Table 1 for texture and structure properties of these deformed samples.
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Figure 10. Undeformed shale and deformed shale samples; the sample ID was abbreviated as U1, U2, U3 (Undeformed 

shale) and D1, D2, D3, D4, D5 (Deformed shale). The undeformed shales have original parallel bedding, and the primary 

structure of shale can be observed. The detachment fault mirrors (FMs) can be observed on the deformed shales. And 
the deformed samples were subset to two sets of strong deformed shale and weak deformed shale due to their difference 
on the degree of deformation strength. The D1, D2 and D3 were strong deformed shales that the primary structure was 

damaged and the parallel bedding has almost disappeared due to deformation, and the fractures and mineral filling 
development in the strong deformed shales. The D4 and D5 were weak deformed shales that have original parallel 

bedding, and FMs developed in the surface of fault. The coin diameter is 20.5 mm.

Sample ID TOC

(%)

VRo

(%)

δC
13

‰ (PDB)

Quartz
(%)

Carbonate

(%)

Clay

(%)

Texture and fabric features of macroscopic 

hand specimens

U1 3.9 2.57 −30.4 41 nd 44 Undeformed shales. Shale primary structure 

can be observed. Shale has original parallel 

bedding
U2 2.5 2.78 −30.8 40 2 41

U3 2.0 2.77 −30.9 34 11 33

U-mean 

(9)

2.8 2.76 −30.7(3) 42 4.6 38

D1 2.1 3.01 −30.6 77 nd 14 Strong deformed shales. The primary structure 

of shale is damaged and the parallel bedding 

has almost disappeared due to deformation. 

Fractures and mineral filling development. The 
plastic deformation of shale is obvious. Shale 

shows cleavage structure and cleavage surface 

is smooth with fine-grained powder coatings

D2 6.6 2.86 −31.0 64 nd 26

D3 1.0 2.91 −31.3 77 nd 16

D4 1.8 2.90 −30.6 46 nd 41 Weak deformed shales. Shale has original 

parallel bedding. Shale shows cleavage 

structure and cleavage surface is smooth with 

fine-grained powder coatings

D5 3.0 3.00 −31.1 71 nd 20

D-mean 

(5)

2.9 2.93 −30.9 67 nd 23

TOC, total organic carbon (%); VRo, vitrinite reflectance values (%); (Number), number of measured samples.

Table 1. The features of the experimental samples.
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To fully evaluate the pore size distribution and porosity, samples were crushed (2–5 mm), dried 

at 110°C and then preformed both mercury porosimetry and low pressure gas adsorption anal-

yses. The mercury injection capillary pressure (MICP) analysis using a Poremaster GT60 and 

intruded with mercury from 1.5 to 60,000 Psi, the measured pressure range equates to the pore 

diameter range of 0.003–1000 μm (7–120,000 nm in this study). The pore size distributions of 

mesopores and macropores were determined using the Washburn equation [47]. The minimal 

pore diameter limit of 7 nm is within the mesopore range, and mercury porosimetry cannot 

detect micropores within the pore structure. Porosity is determined by mercury immersion 

(bulk density) coupled with helium pycnometry (skeletal density). Low pressure gas adsorp-

tion analyses have been used to measure the PSD both micropores and mesopores using both 

nitrogen adsorption at −196°C and carbon dioxide adsorption at 0°C by a Micromeritics ASAP 
2020 HD88 analyzer. The PSD, PV and SA analysis of combined the N

2
 and CO

2
 gas adsorption 

by the same calculation models of density function theory (DFT) [48, 49]. The development of 

DFT models has led to a better understanding of adsorption processes in well-ordered systems 
compared to the more conventional models, used in the present study to analyzed N

2
 and 

CO
2
 gas adsorption data. The pore characteristics including SA, PV and PSD will be different 

between the two techniques (MICP and gas adsorption analyses) because of sample prepa-

ration, analytical models and calculation models; analysis method of combined the mercury 

intrusion and gas adsorption only used to determine the relative content percentage of micro-, 

meso- and macropores in this article by set the mesopores as a referenced values (Table 2).

5. Evolution of pore structure in the shale of detachment layers

It is believed that the shale composition controlled the pore structure character, and the dia-

genetic processes controlled the shale composition [38, 48, 50]. In the previous analysis, we 

Sample 

ID

Gas absorption MICP Relative content* (%)

Micropore

(μL/g)

Mesopore

(μL/g)

Mesopore

(μL/g)

Macropore

(μL/g)

Porosity

(%)

Micropore

(%)

Mesopore

(%)

Macropore

(%)

U1 6.4 4.8 186.7 231.9 2.0 37.6 27.9 34.6

U2 5.7 8.4 175.5 122.9 1.6 28.5 42.0 29.4

U3 10.4 20.9 2198.4 330.0 7.5 30.3 60.6 9.1

D1 4.5 2.2 73.9 185.7 1.3 36.6 18.1 45.4

D2 5.3 6.7 73.8 143.3 1.6 21.2 26.8 52.0

D3 2.2 0.4 14.2 273.2 3.8 22.6 3.8 73.5

D4 4.5 3.8 148.7 172.1 2.5 28.5 23.8 47.7

D5 5.2 4.4 214.3 387.4 4.5 15.1 12.9 71.9

*The relative contents of different pore size distributions with PV were calculated by set the mesopore PV as referenced 
value.

Table 2. Pore volume characteristics of the samples.
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discussed the pore characteristic data obtained by different analytical methods of MICP and 
LPG separately [51]. Figure 11 shows the correlation between porosity and pore volume for 

different pore diameters, indicating the positive relationship between porosity and micro- and 
mesopores PV (R2 > 0.85) for undeformed shale, while the porosity of deformed shale was only 

related to the macropores PV (R2 = 0.77). Such difference between the deformed and unde-

formed samples indicated that the micropores and mesopores (nanoscale pores) dominate the 

total porosity and controlled the diagenetic processes and shale compositions in the primary 

shale reservoir, while the macropores controlled the total porosity in the intense tectonic defor-

mation shale. It is found that there were no significant changes in porosity between deformed 
and undeformed shale samples. In order to further study the evolution of pore size distribution 

in deformed shales, analysis method of combined the mercury intrusion and gas adsorption 

was used to determine the relative content percentage of micro-, meso- and macropores in this 

article by set the mesopores as a referenced value (Table 2 and Figure 12). The balance of micro-, 

meso- and macropores were weakened in deformed shale samples, and the percentages of PV 

in different pore diameters were changed as macropores increased and mesopores decreased.

Organic matter can affect the evolution of pore structure, especially for different organic 
matter types and organic matter maturity. Jiang et al. reported the pore structure of a lacus-

trine oil shale in the Ordos Basin and indicated that the mesopores are dominant in samples 
[52]. Chen and Xiao measured the evolution of pore structure of artificially matured samples 
during an anhydrous pyrolysis, finding that the microporosity and mesoporosity increase 
with thermal maturity after the oil window stage [53]. The effect of organic matter on shale 
pore structure is mainly concentrated on micropore and mesopore [53–55] and achieved by 

the difference type and maturity. In the present study, all samples have a similar kerogen 
type and maturity stage, consistent with the similar micropores. Clay minerals can influ-

ence pore structure evolution and always have comparable organic contents. As compared 

to the deformed shale samples, the undeformed shale samples have higher values in micro-, 

meso-, total pore SA and adsorption quantity, because they have a higher clay content 

Figure 11. Relationship between total porosity and pore volume of micro-, meso- and macropores in shale samples from 

different analytic methods of LPG and MICP.
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Figure 12. The pore volume percentages for shale samples.

rather than because of their undeformation. Ross and Bustin suggested that shales enriched 
in both clays and organics have the largest micropore volumes, suggesting a micropore 

contribution from both the organic and clay fractions. In the present study, the shale sample 

of D3, which is poor in clay and TOC, has the least micro- and mesopores. Kareem et al. 

found that the clay minerals are over-represented at the pore surfaces and in pore spaces 

compared to the other major minerals such as quartz and feldspar [56]. The knowledge of 

effective mineralogy complicated the influence of clay minerals on the pore structure. The 
biogenic quartz produced by precipitation during diagenesis with silica is derived from 
graptolite and radiolarians [57], which may also control the pore volume and structure in 

shales. This type of quartz affects microporosity significantly and has certain correlation to 
TOC content. There are no clearly defined relationships between quartz mineralogy and 
pore structure, because the micropore characteristics of the samples did not change with the 

quartz content in this study. Furthermore, the parts of extra quartz content in fracture filling 
of deformed shale may come from the hydrothermal source, after the tectonic deformation 

and fracture generations. The relationship between shale compositions and pore structure 

is not well reflected in the change of shale pore structure in deformed shale samples for the 
present study. There is no significant difference in organic matter content in deformed and 
undeformed samples, which agrees with a similar microporosity on all of the samples. All-

scale pore structure analysis reveals that the deformed shale had notable higher macropores 

percentages than undeformed shale. At the same time, the total porosity and micropores 

were constant, suggesting that the evolution of pore structure in structural deformed shale 

was due to part of mesopores was disappeared due to compression of the tectonic stress, 

and macropores were generated due to the development of microcracks.

6. Conclusions

A series of comb-like folds and trough-like folds in eastern Sichuan Basin were the defor-

mation controlled by multilayer detachment, which is different from the typical Jura type 
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detachment folds. Although the deformations between the Jura Mountain and eastern 
Sichuan look similar at the regional scale, their deformation mechanisms are different. There 
are many detachment layers occurring in the strata from the Neoproterozoic to the Mesozoic 

in the study region that controlled the deformation. Due to the multi-tectonic movement, 

shale reservoirs in China are highly diversified and complicated, which transformed the 
texture of shale beds and resulted in structure deformed shale with unique pore properties. 
The structural deformation has a significant effect on the evolution of pore size distribution, 
especially for the increase in the proportion of macroporous.
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