
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 13

Distributed Kalman Filter

Felix Govaers

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.71941

Abstract

The continuing trend toward connected sensors (“internet of things” and” ubiquitous
computing”) drives a demand for powerful distributed estimation methodologies. In
tracking applications, the distributed Kalman filter (DKF) provides an optimal solution
under Kalman filter conditions. The optimal solution in terms of the estimation accuracy
is also achieved by a centralized fusion algorithm, which receives all associated measure-
ments. However, the centralized approach requires full communication of all measure-
ments at each time step, whereas the DKF works at arbitrary communication rates since
the calculation is fully distributed. A more recent methodology is based on ”accumulated
state density” (ASD), which augments the states from multiple time instants to overcome
spatial cross-correlations. This chapter explains the challenges in distributed tracking.
Then, possible solutions are derived, which include the DKF and ASD approach.

Keywords: distributed Kalman filter, target tracking, multisensor fusion, information
fusion, accumulated state density

1. Introduction

Modern tracking and surveillance system development is increasingly driving technological

trends and algorithm developments toward networks of dislocated sensors. Besides classical

target tracking, many other applications can be found, for instance, in robotics, manufacturing,

health care, and financial economics. A multisensor network can exploit spatial diversity to

compensate for the weak attributes of a single sensor such as limited field of view or high

measurement noise. Also, heterogeneous sensors can reveal a more complete situational aware-

ness and a more precise estimate of the underlying phenomena. Additionally, a sensor network

is more robust against a single point of failure in comparison to a standalone system, if its

architecture is chosen carefully.

Despite its unquestioned advantages, a multisensor network must cope with design-specific

challenges, for instance, a full transmission of all the measurements to a fusion center can be
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hindered, when the communication links are unreliable or constrained in bandwidth or costs.

A well-known approach to cope with the limited bandwidth data links is to apply data

processing on the sensor sites to generate local track parameters that are transmitted to the

fusion center. The latter then reconstructs the global track parameters by an application of a

Track-to-Track Fusion (T2TF) scheme. Depending on the scenario constraints, this is a nontrivial

task, since the local tracks are mutually correlated due to the common process noise. The first

known solution in the literature to the T2TF problem proposed to apply an information filter-

based multisensor fusion algorithm in [1], which later became famous as the “tracklet fusion.”

However, the tracklet fusion also requires a transmission from each sensor after each time step

in order to reconstruct the optimal solution.

This chapter presents the theory and the derivation of the distributed Kalman filter (DKF), which

is an optimal solution of the T2TF problem under Kalman filter assumptions with respect to

the mean squared error (MSE). Assuming Kalman conditions means that linear Gaussian models

are provided for the motion model and all measurement models of the sensors. Moreover, it is

assumed that measurement-to-track (at the sensors) and track-to-track (at the fusion center)

association has been solved. The DKF approach requires, however, all remote sensor models to

be known at each local sensor site, which is infeasible in most practical scenarios. Therefore,

this chapter also presents a solution based on the accumulated state density (ASD), which is

closely related to the DKF but does not require the measurement models to be known. Surveys

that reflect the history of research in distributed estimation can be found, for instance, in [2, 3].

This chapter is structured as follows: Section 2 summarizes the problem formulation. A basic

approach to T2TF is given in Section 3, where we present the least squares solution. Section 4

presents a simple fusion methodology, which is easy to compute and provides practical results

for various applications. The reason why this approach is suboptimal is investigated in Section 5

by means of a recursive computation of the cross-covariances of the local tracks. In Section 6, the

product representation of Gaussian probability densities is introduced, which is the basis for the

derivation of the distributed Kalman filter in Section 7. An alternative derivation in terms of

information parameters is provided in Section 8. Since the local measurement models are often

unknown in practical applications, the distributed accumulated state density filter is introduced

in Section 9. The chapter concludes with Section 10.

2. Problem formulation

Throughout this chapter, it is assumed that all S sensors produce their measurements zsk ∈R
m

at each time step tk of the same target with its true state xk ∈R
n in a synchronized way. The

extension to the unsynchronized case is straightforward by means of standard Kalman filter

predictions, and is therefore omitted for the sake of notational simplicity. The measurement

equation for sensor s∈ 1;…; Sf g is given by

zsk ¼ Hs
kxk þ vsk (1)
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where vsk � Ν vsk; 0;Rs
k

� �

is the Gaussian distributed, zero-mean random variable, which models

the noise of the sensing process. Therefore, the likelihood for a single measurement is fully

described by the Gaussian

p zskjxk
� �

¼ Ν zsk;H
s
kxk;R

s
k

� �

(2)

Since the measurement processes across all sensors Zk ¼ z1k ;…; zSk
� �

are mutually independent,

the joint likelihood of all sensor data produced at time tk factorizes:

p Zkjxkð Þ ¼
Y

S

s¼1

p zskjxk
� �

¼
Y

S

s¼1

Ν zsk;H
s
kxk;R

s
k

� �

(3)

The true state of the target itself is modeled as a time-variant stochastic process, where the

transition from time tk�1 to time tk is given by the following motion equation:

xk ¼ Fk∣k�1xk�1 þ wk (4)

where wk � Ν wk; 0;Qkð Þ is the Gaussian distributed, zero-mean random variable to model the

process noise of the system. Analogously to the likelihood, this provides the probability

density function for the transition model:

p xkjxk�1ð Þ ¼ Ν xk; Fk∣k�1xk�1;Qk

� �

(5)

Based on the local processors, each sensor node produces a track at time tk in terms of an

estimate xsk∣k and a corresponding estimation error covariance Ps
k∣k. In a T2TF scheme, these

parameters are the only information, which is transmitted to a fusion center (FC). It should be

noted that the FC may also not be centralized, distinguished instance in the architecture, but

each and every processing node can act as a FC. The introduction of a distinguished FC is only

for clarification of different computation layers. An excellent overview of pros and cons of

various data fusion layers can be found in [4].

The T2TF problem can now be stated as follows: compute a fused estimate xk∣k of the state xk and

a consistent error covariance Pk∣k by means of the local tracks and knowledge on their models:

xk∣k  x1k∣k;…; xSk∣k

n o

(6)

3. Least squares estimate

In order to compute an estimate as a well-suited combination of the local tracks, it is useful to

consider the joint likelihood function given by the following Gaussian:
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p x1k∣k,…, xSk∣kjxk

� �

¼ N

x1k∣k

⋮

xSk∣k

0

B

B

@

1

C

C

A

;

xk

⋮

xk

0

B

@

1

C

A
;

P1,1
k∣k ⋯ P1,S

k∣k

⋮ ⋱ ⋮

PS,1
k∣k ⋯ PS,S

k∣k

0

B

@

1

C

A

0

B

B

@

1

C

C

A

, (7)

where Ps, s
k∣k ¼ Ps

k∣k are the track covariances on the block-diagonal entries and P
i, j
k∣k ≜ cov xik∣k, x

j
k∣kjxk

h i

¼ P
j, i T
k∣k are the cross-covariances on the off-diagonal entries of the joint error covariance.

Since the joint likelihood from above is proportional to an exponential function:

p x1k∣k,…, xSk∣kjxk

� �

∝ exp �
1

2

x1k∣k

⋮

xSk∣k

0

B

B

@

1

C

C

A

�

xk

⋮

xk

0

B

@

1

C

A

0

B

B

@

1

C

C

A

T

P1,1
k∣k ⋯ P1,S

k∣k

⋮ ⋱ ⋮

PS,1
k∣k ⋯ PS,S

k∣k

0

B

@

1

C

A

�1
x1k∣k
⋮

xSk∣k

0

B

@

1

C

A
�

xk

⋮

xk

0

B

@

1

C

A

0

B

@

1

C

A

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

(8)

the maximum likelihood (ML) estimate can be computed in terms of the least squares:

xk∣k ¼ argminxk x1:S
k∣k � I1:Sxk

� �T
P1:S
k∣k

� ��1
x1:S
k∣k � I1:Sxk

� �

� 	

, (9)

where x1:S
k∣k ¼ x1 T

k∣k ;…; xS T
k∣k

� �T
, I1:S ¼ I;…; Ið ÞT , and P1:S

k∣k for the joint error covariance have been

introduced for notational simplicity. A closed form solution of the ML estimates can be obtai-

ned by setting the gradient with respect to the state to zero:

0 ¼ ∇xk x1:S
k∣k � I1:Sxk

� �T
P1:S
k∣k

� ��1
x1:S
k∣k � I1:Sxk

� �

¼ 2 I1:S
� �T

P1:S
k∣k

� ��1
x1:S
k∣k � I1:Sxk

� �

, (10)

Therefore, the ML estimate is given by:

xk∣k ¼ I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1

I1:S
� �T

P1:S
k∣k

� ��1
x1:S
k∣k : (11)

For information fusion applications, it is also important to have a consistent estimate of the

squared error, in other words, we need to compute the corresponding error covariance:

cov xk∣kjxk
� 

¼ E xk � xk∣k
� �

xk � xk∣k
� �T

h i

≜E xk � xk∣k
� �2
h i

¼ E xk � I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1

I1:S
� �T

P1:S
k∣k

� ��1
x1:S
k∣k

 !2
2

4

3

5

¼ E I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1

I1:S
� �T

P1:S
kjkð Þ

� ��1
I1:S
� �


 �

xk � I1:S
� �T

P1:S
k∣k

� ��1
x1:S
k∣k


 �

 !2
2

4

3

5

(12)
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¼ I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1

I1:S
� �T

P1:S
k∣k

� ��1
E I1:S

� �

xk � x1:S
k∣k

� �2
� �

P1:S
k∣k

� ��1
I1:S
� �

I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1

¼ I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1

:

The last equation holds due to the fact that E I1:S
� �

xk � x1:S
k∣k

� �2
� �

¼ P1:S
k∣k is the joint covariance.

Concluding the derivations from above equation, one can obtain:

xk∣k ¼ Pk∣k I1:S
� �T

P1:S
k∣k

� ��1
x1:S
k∣k ,

Pk∣k ¼ I1:S
� �T

P1:S
k∣k

� ��1
I1:S
� �


 ��1 (13)

4. Naïve fusion

It is obvious that for the ML estimate, it is assumed that the cross-covariances P
i, j
k∣k, i, j∈

1;…; Sf g are known. Since this might not be given in practical scenarios, a simple approxima-

tion is to assume them to be zero. This approach is called Naïve fusion. It implies that the joint

error covariance is given in block-diagonal form:

P1:S
k∣k ¼

P1,1
k∣k

⋱

PS,S
k∣k

0

B

@

1

C

A
(14)

As a direct consequence of the matrix inversion lemma (see Appendix 12.1), the inverse can be

obtained in closed form solution:

P1:S
k∣k

� ��1
¼

P1,1
k∣k

� ��1

⋱

PS,S
k∣k

� ��1

0

B

B

B

@

1

C

C

C

A

(15)

Filling into the maximum likelihood formulas directly yields.

xk∣k ¼ Pk∣k

X

S

s¼1

Ps
k∣k

� ��1
xsk∣k,

Pk∣k ¼
X

S

s¼1

Ps
k∣k

� ��1
 !�1

(16)

Thus, by means of a simple approximation of the ML estimate, we have obtained a first

practical fusion rule for the FC, which we call convex combination due to its structure for further
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usage. The fusion scheme as a whole can be outlined schematically as in the flowing Figure 1.

Each sensor node s processes its produced sensor data by means of a local filter, which results

in a track in terms of an estimate together with an error covariance. These parameters are

transmitted to the fusion center, which applies the convex combination to compute the fused

result.

5. What makes the Naïve fusion naïve?

For the Naïve fusion, we have assumed that the cross-covariances vanish. It is worth to be

aware of the structure of the cross-covariances to see the conditions whether this holds or does

not hold. This can be achieved by a recursive computation of the posterior cross-covariance P
i, j
k∣k

of two sensors with indices i and j, which process their data by means of local Kalman filters.

At the beginning of the estimation process at t0 tracks are not yet correlated, that is, P
i, j
0∣0 ¼ 0,

due to the fact that initial measurements are mutually uncorrelated. A recursive computation

can be achieved by a prediction-filtering cycle.

5.1. Cross-covariance prediction

For the prediction step, it is assumed that a previous posterior cross-covariance P
i, j
k∣k�1 has been

computed. The prior parameters are obtained by means of the motion model:

P
i, j
k∣k�1 ¼ E xk � xik∣k�1

� �

xk � x
j
k∣k�1

� �T
� �

¼ E Fk∣k�1xk�1 þ wk � Fk∣k�1x
i
k�1∣k�1

� �

Fk∣k�1xk�1 þ wk � Fk∣k�1x
j
k�1∣k�1

� �T
� �

¼ Fk∣k�1E xk�1 � xik�1∣k�1

� �

xk�1 � x
j
k�1∣k�1

� �T
� �

FTk∣k�1

(17)

Figure 1. Fusion scheme of the Naive Fusion approach.
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� Fk∣k�1E xk�1 � xik�1∣k�1

� �

wk
T

h i

� E wk xk�1 � x
j
k�1∣k�1

� �T
� �

FTk∣k�1 þ E wkwk
T

� 

¼ Fk∣k�1P
i, j
k�1∣k�1F

T
k∣k�1 þQk,

where the last equality holds due to the fact that the estimation errors at time tk�1 of both

sensor processors are uncorrelated to the process noise wk.

5.2. Cross-covariance filtering

In the filtering step, both sensors compute their posterior parameters based on the produced

measurements zik and z
j
k, respectively. It is assumed that the local processors have applied local

Kalman filter update steps with Kalman gains W i
k∣k�1 and W

j
k∣k�1. The cross-covariance poste-

rior matrix can be obtained by a straightforward computation:

P
i, j
k∣k ¼ E xk � xik∣k

� �

xk � x
j
k∣k

� �T
� �

¼ E xk � xik∣k�1 �W i
k∣k�1 zik �Hi

kx
i
k∣k�1

� �� �

xk � x
j
k∣k�1 �W

j
k∣k�1 z

j
k �H

j
kx

j
k∣k�1

� �� �T
� �

¼ E xk � xik∣k�1 �W i
k∣k�1 Hi

kxk þ vik �Hi
kx

i
k∣k�1

� �� �

xk � x
j
k∣k�1 �W

j
k∣k�1 H

j
kxk þ v

j
k �H

j
kx

j
k∣k�1

� �� �T
� �

¼ E I �W i
k∣k�1H

i
k

� �

xk � xik∣k�1

� �

�W i
k∣k�1v

i
k

� �

I �W
j
k∣k�1H

j
k

� �

xk � x
j
k∣k�1

� �

�W
j
k∣k�1v

j
k

� �T
� �

¼ I �W i
k∣k�1H

i
k

� �

E xk � xik∣k�1

� �

xk � x
j
k∣k�1

� �T
� �

I �W
j
k∣k�1H

i
k

� �T
þW i

k∣k�1E vikv
j
kT

h i

W
j T
k∣k�1

¼ I �W i
k∣k�1H

i
k

� �

P
i, j
k∣k�1 I �W i

k∣k�1H
i
k

� �T

(18)

For these equations, we have used the fact that the prior estimate error xk � xik∣k�1

� �

is inde-

pendent of the measurement noise vik, and that vik and v
j
k are mutually independent.

Concluding the calculations from this section, we have obtained a recursive solution for the

cross-covariances:

P
i, j
0∣0 ¼ 0

P
i, j
k∣k�1 ¼ Fk∣k�1P

i, j
k�1∣k�1F

T
k∣k�1 þQk

P
i, j
k∣k ¼ I �W i

k∣k�1H
i
k

� �

P
i, j
k∣k�1 I �W i

k∣k�1H
i
k

� �T

(19)

One can see that the cross-covariances are zero, if and only if the process noise covariance Qk

vanishes. In other words, if the tracks refer to a deterministically moving target and all sensors

do local Kalman filtering, then the convex combination equations yield the optimal fusion
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result. If this is not the case, as maybe in most practical applications, then the Naïve fusion

method is an approximation and its degree of approximation depends primarily on the level of

the process noise.

6. Gaussian product representation

The basic concept of the distributed Kalman filter is to make the local parameters stochastically

independent, even if process noise is present. This is achieved by a product representation, which

directly follows from the fact that.

exp �

1

2

x1k∣k

⋮

xSk∣k

0

B

B

B

B

@

1

C

C

C

C

A

�

xk

⋮

xk

0

B

B

B

B

@

1

C

C

C

C

A

0

B

B

B

B

@

1

C

C

C

C

A

T
P1
k∣k

� �

�1

⋱

PS
k∣k

� �

�1

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

x1k∣k

⋮

xSk∣k

0

B

B

B

B

@

1

C

C

C

C

A

�

xk

⋮

xk

0

B

B

B

B

@

1

C

C

C

C

A

0

B

B

B

B

@

1

C

C

C

C

A

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

¼ exp �

1

2

X

S

s¼1

xsk∣k � xk

� �T
Ps
k∣k

� �

�1
xsk∣k � xk

� �

( )

∝
Y

S

s¼1

N xk; x
s
k∣k;P

s
k∣k

� �

(20)

Thus, the Gaussian product representation is equivalent to uncorrelated track parameters for

each processing node. It should be noted that the product representation is not normalized,

that is, the integral for S > 1 is not unity. This, however, is not of practical relevance since the

fused estimate density is a Gaussian and the parameters of which are provided by the convex

combination.

7. Derivation of the distributed Kalman filter

For the DKF, we are going to modify the local processing scheme for each sensor in order to have

the product representation hold at each instant of time. Then, when the fusion center receives the

parameters from all sensors, the convex combination can be applied to compute the optimal

global estimate. Note that the convex combination does not consider a local prior of the fusion

center; therefore, the result will be independent from previous transmissions. This can be of great

benefit, if communication channels with unreliable links have to be considered, since the full

information on the target state is distributed in the sensor network. However, for completeness,

it should also be noted that the modified local parameters are not optimal anymore in a local

sense. One could say that local optimality is given up for the sake of global optimality [5].

In the following sections, the derivation of a prediction-filtering recursion of the DKF is

discussed.
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7.1. DKF prediction

For the prediction, it is assumed that the previous posterior is given in product representation:

p xk�1jZ
k�1

� �
∝
YS

s¼1

N xk�1; x
s
k�1∣k�1;P

s
k�1∣k�1

� �
(21)

For notational simplicity, we have conditioned the posterior on the full data set Zk�1 ¼ Zk�1
1 ;…;

�

Zk�1
s g, where Zk�1

s Zs
1;…;Zs

k�1

� �
are from all sensors and all time steps up to time tk�1, of which

the local tracks are sufficient statistics. At the initialization phase, that is, k� 1 ¼ 0, the product

representation is trivial, since the initial estimates can be based on first measurements, which are

mutually independent.

To derive a closed form solution for the prediction of product representation, it is required to

globalize the covariances Ps
k�1∣k�1 of the local processing nodes at first. This process changes the

local parameters such that the same previous posterior density is factorized; however, the local

covariances will be unified to a single ePk�1∣k�1. Rigorously speaking, this matrix does not

represent a meaningful covariance in the sense of an expected estimation error squared any-

more. Still, the fused result will be optimal since the global density is not changed during this

process. Thus, if we set

p xk�1jZ
k�1

� �
∝
YS

s¼1

N xk�1;exsk�1∣k�1;
ePk�1∣k�1

� �
(22)

where

exsk�1∣k�1 ¼ SPk�1∣k�1 Ps
k�1∣k�1

� ��1
xsk�1∣k�1

ePk�1∣k�1 ¼ SPk�1∣k�1

Pk�1∣k�1 ¼
XS

s¼1

Ps
k�1∣k�1

� ��1
 !�1

(23)

then the same fused density will be obtained, which is easily verified by means of the convex

combination. It should be noted that the remote error covariances Ps
k�1∣k�1 are required to

compute the globalized covariance matrix ePk�1∣k�1. Since Kalman filter conditions are assumed,

they can be computed without data transmission, as they do not depend on the local sensor

measurements. Therefore, it is sufficient to be aware of the remote sensor models.

The prediction formulas can now be obtained by a marginalization of the joint density of the

current and the last time step:
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p xkjZ
k�1

� �
¼

ð
dxk�1 p xk; xk�1jZ

k�1
� �

¼

ð
dxk�1 p xkjxk�1;Z

k�1
� �

p xk�1jZ
k�1

� �

¼

ð
dxk�1 p xkjxk�1ð Þ p xk�1jZ

k�1
� �

(24)

The last equality holds due to the Markov property of the system. Filling in our linear Gauss-

ian transition model and the previous posterior yields

p xkjZ
k�1

� �
∝

ð
dxk�1Ν xk; Fk∣k�1xk�1;Qk

� �YS

s¼1

N xk�1;exsk�1∣k�1;
ePk�1∣k�1

� �
(25)

By means of a simple algebraic manipulation, it is possible to factorize the transition kernel

Gaussian up to proportionality:

Ν xk; Fk∣k�1xk�1;Qk

� �
∝ exp �

1

2
Fk∣k�1xk�1 � xk
� �T

Qkð Þ�1 Fk∣k�1xk�1 � xk
� �� 	

¼ exp �
1

2
Fk∣k�1xk�1 � xk
� �T

S SQkð Þ�1 Fk∣k�1xk�1 � xk
� �� 	

∝ Ν xk; Fk∣k�1xk�1; SQk

� �� S

(26)

Thus, we can factorize the integration term of the global prior completely:

p xkjZ
k�1

� �
∝

ð
dxk�1

YS

s¼1

Ν xk; Fk∣k�1xk�1; SQk

� �
N xk�1;exsk�1∣k�1;

ePk�1∣k�1

� �
(27)

An application of the product formula (Section 12.2 in the appendix) yields:

p xkjZ
k�1

� �
∝

YS

s¼1

Ν xk; x
s
k∣k�1;

ePs

k∣k�1

� � ð
dxk�1

YS

s¼1

N xk�1; y
s
;Yð Þ, (28)

where

xsk∣k�1 ¼ Fk∣k�1exsk�1∣k�1

ePs

k∣k�1 ¼ Fk∣k�1
ePk�1∣k�1Fk∣k�1

T þ SQk

ys ¼ Y ePs

k∣k�1

� ��1
xsk∣k�1 þ Fk∣k�1

T SQkð Þ�1xk


 �

Y ¼ ePs

k∣k�1

� ��1
þ Fk∣k�1

T SQkð Þ�1Fk∣k�1


 ��1

:

(29)

At this point, we have derived factorized prediction formulas for the DKF prediction, and to

our knowledge, the remaining integral is part of the normalization constant. This, however, is
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not trivial, since the parameter ys depends on xk. A successive application of the product

formula yields the desired result:

Ð
dxk�1

YS

s¼1

N xk�1 � YFk∣k�1
T SQkð Þ�1xk;Y ePs

k∣k�1

� ��1
xsk∣k�1;Y


 �

∝
Ð
dxk�1N xk�1 � YFk∣k�1

T SQkð Þ�1xk; y;Y
� �

¼ 1,

(30)

for some auxiliary variables y and Y. All factors, which are independent of xk have been

omitted. This proves that the integral is independent of the state variable xk. Concluding the

derivations from above, we have derived the prediction formulas of the local estimation

parameters as:

exsk�1∣k�1 ¼ SPk�1∣k�1 Ps
k�1∣k�1

� ��1
xsk�1∣k�1

ePk�1∣k�1 ¼ SPk�1∣k�1

xsk∣k�1 ¼ Fk∣k�1exsk�1∣k�1

ePs

k∣k�1 ¼ Fk∣k�1
ePk�1∣k�1Fk∣k�1

T þ SQk:

7.2. DKF filtering

Let Zk denotes the set of measurements produced by all sensors at time tk. The posterior

density can be inferred by using the Bayes theorem:

p xkjZ
k

� �
¼

p Zkjxkð Þp xkjZ
k�1

� �

p ZkjZ
k�1

� � (31)

Due to the mutual independence of the measurement noises, the joint likelihood function is

given by:

p Zkjxkð Þ ¼
YS

s¼1

p Zs
kjxk

� �
(32)

This is particularly useful for the structure of the product representation used for the DKF.

Filling in the linear Gaussian models and neglecting the normalization constant in the denom-

inator directly yields:

p xkjZ
k

� �
∝

YS

s¼1

Ν Zk;H
s
kxk;R

s
k

� �
Ν xk; x

s
k∣k�1;

ePs

k∣k�1

� �
(33)

Thus, the product formula again can be applied to compute the posterior parameters:

p xkjZ
k

� �
∝

YS

s¼1

Ν xk; x
s
k∣k;P

s
k∣k

� �
(34)
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where

xsk∣k ¼ xsk∣k�1 þW s
k∣k�1ν

s
k

Ps
k∣k ¼ Ps

k∣k�1 �W s
k∣k�1S

s
kW

s T
k∣k�1

ν
s
k ¼ zsk �Hs

kx
s
k∣k�1

W s
k∣k�1 ¼ Ps

k∣k�1H
s T
k Ssk
� �

�1

Ssk ¼ Hs
kP

s
k∣k�1H

s T
k þ Rs

k:

(35)

Again, we have omitted the factors, which are independent of xk.

8. Information filter formulation of the DKF

In [6], an elegant derivation of the DKF formulas was published based on the information filter (IF).

The IF uses informationmatrices, which are inverted covariances, and information states, which are

informationmatrices multipliedwith states. The optimal, centralized update formulas for S sensors

based on the predicted information parameters Pk∣k�1

� �

�1
and Pk∣k�1

� �

�1
xk∣k�1 are given by:

Pk∣k

� �

�1
xk∣k ¼ Pk∣k�1

� �

�1
xk∣k�1 þ

X

S

s¼1

isk

Pk∣k

� �

�1
¼ Pk∣k�1

� �

�1
þ

X

S

s¼1

Isk

(36)

where isk ¼ Hs T
k Rs

k

� �

�1
zsk and Isk ¼ Hs T

k Rs
k

� �

�1
Hs

k are the local information contribution from the

current measurements at time tk, which were received by the FC. If we want to distribute the

computation to S nodes, we will have them uncorrelated as in the DKF previously. Since the fused

estimate is obtained via the convex combination, the local information parameters are summed up:

Pk∣k

� �

�1
xk∣k ¼

X

S

s¼1

Ps
k∣k

� �

�1
xsk∣k

Pk∣k

� �

�1
¼

X

S

s¼1

Ps
k∣k

� �

�1

(37)

This summation structure can be used to provide a closed prediction-filtering cycle.

8.1. Information DKF prediction

The prediction of the state is easier than a direct transition of the information parameters.

Based on the fused estimate, one can obtain.
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xk∣k�1 ¼ Fk∣k�1xk�1∣k�1

¼ Fk∣k�1Pk�1∣k�1

X

S

s¼1

Ps
k�1∣k�1

� �

�1
xsk�1∣k�1

¼

X

S

s¼1

Fk∣k�1Pk�1∣k�1 Ps
k�1∣k�1

� �

�1
xsk�1∣k�1:

(38)

Thus, we have given the local predicted state parameters as:

xsk∣k�1 ¼ Fk∣k�1Pk�1∣k�1 Ps
k∣k

� �

�1
xsk∣k (39)

Analogously, one obtains for the prior covariance:

Pk∣k�1 ¼ Fk∣k�1Pk�1∣k�1F
T
k∣k�1 þQk

¼
1

S
Fk∣k�1SPk�1∣k�1F

T
k∣k�1 þ SQk

(40)

Thus, if we set Ps
k∣k�1 ¼ SPk∣k�1 ¼ Fk∣k�1SPk�1∣k�1F

T
k∣k�1 þ SQk, then the convex combination

yields the exact global fused covariance.

8.2. Information DKF filtering

For the filtering, it is assumed that each sensor has computed its local information contribution

parameter isk and Isk from its own sensor model and, in addition, the information matrix

contributions Ilk from all remote sensors l by using the individual sensor models which are

again assumed to be known. Then, the information state is updated via.

Pk∣k

� �

�1
xk∣k ¼ Pk∣k�1

� �

�1
xk∣k�1 þ

X

S

s¼1

isk

¼

X

S

s¼1

Ps
k∣k�1

� �

�1
xsk∣k�1 þ isk:

(41)

As a direct consequence, the updated parameters of the local processors follow the standard IF

filtering equations:

Ps
k∣k

� �

�1
xsk∣k ¼ Ps

k∣k�1

� �

�1
xsk∣k�1 þ isk: (42)

For the globalized information matrix, the remote information parameters from the sensor

models are used:
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Pk∣k

� ��1
¼ Pk∣k�1

� ��1
þ
X

S

s¼1

Isk

¼
X

S

s¼1

Ps
k∣k�1

� ��1
þ Isk,

Ps
k∣k

� ��1
¼ Ps

k∣k�1

� ��1
þ Isk

(43)

It is important to note that the local processing nodes compute both the local pseudo information

matrix Ps
k∣k

� ��1
and the global fused error covariance Pk∣k, which is required for the prediction to

the next time step.

9. Distributed accumulated state density filter

The DKF from Sections 7 and 8 can be considered a big step toward distributed state estima-

tion, tracking, and information inference. However, in practical applications, the exact solution

is often hindered by the fact that the exact remote sensor model parameters are unknown and

can only be approximated based on local state estimates. The good news is that there is

another exact solution based on the accumulated state density (ASD). The distributed ASD

equations turn the spatial correlations into temporal correlations of successive states. Origi-

nally, the ASD equations were introduced to solve the out-of-sequence problem, which han-

dles delayed transmissions of measurements into an ongoing fusion process in an optimal

manner. Therefore, the temporal correlations can well be coped with the ASD approach.

At first, let us introduce the ASD state xk:n as

xk:n ¼ xTk ;…; xTn
� �T

(44)

where tk refers to the current time of the filtering process and tn refers to the initialization time.

The ASD approach now considers the conditional joint density p xk:njz
k

� �

, that is, the posterior

of the full trajectory of the target between tn and tk. In particular, the individual state densities

of a single instant of time can be obtained via marginalization. Also, it should be noted that the

Rauch-Tung-Striebel (RTS) smoothing equations are inherently integrated in the ASD posterior,

since all states are conditioned on the full set of measurements up to time tk [7].

A recursive computation of the ASD posterior can be achieved by using the Bayes theorem:

p xk:njZ
k

� �

¼
p Zkjxk:nð Þp xk:njZ

k�1
� �

p ZkjZ
k�1

� � (45)
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Since the measurements conditioned on the whole trajectory only depend on the state at time

tk, the joint likelihood function is given by:

p Zkjxk:nð Þ ¼ p Zkjxkð Þ ¼
Y

S

s¼1

p zskjxk
� �

(46)

The second factor can be reformulated as follows:

p xk:njZ
k�1

� �

¼ p xkjxk�1:n, Z
k�1

� �

p xk�1:njZ
k�1

� �

¼ p xkjxk�1ð Þp xk�1:njZ
k�1

� �

(47)

where we have used the Markov property of the system in the last equation. This recursive

representation can now be repeated on the term p xk�1:njZ
k�1

� �

. A successive application of this

procedure yields

pðxk:n Zk
�

�

�

∝
Y

S

s¼1

p zskjxk
� �� �

p xkjxk�1ð Þ
Y

S

s¼1

p zsk�1jxk�1

� �� �

p xk�1jxk�2ð Þ∙∙∙

Y

S

s¼1

p zsnþ1jxnþ1

� �� �

p xnþ1jxnð Þ∙p xnjZ
nð Þ

(48)

where we have neglected the normalization constant in the denominator. Filling in our Gaussian

models and using the factorization of the transition model from above equation yields

pðxk:n Zk
�

�

�

∝
Y

k

l¼nþ1

Y

S

s¼1

N zsl ;H
s
lxl;R

s
l

� �

N xl; Fl∣l�1xl�1; SQl

� �� �

∙p xnjZ
nð Þ (49)

Since the initial density usually is based on a first measurement, we can assume that it

factorizes into independent local track starts:

p xnjZ
nð Þ∝

Y

S

s¼1

N xn; xsn∣n;Ps
n∣n

� �

(50)

When the posterior is fully factorized in the number of sensors and in the time steps, each

processing node can compute the resulting ASD Gaussian with mean xsk:n∣k and covariance

matrix Ps
k:n∣k [7]:

pðxk:n zk
�

�

�

∝
Y

S

s¼1

N xk:n; xsk:n∣k;P
s
k:n∣k

� �

(51)

where the parameters are given by:
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xsk:n∣k ¼ xs Tk∣k ;…; xs Tn∣k

� �T
,

Ps
k:n∣k ¼

Ps
k∣k Ps

k∣kW
s T
k�1∣k Ps

k∣kW
s T
k�2∣k ⋯ Ps

k∣kW
s T
n∣k

W s
k�1∣kP

s
k∣k Ps

k�1∣k Ps
k�1∣kW

s T
k�2∣k�1 ∗ Ps

k�1∣kW
s T
n∣k�1

W s
k�2∣kP

s
k∣k W s

k�2∣k�1P
s
k�1∣k Ps

k�2∣k ∗ Ps
k�2∣kW

s T
n∣k�2

⋮ ∗ ∗ ∗ ⋮

W s
n∣kP

s
k∣k W s

n∣k�1P
s
k�1∣k ⋯ W s

n∣þ1P
s
nþ1∣k Ps:

n∣k

0

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

A

We have used a short notation such that xl∣k ¼ E xljz
k

� 

are the smoothed state estimates and

Pl∣k ¼ cov xljz
k

� 

are the covariances, respectively, which result from the Rauch-Tung-Striebel

equations. Also, the combined retrodiction gain matrices are known from the RTS smoother:

W l∣k ¼
Y

k�1

i¼l

W i∣iþ1

W i∣iþ1 ¼ Pi∣iF
T
iþ1∣i Piþ1∣i

� ��1

(52)

Thus, when the FC receives the local ASD parameters, the optimal fused estimate can be

obtained via the convex combination:

xk:n∣k ¼ Pk:n∣k

X

S

s¼1

Ps
k:n∣k

� ��1
xsk:n∣k,

Pk:n∣k ¼
X

S

s¼1

Ps
k:n∣k

� ��1
 !�1

(53)

For a continuous state estimation process, it is convenient to formulate the distributed ASD

solution in terms of a prediction-filtering cycle.

9.1. Distributed ASD prediction

For the prediction step, it is assumed that the local processing node s has computed the

previous filtering parameters xsk�1:n∣k�1 and Ps
k�1:n∣k�1, which refer to time tk�1. Then, the prior

parameters are given by:

xsk:n∣k�1 ¼ xs Tk∣k�1; x
s T
k�1:n∣k�1

� �T

Ps
k:n∣k�1 ¼

Ps
k∣k�1 Ps

k�1:n∣k�1W
s T
k�1:n

W s
k�1:nP

s
k�1:n∣k�1 Ps

k�1:n∣k�1

 !

xs
k∣k�1 ¼ Fk∣k�1x

s
k�1∣k�1

(54)
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Ps
k∣k�1 ¼ Fk∣k�1P

s
k�1∣k�1F

T
k∣k�1 þ SQk

W s
k�1:n ¼

W s
k�1∣k

W s
k�2∣k

⋮

W s
n∣k

0

B

B

B

B

B

@

1

C

C

C

C

C

A

9.2. Distributed ASD filtering

Since the prior is factorized in form of a product representation and the current measurements

from time tk are mutually uncorrelated, local Kalman filters can be applied to obtain the

posterior parameters:

xsk:n∣k ¼ xsk:n∣k�1 þW s
k:n∣k zsk �Hs

kΠkx
s
k:n∣k�1

� �

Ps
k:n∣k ¼ Ps

k:n∣k�1 �W s
k:n∣kS

s
kW

s T
k:n∣k

Ssk ¼ Hs
kΠkP

s
k:n∣k�1Π

T
kH

s T
k þ Rs

k

W s
k:n∣k ¼ Ps

k:n∣k�1Π
T
kH

s T
k Ssk

� �

�1
(55)

10. Conclusion

In this chapter, we have introduced the least squares solution to the track-to-track fusion

problem, where cross-covariances of the track estimation errors are required. Neglecting the

cross-covariances has led us to the Naïve fusion, a simple but powerful fusion algorithm for

practical applications. By recursive computation of the cross-covariances, we have seen that

they primarily depend on the process noise of the state transition kernel. Since a centralized

computation of the cross-covariances is infeasible in practical applications, more sophisticated

solutions are required for optimal fusion results. The distributed Kalman filter, which uses the

product representation to keep the local parameters decorrelated achieved this. However, this

approach only works, if the local processors know all measurement models at each time step.

Then, the distributed accumulated state density filter uses the temporal correlations to factor-

ize the global posterior density. This approach does not require remote sensor models and is

therefore, well suited for extensions with measurement ambiguity or nonlinear measurement

functions.

In the study, one can find more extensions based on the distributed Kalman filter to overcome

the lack of knowledge on the remote sensor models. In [8] and the references therein, a

debiasing matrix is introduced to compensate for globally biased gain matrices of the local

filters. An application of the tracklet fusion based on the distributed accumulated state density

filter can be found in [9]. Then, in [10], the information filter formulation of the distributed

Kalman filter also was extended to scenarios with input information on the transition process.
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A. Appendix

A.1. Matrix inversion lemma

Let A, B, C, and D be matrices of a block matrix such that A and D are invertable, and also such

that the Schur-complements D� CA�1B and A� BD�1C have full rank. Then, the inversion of

the block matrix is given by:

A B

C D


 ��1

¼
A� BD�1C
� ��1

� A� BD�1C
� ��1

BD�1

�D�1C A� BD�1C
� ��1

D�1
þD�1C A� BD�1C

� ��1
BD�1

0

@

1

A

¼
A�1

þ A�1B D� CA�1B
� ��1

CA�1
�A�1B D� CA�1B

� ��1

� D� CA�1B
� ��1

CA�1 D� CA�1B
� ��1

0

@

1

A

: (56)

In particular, it holds that

A� BD�1C
� ��1

¼ A�1
þ A�1B D� CA�1B

� ��1
CA�1

� A� BD�1C
� ��1

BD�1
¼

�A�1B D� CA�1B
� ��1

�D�1C A� BD�1C
� ��1

¼ � D� CA�1B
� ��1

CA�1D�1

þD�1C A� BD�1C
� ��1

BD�1
¼ D� CA�1B

� ��1

(57)

Proof. Let the inverted block matrix be given by submatrices E, F, G, and H. By definition, it

holds that

A B

C D


 �

E F

G H


 �

¼
I O

O I


 �

and
E F

G H


 �

A B

C D


 �

¼
I O

O I


 �

,

where I andO are the identity and zero matrix, respectively. A matrix multiplication of the first

and second equality yields two blocks of equations:

AEþ BG ¼ I

AFþ BH ¼ O

CEþDG ¼ O

CFþDH ¼ I

(58)

which we call block A and

EAþ FC ¼ I

EBþ FD ¼ O

GAþHC ¼ O

GBþHD ¼ I

(59)

which we call block B. Resolving block A for E, F, G, and H yields the first version of the

inverted block matrix, whereas resolving block B yields the second version.
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A.2. Product formula for Gaussian densities

For two Gaussian distributed random variables x and z, it holds that

N x; y;Pð ÞN z;Hx;Rð Þ ¼ N x; y;P
� �

N z; z; Sð Þ (60)

where

y ¼
yþWν

P�1yþHTR�1z

(

P ¼
P�WSWT

P�1 þHTR�1H
� ��1

8

<

:

S ¼ HPHT þ R

W ¼ PHTS�1

ν ¼ z�Hy

(61)

A proof can be found, for instance, in [11].
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