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Abstract

A 3-dimensional nutrient-prey-predator model with intratrophic predation is proposed
and studied. Some elementary properties such as invariance of nonnegativity, bounded-
ness and dissipativity of the system are presented. The purpose of this chapter is to study
the existence and stability of equilibria along with the effects of intratrophic predation
towards the positions and stability of those equilibria of the system. We also investigate
the occurrence of Hopf bifurcation. In the case when there is no presence of predator
organisms, intratrophic predation may not give impact on the stability of equilibria of the
system. We also analysed global stability of the equilibrium point. A suitable Lyapunov
function is defined for global stability analysis and some results of persistence analysis
are presented for the existence of positive interior equilibrium point. Besides that, Hopf
bifurcation analysis of the system are demonstrated.

Keywords: chemostat, intratrophic predation, local and global stability, Hopf
bifurcation

1. Introduction

Chemostat, a piece of laboratory apparatus is frequently used in mathematical ecology. This

device carries an important role for ecological studies because the mathematics are tractable,

and the relevant parameters are readily measurable. Chemostat also can be used for modelling

microorganism systems such as lake and wastewater treatment. For detailed information

regarding chemostat device, see [1].

There are abundant of research journals and papers for analysing chemostat models. One of them

is Li and Kuang [2], considered a simple food chain with distinct removal rate, which in this case,
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conservation law has failed. Therefore, to overcome the problem, they constructed a Lyapunov

function in global stability analysis of predator-free steady state. Local and global stability of

other steady states were shown in the paper along with persistence analysis of the system.

Another paper regarding chemostat model is by El-Sheikh and Mahrouf [3] that presented a

4-dimensional food chain in a chemostat with removal rates. They studied local and global

stability of equilibria along with elementary properties including boundedness of solutions,

invariance of nonnegativity, dissipativity and persistence analysis. Hopf bifurcation theory

was applied.

Recently, several analysis on chemostat models are carried out, for example, by Hamra and

Yadi [4] and Yang et al. [5]. In the work of [4], they studied a chemostat model with constant

recycle sludge concentration. Number of parameters are reduced by considering a dimension-

less model. Next, they successfully proved the existence of a positive uniform attractor for the

model with different removal rates by using dissipative theory. Hence, they used methods of

singular perturbation theory in order to investigate the asymptotic behaviour of the chemostat

model under small pertubations. Thus, it is shown that in the case of two species in competi-

tion, the positive unique equilibrium point is globally asymptotically stable.

In the research of Yang et al. [5], piecewise chemostat models which involve control strategy

with threshold window are proposed and analysed. They investigated the qualitative analysis

such as existence and stability of equilibrium points of the system and it is proved that the

regular equilibria and pseudo-equilibrium cannot coexist. The global stability analysis of both

the regular equilibria and pseudo-equilibrium have been studied using qualitative analysis

techniques of non-smooth Filippov dynamic systems. Furthermore, the bifurcation analysis of

the system is investigated with theoretical and numerical techniques.

Moreover, one of the interesting topic is the research involving intratrophic predation.

Intratrophic predation is a situation where members of a trophic group consume other mem-

bers of the same trophic group (for the purpose of mathematical modelling). Several previous

studies based on intratrophic predation have been discovered. One of them is by Pitchford and

Brindley [6]. They studied a predator-prey model with intratrophic predation and successfully

shown that the model had desirable and plausible features. Furthermore, to investigate the

effect of intratrophic predation towards the position and stability of equilibrium points of a

model, they had developed a simple asymptotic method.

For Hopf bifurcation analysis, a study by Mada Sanjaya et al. [7] has been carried out. They

introduced an ecological model of three species food chain with Holling Type-III functional

response. Two equilibrium points are obtained. They proved that the system has periodic

solutions around those equilibrium points. Not only that, they also investigated the dynamical

behaviours of the system and found that it was sensitive when the parameter values varied.

Tee and Salleh [8] investigated Hopf bifurcation of a nonlinear modified Lorenz system using

normal form theory that was the same technique used in Hassard et al. [9]. Then, the dynamics

on centre manifold of the system was presented as it will be applied in the technique of normal

form theory. Another research based on Hopf bifurcation analysis is carried out by [10]. They

considered a three-species food chain models with group defence. It is proved that the model

without delay undergone Hopf bifurcation by using the carrying capacity of the environment
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as the bifurcation parameter. In the analysis of Hopf bifurcation in a delay model, they used a

computer code BIFDD to determine the stability of bifurcation solutions.

Furthermore, a simple 3-dimensional food chain model in chemostat with variable yield for

prey population and constant yield for predator population is proposed by Rana et al. [11]. In

this model, the prey consumes the nutrient and the predator consumes the prey but the

predator does not consume the nutrient. The functional response functions are assumed in

Michaelis-Menton type. The stability of equilibrium points, the existence of limit cycles, the

Hopf bifurcation and the positive invariant set for the system are discussed by qualitative

analysis of differential equations. Finally, numerical simulations are carried out in support of

the theoretical results.

Our work is a modification of the models in Li and Kuang [2] and El-Sheikh and Mahrouf [3].

It should be emphasised that this work is different from [2, 3]. The modified model contains

parameter b, known as the measure of intensity of intratrophic predation which is not in their

models. The parameter b and term 1þ D1x
1þxþD1by

� �

are added to differential equations x0 and y0

in the interest of studying the behaviour of the modifiedmodel. By this motivation, we analysed

the stability and Hopf bifurcation of the model with intratrophic predation, as intratrophic

predation analysis is rarely considered in mathematical models of populations biologically [6].

The purpose of this chapter is to study the existence and stability of equilibria along with the

effects of intratrophic predation towards the positions and stability of those equilibria of the

system. We shall also investigate the occurrence of Hopf bifurcation towards the system.

Hence, we introduced a simple nutrient-prey-predator model in chemostat with intratrophic

predation. Some notations regarding the model will be explained. Not only that, several

elementary properties such as nonnegativity, boundedness and dissipativity along with defi-

nitions and several results will be presented. The local and global stability together with

existence of the equilibrium points are shown. For global stability analysis, a suitable

Lyapunov function is defined. Lastly, we applied Hopf bifurcation theorems (see [9]) in the

analysis of Hopf bifurcation.

2. The model

In this work, we consider a nutrient-prey-predator model with one prey organism and one

predator organism in chemostat with intratrophic predation. Biologically, the predator organ-

isms will feed upon the prey organisms, while the prey organisms will consume the nutrient in

the chemostat. Precisely, the modified model of [2, 3] is

s0 tð Þ ¼ s0 � s
� �

D0 �
1

β1
f 1 sð Þx,

x0 tð Þ ¼ f 1 sð Þ �D1

� �

x�
1

β2
f 2 xð Þ yþ

D1xy

D2 þ xþ by

� �

,

y0 tð Þ ¼ f 2 xð Þ yþ
D1xy

D2 þ xþ by

� �

� y,

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(1)
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where s 0ð Þ ¼ s0 > 0, x 0ð Þ ¼ x0 > 0, y 0ð Þ ¼ y0 > 0, Di ¼ 1; i ¼ 0, 1, 2, βj ≤ 1; j ¼ 1, 2 and

0 ≤ b ≤ 1: This leads to the following assumptions on functional response f n, n ¼ 1, 2:

ið Þ f n : R
þ ! R

þ and f n, n ¼ 1, 2 are continuously differential equations,

iið Þ f n 0ð Þ ¼ 0,

iiið Þ f 01 sð Þ > 0, f 02 xð Þ > 0 for all s, x > 0:

(2)

Generally, functional response is a common component in predator-prey system. The term

‘functional response’ was first stated by Solomon [12] which defined the relationship between

the rate of predation, i.e., the number of prey organisms consumed per predator organism in

time, t with the density of prey organisms.

By referring to system (1), s represents the concentration of nutrient at time t while s0 is the

input nutrient concentration. The variables x and y represent the concentration of prey and

predator at time t, respectively. Parameters β1 and β2 denote the yield constants, D0 is the

washout rate of the chemostat while D1 and D2 are the removal rates of x and y, respectively.

Removal rate is the sum of washout rate and death rate θi, i.e., Di ¼ D0 þ θi, i ¼ 1, 2: f 1 sð Þ and

f 2 xð Þ denote the specific growth rate of prey x and predator y, respectively, while b is the

measure of intensity of intratrophic predation in predator organisms y: These observations

are based on numerical simulations. We can rescale system (1) by reducing the number of

parameters using standard change of variables such as.

To make our works more convenient, we just drop the bars and tildes. So after rescaling, the

system (1) becomes

s0 ¼ 1� s� f 1 sð Þx,

x0 ¼
f 1 sð Þ

D1
� 1

� �

x� f 2 xð Þy 1þ
D1x

1þ xþD1by

� �

,

y0 ¼ f 2 xð Þy 1þ
D1x

1þ xþD1by

� �

� y,

8

>

>

>

>

>

<

>

>

>

>

>

:

(3)

where

s 0ð Þ > 0, x 0ð Þ > 0, y 0ð Þ > 0 andD1 > 0: (4)

Now, the variables are non-dimensional and the discussion is in R
3
þ ¼ s; x; yð Þ : s > 0;f

x > 0; y > 0g.

s ¼
s

s0
, x ¼

x

D0β1s
0
, y ¼

y

D0D1β1β2s
0
,

f 1 sð Þ ¼
~f 1 s0s
� �

D0
, f 2 xð Þ ¼

~f 2 D0β1s
0x

� �

D0
, b ¼

b

β2
,

t ¼ Dit, i ¼ 0, 1, D2 ¼ D0β1s
0
:
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2.1. Elementary properties of system (3)

In this section, we present nonnegativity, boundedness and dissipativity of the system (3) with

respect to a region in R3
þ. Firstly, we consider dissipativity of the system (3).

Definition 1 [13]. A system with differential equations x0 ¼ f xð Þ is defined to be dissipative if

there exists a bounded subset Γ of R3, such that there is a time t0 for any x0 ∈R3 which depends

on x0 and Γ so that the solution of the system ϕ t; x0
� �

∈Γ for t ≥ t0:

Theorem 1. Let H be the region

H ¼ s; x; yð Þ∈R3
þ :

1

Pmax
� q ≤ sþ xþ y ≤

1

Pmin
þ q

� 	

,

where Pmax ¼ max 1; f 1 sð Þ þ
f 1 sð Þ
D1

� 1
n o

, Pmin ¼ min 1; f 1 sð Þ þ
f 1 sð Þ
D1

� 1
n o

and q is a positive constant.

Then,

i. Η is positively invariant.

ii. All nonnegative solutions of (3) with initial values in R3
þ are uniformly bounded and they

eventually attracted into region Η:

iii. The system is dissipative.

Remark 1. We must show that the solutions of system (3) are nonnegative and bounded, so

that the system becomes biologically meaningful.

Proof of Theorem 1.

(i): First, we must show that 1
Pmax

� q ≤ sþ xþ y ≤ 1
Pmin

þ q: Let us define

Pmax ¼ max 1; f 1 sð Þ þ
f 1 sð Þ

D1
� 1

� 	

and Pmin ¼ min 1; f 1 sð Þ þ
f 1 sð Þ

D1
� 1

� 	

:

By adding those differential equations s0, x0 and y0 in (3), we shall get

s0 þ x0 þ y0 ¼ 1� sþ f 1 sð Þ þ
f 1 sð Þ

D1
� 1

� �� �

xþ y


 �

:

Hence, this leads to

1� Pmax sþ xþ yð Þ ≤ 1� sþ f 1 sð Þ þ
f 1 sð Þ

D1
� 1

� �� �

xþ y


 �

≤ 1� Pmin sþ xþ yð Þ:

Thus, solving the above inequality gives

Stability and Hopf Bifurcation Analysis of a Simple Nutrient-Prey-Predator Model with Intratrophic Predation…
http://dx.doi.org/10.5772/intechopen.71624

49



1

Pmax
� q ≤ sþ xþ y ≤

1

Pmin
þ q,

as q is the positive constant

(ii) and (iii): Let 0 < s0 < 1 and consider.

s0 ¼ 1� s� f 1 sð Þx < 1� s:

Then s tð Þ < 1� e�t

1�s0
for 0 < s0 < 1, and hence limt!∞ sups tð Þ < 1 for 0 < s0 < 1:

Now, consider the x0 equation;

x0 ¼
f 1 sð Þ

D1
� 1

� �

x� f 2 xð Þy 1þ
D1x

1þ xþD1by

� �

< f 1 sð Þ � 1
� �

x < α1x,

where α1 ¼ maxs∈Η f 1 sð Þ � 1
� �

: We assume that α1 ¼ maxs∈Η f 1 sð Þ � 1
� �� �

< 0: Hence,

x tð Þ < x0e
α1t, α1 < 0, and thus, limt!∞ supx tð Þ < x0, for x0 > 0:

Similarly, consider the y0 equation,

y0 ¼ f 2 xð Þy 1þ
D1x

1þ xþD1by

� �

� y < α2y,

where α2 ¼ maxx∈Η f 2 xð Þ þ
f 2 xð ÞD1x
1þxþD1by

� �

: We shall assume that maxx∈Η f 2 xð Þ þ
f 2 xð ÞD1x
1þxþD1by

� �

< 0:

Then, y tð Þ < y0e
α2t where α2 < 0: Hence, limt!∞ sup y tð Þ < y0 for y0 > 0: Thus, system (3) is

proved to be uniformly bounded and dissipative, following Definition 1. ∎

2.2. Existence of equilibrium points

According to Robinson [14], a point is termed ‘equilibrium point’ because of the forces are in

equilibrium and the mass did not move. Therefore, in order to find equilibrium points of the

system (3); E1, E2 and E3, we equate the differential equations s0, x0 and y0 to zero and solve the

resulting equations simultaneously. The possible equilibrium points are as follows;

i. E1 1; 0; 0ð Þwhere no predator organism y and prey x exist. By equating system (3) to zero, we

will get s ¼ 1 from the equation 1� s� f 1 sð Þx ¼ 0. Then, from equation x0 ¼ 0, we get

x ¼ 0 when y ¼ 0:

ii. E2 ζs;
1�ζs
D1

; 0
� �

. s ¼ ζs is the unique solution of
f 1 sð Þ
D1

� 1 ¼ 0: Let y ¼ 0, then Eq. (3) give

1� s� f 1 sð Þx ¼ 0 and
f 1 sð Þ
D1

� 1
� �

x ¼ 0: When x 6¼ 0,
f 1 sð Þ
D1

� 1 ¼ 0. Therefore, f 1 sð Þ ¼ D1:

Next, we find x: From equation 1� s� f 1 sð Þx ¼ 0, x ¼ 1�s
f 1 sð Þ : By substituting f 1 sð Þ ¼ D1

and s ¼ ζs, we get x ¼ 1�ζs
D1

: Thus, E2 is the one possible equilibrium point that consists

only prey organisms and not predator organisms.

iii. E3 s∗; x∗; y∗ð Þ denotes the positive interior equilibrium point with s∗, x∗, y∗ > 0. s∗ is a

unique solution of 1� s� f 1 sð Þx ¼ 0: From this, we have x∗ ¼ 1�s∗

f 1 s∗ð Þ. Next, let the
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equation y0 ¼ 0. Since y 6¼ 0, f 2 xð Þ 1þ D1x
1þxþD1by

� �
¼ 1. We solve for y, and get y∗ ¼

2x∗þ1ð Þf 2 x∗ð Þ�x∗�1

bD1 1�f 2 x∗ð Þð Þ
. Thus, the equilibrium point E3 s∗; x∗; y∗ð Þ is s∗; 1�s∗

f 1 s∗ð Þ ;
2x∗þ1ð Þf 2 x∗ð Þ�x∗�1

bD1 1�f 2 x∗ð Þð Þ

� �
,

where x∗ ¼ 1�s∗

f 1 s∗ð Þ.

To show the existence of E2, we let the system (3) be restricted to Rþ
sx as

s0 ¼ 1� s� f 1 sð Þx,

x0 ¼
f 1 sð Þ

D1
� 1

� �
x,

8
><

>:
(5)

where s 0ð Þ > 0 and x 0ð Þ > 0. Thus, Lemma 1 below shows the existence of non-trivial equilib-

rium point E2:

Lemma 1. Suppose that a point ζs;bxð Þ exists in R
þ
sx such that ζs þD1bx � 1 ¼ 0 as time, t

approaches ∞: Then, the non-trivial equilibrium point E2 ζs;
1�ζs
D1

; 0
� �

exists.

Proof. We will get two surfaces by equating system (5) to zero;

1� s� f 1 sð Þx ¼ 0,

f 1 sð Þ

D1
� 1

� �
x ¼ 0:

Then,

1� s

x
¼ f 1 sð Þ and D1 ¼ f 1 sð Þ:

Thus, 1� s ¼ D1x, i.e., x ¼ 1�s
D1

. By taking s ¼ ζs, we will have x ¼ bx ¼ 1�ζs
D1

and

satisfying ζs þD1bx � 1 ¼ 0. Hence, the equilibrium point E2 ζs;
1�ζs
D1

; 0
� �

exists. ∎

2.3. Stability analysis of equilibrium points E1,E2 and E3

In this section, we analyse the stability of equilibrium points as it plays an important part in

ordinary differential equations with their applications. As we cannot easily identify the posi-

tions of equilibrium point in applications of dynamical system, but only approximately, so the

equilibrium point must be in stable state to be biologically meaningful [15]. Several definitions

and theorem from Ref. [14] are stated to make us understand clearly.

Definition 2. [14] A fixed point x∗ is Lyapunov stable or L-stable, provided that any solution

ϕ t; x0ð Þ stays near x∗ for all future time t ≥ 0 if the initial condition x0 starts near enough to x∗:

Specifically, a fixed point x∗ is L-stable, provided that for any E > 0, there is δ > 0, such that if

x0 � x∗k k < δ, then ϕ t; x0ð Þ � x∗
�� �� < E for all t ≥ 0.
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Another form of stability is asymptotically stable. This is stated in the following Definition 3.

below. Before going further to understand this concept, we need the definition of ω-limit set as

follows.

Definition 3. [14] A point k is an ω-limit point of the trajectory of x0, if ϕ t; x0ð Þ keeps coming

near k as t ! ∞ (i.e., there is a sequence of times tj, with tj ! ∞ as j ! ∞ such that ϕ tj; x0
� �

converges to k). Certainly, if ϕ t; x0ð Þ � x∗
�

�

�

� ! 0 as t ! ∞, then x∗ is the only ω-limit point of x0.

There can be more than one point that is an ω-limit point of x0. The set of all ω-limit points of x0
is denoted by ω x0ð Þ and is called the omega limit set of x0.

Definition 4. [14] A fixed point x∗ is weakly asymptotically stable, if there exists δ1 > 0

such that ω x0ð Þ ¼ x∗f g for all x0 � x∗k k < δ1 (i.e., ϕ t; x0ð Þ � x∗
�

�

�

� ! 0 as time t ! ∞ for

all x0 � x∗k k < δ1). Therefore, a fixed point is weakly asymptotically stable, if the stable man-

ifold contains all points in a neighbourhood of the fixed point (i.e., all points are sufficiently

close). A fixed point x∗ is asymptotically stable if it is both L-stable and weakly asymptotically

stable. An asymptotically stable fixed point is also called sink.

Moreover, Theorem 2 below clearly shows that if a fixed point x∗ is hyperbolic (the real parts of

all eigenvalues of the Jacobian matrix at x∗, i.e., DF x∗ð Þ are nonzero), then the stability type of

the fixed point for the nonlinear system is the same as for the linearized system at that fixed

point.

Theorem 2. [14] Let _x ¼ F xð Þ be a differential equation in n variables, with a hyperbolic fixed point x∗.

Suppose thal F, ∂Fi
∂xj

xð Þ and ∂
2Fi

∂xj∂xk
xð Þ are all continuous. Then, the stability type of the fixed point for the

nonlinear system is the same as for the linearized system at that fixed point.

a. If the real parts of all the eigenvalues of DF x∗ð Þ are negative, then the fixed point is asymptotically

stable for the nonlinear equation (i.e., if the origin of the linearized system is asymptotically stable,

then x∗ is asymptotically stable for the nonlinear equation). In this case, the basin of attraction

WS x∗ð Þ is an open set that contains some solid ball about the fixed point.

b. If there is at least one eigenvalue of DF x∗ð Þ has positive real part, then the fixed point x∗ is unstable.

(For the linearized system, the fixed point can be a saddle, unstable node, unstable focus, etc.)

c. If one of the eigenvalues of DF x∗ð Þ has zero real part, then the situation is more complicated. In

particular, for n ¼ 2, if the fixed point is an elliptic center (eigenvalues �βi) or one eigenvalue is

zero of multiplicity one, then the linearized system does not determine the stability type of the fixed

point.

Now by utilising the Theorem 2, we are going to analyse the stability of the fixed points E1, E2

and E3.

(i) Stability analysis of E1:

Now, we will discuss the stability type of the equilibrium point E1 1; 0; 0ð Þ. The Jacobian matrix

of the system (3) is
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J ¼

�f 01 sð Þx� 1 �f 1 sð Þ

f 01 sð Þx

D1

f 1 sð Þ

D1
� f 2 xð Þy

D1

1þ xþD1by

� �

�
D1x

1þ xþD1byð Þ2

 !" #

� f 2
0 xð Þy

D1x

1þ xþD1by

� �

þ 1

� �

� 1

0 f 2 xð Þy
D1

1þ xþD1by

� �

�
D1x

1þ xþD1byð Þ2

 !" #

þ f 02 xð Þy 1þ
D1x

1þ xþD1by

� �

2

6

6

6

6

6

6

6

4

0

f 2 xð ÞD2
1bxy

1þ xþD1byð Þ2

 !

� f 2 xð Þ 1þ
D1x

1þ xþD1by

� �

f 2 xð Þ 1þ
D1x

1þ xþD1by

� �

�
f 2 xð ÞD2

1bxy

1þ xþD1byð Þ2

 !

� 1

3

7

7

7

7

7

7

7

5

:

Then,

JE1
¼

�1 �f 1 1ð Þ 0

0
f 1 1ð Þ

D1
� 1 0

0 0 �1

0

B

B

@

1

C

C

A

:

As Jacobian matrix JE1
above is an upper triangular, therefore the diagonal is the value of all of

its eigenvalues; λ1 ¼ �1,λ2 ¼ �1 and λ3 ¼
f 1 1ð Þ
D1

� 1: If all the eigenvalues of JE1 are negatives,

then this leads to the following result.

Theorem 3. If the eigenvalue λ3 such that

λ3 ¼
f 1 1ð Þ

D1
� 1 < 0,

then the trivial equilibrium point E1 1; 0; 0ð Þ is locally asymptotically stable.

(ii) Stability analysis of E2:

Next, we analyse the local stability of the system (3) that restricted to the neighbourhood of the

equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

. The Jacobian matrix at E2 ζs;
1�ζsð Þ
D1

; 0
� �

is given as

JE2
¼

�
f 01 ζsð Þ 1� ζsð Þ

D1
� 1 �f 1 ζsð Þ 0

f 01 ζsð Þ 1� ζsð Þ

D2
1

f 1 ζsð Þ

D1
� 1 �f 2

1� ζs

D1

� �

1þ
1� ζs

1þ
1� ζS

D1

� �

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

0 0 f 2
1� ζs

D1

� �

1þ
1� ζs

1þ
1� ζS

D1

� �

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

� 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:
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We can see from both Jacobian matrices JE1 and JE2 that there are no parameter b involved

when the predator organisms y is zero. This means that intratrophic predation does not affect

the local stability and existence of E1 and E2 when no predator organisms involved. The

characteristic equation is λ3 þ c1λ
2 þ c2λþ c3 ¼ 0 where

c1 ¼
1

D1 D1 � ζs þ 1ð Þ
f 01 ζsð Þ þ 3D1 � f 1 ζsð Þ þ f 01 ζsð ÞD1 �D1f 2

1� ζs

D1

� ��

� 2ζsf
0
1 ζsð Þ � 3D1ζs � 2D2

1f 2
1� ζs

D1

� �

þ ζ
2
s f

0
1 ζsð Þ � f 1 ζsð ÞD1 þ ζsf 1 ζsð Þ þ 3D2

1 �D1ζsf
0
1 ζsð Þ

þD1ζsf 2
1� ζs

D1

� �

þD2
1ζsf 2

1� ζs

D1

� �

Þ,

c2 ¼
1

D1 D1 � ζS þ 1ð Þ
2f 1 ζsð Þ � 3D1 � 2f 01 ζsð Þ � 2D1f

0
1 ζsð Þ þ f 2

1� ζs

D1

� �

f 01 ζsð Þ

�

þ 2D1f 2
1� ζs

D1

� �

þ 4ζsf
0
1 ζsð Þ þ 3D1ζs þ 4D2

1f 2
1� ζs

D1

� �

� 2ζ2s f
0
1 ζsð Þ

þ 2D1f 1 ζsð Þ � f 1 ζsð Þf 2
1� ζs

D1

� �

� 2ζsf 1 ζsð Þ � 3D2
1 � 2D1f 1 ζsð Þf 2

1� ζs

D1

� �

þ ζsf 1 ζsð Þf 2
1� ζs

D1

� �

þ 2D1f
0
1 ζsð Þf 2

1� ζs

D1

� �

þ 2D1ζsf
0
1 ζsð Þ

� 2ζsf
0
1 ζsð Þf 2

1� ζs

D1

� �

� 2D1ζsf 2
1� ζs

D1

� �

þ ζ
2
s f

0
1 ζsð Þf 2

1� ζs

D1

� �

�2D2
1ζsf 2

1� ζs

D1

� �

� 3D1ζsf
0
1 ζsð Þf 2

1� ζs

D1

� �

þD1ζ
2
s f

0
1 ζsð Þf 2

1� ζs

D1

� �

þD1ζsf 1 ζsð Þf 2
1� ζs

D1

� ��

,

c3 ¼
1

D1 D1 � ζs þ 1ð Þ
f 1 ζsð Þ �D1 � f 01 ζsð Þ �D1f

0
1 ζsð Þ þ f 01 ζsð Þf 2

1� ζs

D1

� �

þD1f 2
1� ζs

D1

� ��

þ 2ζsf
0
1 ζsð Þ þD1ζs � ζ

2
s f

0
1 ζsð Þ þ f 1 ζsð ÞD1 � f 1 ζsð Þf 2

1� ζs

D1

� �

� ζsf 1 ζsð Þ

�D2
1 � 2D1f 1 ζsð Þf 2

1� ζs

D1

� �

þ ζsf 1 ζsð Þf 2
1� ζs

D1

� �

þ 2D1f
0
1 ζsð Þf 2

1� ζs

D1

� �

þD1ζsf
0
1 ζsð Þ � 2ζsf

0
1 ζsð Þf 2

1� ζs

D1

� �

�D1ζsf 2
1� ζs

D1

� �

þ ζ
2
s f

0
1 ζsð Þf 2

1� ζs

D1

� �

�D2
1ζsf 2

1� ζs

D1

� �

� 3D1ζsf
0
1 ζsð Þf 2

1� ζs

D1

� �

þD1ζ
2
s f

0
1 ζsð Þf 2

1� ζs

D1

� �

þD1ζsf 1 ζsð Þf 2
1� ζs

D1

� ��

:

Then, by using MATLAB R2015b, we get the eigenvalues of JE2
which are λ4 ¼ �1 ,

λ5 ¼
f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
and λ6 ¼

f 2
1�ζs
D1

� �

1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 where D1 � ζs þ 1 6¼ 0: We summarise

the above discussion in the following theorems.

Complexity in Biological and Physical Systems - Bifurcations, Solitons and Fractals54



Theorem 4. Suppose the assumptions such as

f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
< 0 and

f 2
1�ζs
D1

� �

1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 < 0

are satisfied, then the equilibrium point, E2 ζs;
1�ζsð Þ
D1

; 0
� �

is locally asymptotically stable.

Theorem 5. If

f 01 ζsð Þ ζs�1ð Þþf 1 ζsð Þ�D1

D1
< 0 and

f 2
1�ζs
D1

� �

1þ2D1�ζs�D1ζsð Þ�1

D1�ζsþ1 < 0,

then the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

is a hyperbolic saddle and is repels locally in y-direction.

Particularly, the dimension of the stable manifold W s E2ð Þ and the unstable manifold Wu E2ð Þ are given

by

dimW s E2ð Þ ¼ 2 and dimWu E2ð Þ ¼ 1.

Proof. The results follow from inspections of the eigenvalues of the matrix JE2
and Theorem 2

(see [16, 18]). ∎

Definition 4. [17] The flow F will be called uniformly persistent if there exists ε0 > 0 such that

for all x∈E0, limt!∞ d π x; tð Þ; ∂Eð Þ ≥ ε0:

The following theorem shows the existence of the equilibrium point E2 using persistence

analysis.

Theorem 6. Assume that

i. Lemma 1 being holds,

ii. E2 is a unique hyperbolic saddle point in R
þ
sxy and repels locally in y-direction (as in Theorem 5),

iii. no existence of periodic orbits in the planes of Rþ
sxy.

Then

lim
t!þ∞

inf s tð Þ > k, lim
t!þ∞

inf x tð Þ > k, lim
t!þ∞

inf y tð Þ > k,

where k > 0:

Particularly, the system (3) exhibits uniform persistence and the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

exists.

Proof. The result follows from the Definition 4, which defines uniform persistence by Butler

et al. [17] and Nani and Freedman [18]. ∎
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(iii) Stability analysis of E3 s∗; x∗; y∗ð Þ:

The Jacobian matrix at E3 is

JE3
¼

� f 01 s∗ð Þx∗ � 1 �f 1 s∗ð Þ

f 01 s∗ð Þx∗

D1

f 1 s∗ð Þ

D1
� f 2 x∗ð Þy∗

D1

1þ x∗ þD1by∗

� �

�
D1x

∗

1þ x∗ þD1by∗ð Þ2

 !" #

� f 2
0 x∗ð Þy∗

D1x
∗

1þ x∗ þD1by∗
þ 1

� �

� 1

0 f 2 x∗ð Þy∗
D1

1þ x∗ þD1by∗

� �

�
D1x

∗

1þ x∗ þD1by∗ð Þ2

 !" #

þ f 02 x∗ð Þy∗
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

2

6

6

6

6

6

6

6

4

0

f 2 x∗ð ÞD2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2

 !

� f 2 x∗ð Þ
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

f 2 x∗ð Þ
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

�
f 2 x∗ð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2

 !

� 1

3

7

7

7

7

7

7

7

5

:

The eigenvalues of JE3
are resulted from the characteristic equation below

λ
3 þ c4λ

2 þ c5λþ c6 ¼ 0, (6)

where

c4 ¼ f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 3�
f 1 s∗ð Þ

D1
,

c5 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 2ð Þ þ
f 1 s∗ð Þ Z� R� 2ð Þ

D1
þ 2Qþ 2Rþ 2V � 2Zþ 3,

c6 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 1ð Þ þ
f 1 s∗ð Þ Z� R� 1ð Þ

D1
þQþ Rþ V � Zþ 1,

and

Q ¼ f 2 x∗ð Þy∗
D1

1þ x∗ þD1by∗

� �

�
D1x

∗

1þ x∗ þD1by∗ð Þ2

 !" #

,

R ¼
f 2 x∗ð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2

 !

,

V ¼ f 02 x∗ð Þy∗
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

,

Z ¼ f 2 x∗ð Þ
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

:

From (6), we obtain the eigenvalues; λ7 ¼ �1, and λ8, λ9 are
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λ8 ¼ �
1

2D1
D1 f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 2

� �
� f 1 s∗ð Þ

�

þ



D1

Q2 þ 2QRþ 2QV � 2QZ� 2Q f 1 s∗ð Þ � f 01 s∗ð Þx∗ 2Qþ 2Rþ 2V � 2Z� f 01 s∗ð Þx∗
� �

þ R2þ

2RV � 2RZþ V2 � 2VZþ Z2

0

B@

1

CAþ

f 1 s∗ð Þ 2D1R� 2D1V � 2D1Z� f 01 s∗ð Þx∗
� �

þ f 1 s∗ð Þ2

vuuuuuuuut

0

BBBBBB@

1

CCCCCCA

þf 01 s∗ð ÞD1x
∗
�
,

λ9 ¼ �
1

2D1
D1 f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 2

� �
� f 1 s∗ð Þ

�

�



D1

Q2 þ 2QRþ 2QV � 2QZ� 2Q f 1 s∗ð Þ � f 01 s∗ð Þx∗ 2Qþ 2Rþ 2V � 2Z� f 01 s∗ð Þx∗
� �

þ R2þ

2RV � 2RZþ V2 � 2VZþ Z2

0

B@

1

CAþ

f 1 s∗ð Þ 2D1R� 2D1V � 2D1Z� f 01 s∗ð Þx∗
� �

þ f 1 s∗ð Þ2

vuuuuuuuut

0

BBBBBB@

1

CCCCCCA

þf 01 s∗ð ÞD1x
∗
�
:

These results lead to the following theorem.

Theorem 7. Suppose that λ8 < 0 and λ9 < 0, then the equilibrium point E3 is locally asymptotically

stable.

2.4. Global stability and uniform persistence analysis

Now we will analyse the global stability of the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

and the

existence of positive interior equilibrium point E3 s∗; x∗; y∗ð Þ. For global stability analysis, we

use the similar technique as in [3, 18].

(i) Global stability analysis of E2 ζs;
1�ζs
D1

; 0
� �

Consider system (3) restricted to Rþ
sx as in (5). Let N be a neighbourhood of equilibrium point

E2 ζs;
1�ζs
D1

; 0
� �

in Rþ
sx. To analyse the global stability of the equilibrium point E2, a suitable

Lyapunov function L ¼ 1
2 n1 s�bsð Þ

2
þ n2 x� bxð Þ

2
� �

is used, where bs and bx denote the compo-

nents of E2 bs;bxð Þ, i.e., bs ¼ ζs and bx ¼ 1�ζs
D1

, while n1 and n2 are positive constants. Note that L is a

positive definite function with respect to E2 in R
þ
sx and a Lyapunov function for system (5) in N .

By differentiating L with respect to time t, we get

dL

dt
¼ n1 s�bsð Þs0 þ n2 x� bxð Þx0, (7)

where bx ¼ 1�bs
D1

. From (5), we have
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1 ¼ bs þ bxf 1 bsð Þ and D1 ¼ f 1 bsð Þ:

Hence (7) can be written as

L0 ¼ n1 s�bsð Þ bs þ bxf 1 bsð Þ � s� f 1 sð Þx
� �

þ n2 x� bxð Þ
f 1 sð Þ

f 1 bsð Þ
� 1

� �
x

¼ �n1 s�bsð Þ
2
þ n1 s�bsð Þ f 1 bsð Þbx � f 1 sð Þx

� �
þ n2 x� bxð Þx

f 1 sð Þ

f 1 bsð Þ
� 1

� �

¼ n11 s�bsð Þ
2
þ
1

2
n12 s�bsð Þ x� bxð Þ þ

1

2
n21 s�bsð Þ x� bxð Þ þ n22 x� bxð Þ

2
,

where
n11 ¼ �n1 < 0,

n12 ¼ n21 ¼ n1
f 1 bsð Þbx � f 1 sð Þx

x� bx
,

n22 ¼ n2
x f 1 sð Þ � f 1 bsð Þ
� �

x� bxð Þf 1 bsð Þ
:

Clearly that L0 can be written as L0 ¼ XTNX, which T denotes the transpose and the matrixN is

particularly a real, symmetric 2� 2 matrix, where X and N can be represented by

X ¼
v1

v2

� �
¼

s�bs
x� bx

� �
and N ¼

n11
1

2
n12

1

2
n21 n22

0

B@

1

CA:

Thus, it leads to the following theorem.

Theorem 8. The equilibrium point E2 is global asymptotically stable with respect to solution trajecto-

ries are initiated from int Rþ
sx if the assumptions n22 < 0 and detN > 0 are satisfied.

Proof. By using the Frobenius Theorem in ([18], Lemma 6.2), we can see that n22 and det N are

the leading principal minors of the matrix N: It is shown that matrix N is negative definite if

n22 < 0, and detN ¼ det
n11

1

2
n12

1

2
n21 n22

0

B@

1

CA > 0:

This completes the proof of the theorem. ∎

(ii) Existence of positive interior equilibrium point E3

In this subsection, we present some results of persistence analysis, including uniform persis-

tence and state the necessary conditions for the existence of positive equilibrium point E3. The

following lemma from Ref. [19] is applied to obtain the persistence results.
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Lemma 2. [19] Let G be an isolated hyperbolic equilibrium point in the omega limit set, ω Xð Þ of

the orbit O Xð Þ: Then either ω Xð Þ ¼ G or there exist points Jþ and J� in ω Xð Þ with Jþ ∈W s Gð Þ

and J� ∈Wu Gð Þ, where W s Gð Þ and Wu Gð Þ denote stable and unstable manifolds of G.

Theorem 9. Assume that

i. E2 ζs;
1�ζsð Þ
D1

; 0
� �

is a hyperbolic saddle point and is repels locally in y direction (as in Theorem 5),

ii. system (3) is dissipative and all solutions with initial values in Rþ
sxy are uniformly bounded and

attracted into region Η (as in Theorem 1), and

iii. equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

is globally asymptotically stable with respect to Rþ
sx.

Then, the system (3) is uniformly persistence.

Proof. This proof strictly depends on Lemma 2. Suppose Η is the region as stated in Theorem

1. It showed that regionΗ is positive invariant set and any solutions of system (3) emanating at

a point in R3
þ is uniformly bounded. Despites that, the only compact invariant set on ∂R

3
þ is

E2 ζs;
1�ζsð Þ
D1

; 0
� �

. Let P ¼ E3 s∗; x∗; y∗ð Þ belongs to the interior of R3
þ, i.e., P∈ int R3

þ. We shall

show that there is no points Ji ∈ ∂R
3
þ where ∂R3

þ belongs to ω Pð Þ, the omega limit set of P: Now,

we prove that the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

∉ω Pð Þ: Assume that E2 ∈ω Pð Þ is true.

Then, there is a point Jþ1 ∈W s E2ð Þ\ E2f g such that Jþ1 ∈ω Pð Þ by Lemma 2. But

W s E2ð Þ ∩ R
3
þ\ E2f g

� �

is empty which is a contradiction for the positive invariance property of

Η⊂R3
þ: Thus, the equilibrium point E2 is not in the omega limit set of P; E2∉ω Pð Þ: Next, we

shall show ∂R
3
þ ∩ω Pð Þ ¼ ∅: Assume that ∂R3

þ ∩ω Pð Þ 6¼ ∅, and let J∈ ∂R
3
þ and J∈ω Pð Þ: Then

the closure of the orbit of the point J, i.e., cl O Jð Þð Þmust either contains E2 or unbounded. This is

a contradiction, and hence it is proved that ∂R3
þ ∩ω Pð Þ ¼ ∅: We deduce that if E2 ζs;

1�ζsð Þ
D1

; 0
� �

is unstable, then, for stable manifold W s E2ð Þ;W s E2ð Þ ∩ int R
3
þ

� �� �

¼ ∅, and for unstable mani-

fold Wu E2ð Þ; Wu E2ð Þ ∩ int R3
þ

� �� �

6¼ ∅. Therefore, the result of uniform persistence follows

since the omega limit set of P, ω Pð Þ must be in int R
3
þ

� �

: This completes the proof. ∎

Remark 2. Global stability of equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0
� �

with respect to Rþ
sx indicates

that the boundary flow is isolated and a cyclic with respect to region Η. Thus, the system (3)

undergoes uniform persistence and implies that a positive interior equilibrium point

E3 s∗; x∗; y∗ð Þ exists (see [20]).

2.5. Hopf bifurcation

In this section, we investigate Hopf bifurcation on the system (3) with a bifurcation real

parameter, σ: Particularly, σ is selected in such a way that the growth rate function f 2 is a

function of x and σ: Therefore, system (3) takes of the form
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s0 ¼ 1� s� f 1 sð Þx,

x0 ¼
f 1 sð Þ

D1
� 1

� �

x� f 2 x; σð Þy 1þ
D1x

1þ xþD1by

� �

,

y0 ¼ f 2 x; σð Þy 1þ
D1x

1þ xþD1by

� �

� y,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(8)

where s 0ð Þ > 0, x 0ð Þ > 0, y 0ð Þ > 0: Next, we do linearization on the system (8). First, let

S ¼ s� h1;

X ¼ x� h2;

Y ¼ y� h3;

)

s ¼ Sþ h1;

x ¼ Xþ h2;

y ¼ Y þ h3;

8

>

>

>

>

>

<

>

>

>

>

>

:

8

>

>

>

>

>

<

>

>

>

>

>

:

where h1; h2; h3ð Þ is the non-trivial equilibrium point. Then, we obtain the following differential

equations

S0 ¼ 1� S� h1 � f 1 Sþ h1ð Þ Xþ h2ð Þ,

X0 ¼
f 1 Sþ h1ð Þ

D1
� 1

� �

Xþ h2ð Þ � f 2 Xþ h2; σð Þ Y þ h3ð Þ 1þ
D1 Xþ h2ð Þ

1þ Xþ h2ð Þ þD1b Y þ h3ð Þ

� �

,

Y0 ¼ f 2 Xþ h2; σð Þ Y þ h3ð Þ 1þ
D1 Xþ h2ð Þ

1þ Xþ h2ð Þ þD1b Y þ h3ð Þ

� �

� Y þ h3ð Þ:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(9)

The Jacobian matrix of system (8) is given by

Jσ ¼

�f 01 sð Þx� 1 �f 1 sð Þ

f 01 sð Þx

D1

f 1 sð Þ

D1
� f 2 x;σð Þy

D1

1þ xþD1by

� �

�
D1x

1þ xþD1byð Þ2

 !" #

� f 2
0 x;σð Þy

D1x

1þ xþD1by

� �

þ 1

� �

� 1

0 f 2 x; σð Þy
D1

1þ xþD1by

� �

�
D1x

1þ xþD1byð Þ2

 !" #

þ f 02 x;σð Þy 1þ
D1x

1þ xþD1by

� �

2

6

6

6

6

6

6

6

4

0

f 2 x;σð Þ
D2

1bxy

1þ xþD1byð Þ2

 !

�
D1x

1þ xþD1by
þ 1

� �

" #

f 2 x;σð Þ 1þ
D1x

1þ xþD1by

� �

�
D2

1bxy

1þ xþD1byð Þ2

 !" #

� 1

3

7

7

7

7

7

7

7

5

:

Thus, the Jacobian matrix of system (8) about E2 ζs;
1�ζsð Þ
D1

; 0; σ

� �

is
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Jσ E2ð Þ ¼

�
f 01 ζsð Þ 1� ζsð Þ

D1
� 1 �f 1 ζsð Þ 0

f 01 ζsð Þ 1� ζsð Þ

D2
1

f 1 ζsð Þ

D1
� 1 �f 2

1� ζs

D1
; σ

� �

1þ
1� ζs

1þ
1� ζs

D1

� �

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

0 0 f 2
1� ζs

D1
; σ

� �

1þ
1� ζs

1þ
1� ζs

D1

� �

0

B

B

@

1

C

C

A

0

B

B

@

1

C

C

A

� 1

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

(10)

The characteristic equation of (10) is given as

λ3 þ c1λ
2 þ c2λþ c3 ¼ 0, (11)

where

c1 ¼
1

D1 D1 � ζs þ 1ð Þ
f 01 ζsð Þ 1þD1 � 2ζs þ ζ

2
s �D1ζs

� �

þ f1 ζsð Þ ζs �D1 � 1ð Þ
�

þ D1f2
1� ζs

D1
;σ

� �

ζs þD1ζs � 2D1 � 1ð Þ þ 3D1 1þD1 � ζsð ÞÞ,

c2 ¼
1

D1 D1 � ζs þ 1ð Þ
f 01 ζsð Þ 2ζ2s þ 2þ 2D1 � 4ζs � 2D1ζs

��

� f 2
1� ζs

D1
; σ

� �

1þ 2D1 � 2ζs þ ζ
2
s � 3D1ζs þD1ζ

2
s

� �

�

� f 1 ζsð Þ 2þ 2D1 � 2ζs þ f 2
1� ζs

D1
; σ

� �

ζs � 2D1 � 1þD1ζsð Þ

� �

� f 2
1� ζs

D1
; σ

� �

2D1 þ 4D2
1 � 2D1ζs � 2D2

1ζs
� �

þ 3D1ζs � 3D2
1 � 3D1Þ,

c3 ¼
1

D1 D1 � ζs þ 1ð Þ
f 01 ζsð Þ 1� 2ζs þD1 þ ζ

2
s �D1ζs

��

�f 2
1� ζs

D1
;σ

� �

1� 2ζs þ ζ
2
s �D1 þD1ζ

2
s

� �

�

�f 1 ζsð Þ f 2
1� ζs

D1
;σ

� �

ζs � 1� 2D1 þD1ζsð Þ þ 1� ζs

� �

�f 2
1� ζs

D1
;σ

� �

D1 �D1ζsð Þ þD1ζs �D1 �D2
1Þ:

We applied Routh Hurwitz criterion (see [21, 22]) onto the characteristic equation (11) and

obtain the matrices
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M1 ¼ c1½ �;M2 ¼
c1 1

c3 c2


 �

; M3 ¼
c1 1 0

c3 c2 c1

0 0 c3

2

6

4

3

7

5
:

Thus, the characteristic equation (11) has all negative real parts of λ if and only if

c1 > 0

c3 > 0

c1c2 � c3 > 0:

9

>

=

>

;

(12)

When the assumptions on functional responses f 1 sð Þ ¼ f 1 ζsð Þ and f 2 xð Þ ¼ f 2
1�ζs
D1

; σ
� �

as in (2)

for the system (3), together with the hypotheses H1 until H3;

H1 : D1 � ζs þ 1 > 0,

H2 : f 01 ζsð Þ 1þD1 � 2ζs þ ζ2s �D1ζs
� �

þ f 1 ζsð Þ ζs �D1 � 1ð Þ

þD1f 2
1� ζs
D1

; σ

� �

ζs þD1ζs � 2D1 � 1ð Þ þ 3D1 1þD1 � ζsð Þ > 0,

H3 : f 01 ζsð Þ 1� 2ζs þD1 þ ζ2s �D1ζs � f 2
1� ζs
D1

; σ

� �

1� 2ζs þ ζ2s �D1 þD1ζ
2
s

� �

� �

� f 1 ζsð Þ f 2
1� ζs
D1

; σ

� �

ζs � 1� 2D1 þD1ζsð Þ þ 1� ζs

� �

� f 2
1� ζs
D1

; σ

� �

D1 �D1ζsð Þ þD1ζs �D1 �D2
1 > 0,

hold, we will have c1 > 0 and c3 > 0: We shall obtain two pure imaginary roots for the

characteristic equation (11) if and only if c1c2 ¼ c3 for some values of σ, say, σ∗1:

Since at σ ¼ σ∗1, there exists an interval σ∗1 � ε; σ∗1 þ ε
� �

containing σ∗1 for some ε > 0 such that

σ∈ σ∗1 � ε; σ∗1 þ ε
� �

. Thus, for σ∈ σ∗1 � ε; σ∗1 þ ε
� �

, the characteristic equation (11) cannot have

positive real roots. For σ ¼ σ∗1, we acquire (see [3, 10])

λ2 þ c2
� �

λþ c1ð Þ ¼ 0, (13)

that consist of three roots; λ1 ¼
ffiffiffiffi

c2
p

i,λ2 ¼ � ffiffiffiffi

c2
p

i, and λ3 ¼ �c1: As for σ∈ σ∗1 � ε; σ∗1 þ ε
� �

, all

the roots are in general of the form;

λ1 σð Þ ¼ α σð Þ þ β σð Þi,

λ2 σð Þ ¼ α σð Þ � β σð Þi,

λ3 σð Þ ¼ �c1 σð Þ:

In order to apply the Hopf bifurcation theorem as stated in [9, 23] towards the system (8), we

must verify the transversality condition
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Re
dλj

dσ


 �

σ¼σ∗
1

6¼ 0, j ¼ 1, 2, 3: (14)

By substituting λ1 σð Þ ¼ α σð Þ þ β σð Þi and λ2 σð Þ ¼ α σð Þ � β σð Þi into characteristic equation (11)

and calculating the implicit derivative, we obtain the following equations

K σð Þα0 σð Þ � L σð Þβ0 σð Þ þM σð Þ ¼ 0,

L σð Þα0 σð Þ þ K σð Þβ0 σð Þ þN σð Þ ¼ 0,

	

(15)

where

K σð Þ ¼ 3α2 σð Þ þ 2c1 σð Þα σð Þ þ c2 σð Þ � 3β2 σð Þ;

M σð Þ ¼ α2 σð Þc01 σð Þ þ c02 σð Þα σð Þ � c01 σð Þβ2 σð Þ þ c03 σð Þ;

L σð Þ ¼ 6α σð Þβ σð Þ þ 2c1 σð Þβ σð Þ;

N σð Þ ¼ 2α σð Þβ σð Þc01 σð Þ þ c02 σð Þβ σð Þ:

Since K σ∗1
� �

M σ∗1
� �

þ L σ∗1
� �

N σ∗1
� �

6¼ 0, we have

Re
dλj

dσ


 �

σ¼σ∗
1

¼
K σ∗1
� �

M σ∗1
� �

þ L σ∗1
� �

N σ∗1
� �

K2 σ∗1
� �

þ L2 σ∗1
� � 6¼ 0, j ¼ 1, 2, 3,

and λ3 σ∗1
� �

¼ �c1 σ∗1
� �

6¼ 0: We conclude the details above in the following theorem.

Theorem 10. Suppose that the equilibrium point E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

exists and those assumptions

similar as in (2) for the system (3) together with hypothesis H1 until H3 hold. Then the system (8)

undergoes Hopf bifurcation in the first octant, which leads to a family of periodic solutions bifurcating

from E2 ζs;
1�ζsð Þ
D1

; 0; σ
� �

for some values of σ in the neighbourhood of σ∗1:

Next, we determine the Hopf bifurcation at the equilibrium point E3 s∗; x∗; y∗;σð Þ: The Jacobian

matrix of the system (8) about the equilibrium point E3 is given by

Jσ E3ð Þ ¼

� f 01 s∗ð Þx∗ � 1 �f 1 s∗ð Þ

f 01 s∗ð Þx∗

D1

f 1 s∗ð Þ

D1
� f 2 x∗; σð Þy∗

D1

1þ x∗ þD1by∗

� �

�
D1x

∗

1þ x∗ þD1by∗ð Þ2

 !" #

� f 2
0 x∗;σð Þy∗

D1x
∗

1þ x∗ þD1by∗
þ 1

� �

� 1

0 f 2 x∗; σð Þy∗
D1

1þ x∗ þD1by∗

� �

�
D1x

∗

1þ x∗ þD1by∗ð Þ2

 !" #

þ f 02 x∗;σð Þy∗
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

2

6

6

6

6

6

6

6

4

0

f 2 x∗; σð Þ
D2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2
�

D1x
∗

1þ x∗ þD1by∗
� 1

 !

f 2 x∗; σð Þ
D1x

∗

1þ x∗ þD1by∗
�

D2
1bx

∗y∗

1þ x∗ þD1by∗ð Þ2
þ 1

 !

� 1

3

7

7

7

7

7

7

7

5

:

Hence, the characteristic equation for the Jacobian matrix Jσ E3ð Þ is

λ3 þ c4λ
2 þ c5λþ c6 ¼ 0, (16)
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where

c4 ¼ f 01 s∗ð Þx∗ þQþ Rþ V � Zþ 3�
f 1 s∗ð Þ

D1
,

c5 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 2ð Þ þ
f 1 s∗ð Þ Z� R� 2ð Þ

D1
þ 2Qþ 2Rþ 2V � 2Zþ 3,

c6 ¼ f 01 s∗ð Þx∗ Qþ Rþ V � Zþ 1ð Þ þ
f 1 s∗ð Þ Z� R� 1ð Þ

D1
þQþ Rþ V � Zþ 1,

and

Q ¼ f 2 x∗; σð Þy∗
D1

1þ x∗ þD1by∗

� �

�
D1x

∗

1þ x∗ þD1by∗ð Þ2

 !" #

,

R ¼
f 2 x∗; σð ÞD2

1bx
∗y∗

1þ x∗ þD1by∗ð Þ2

 !

,

V ¼ f 02 x∗; σð Þy∗
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

,

Z ¼ f 2 x∗; σð Þ
D1x

∗

1þ x∗ þD1by∗
þ 1

� �

:

By applying the Routh-Hurwitz criterion (see [21, 22]) towards the characteristic equation (16),

we obtain the following Hurwitz matrices

M4 ¼ c4½ �; M5 ¼
c4 1

c6 c5


 �

; M6 ¼

c4 1 0

c6 c5 c4

0 0 c6

2

6

4

3

7

5
:

Thus, the characteristic equation (16) has all negative real parts of λ if and only if

c4 > 0

c6 > 0

c4c5 � c6 > 0:

9

>

=

>

;

(17)

Suppose the assumptions of functional response f 1 s∗ð Þ and f 2 x∗; σð Þ similar as in (2) for the

system (3), together with the hypotheses H4 until H6;

H4 : f 01 s∗ð Þx∗ þQþ Rþ V þ 3 >
f 1 s∗ð Þ

D1
þ Z,

H5 : Qþ Rþ V þ 1 > Z,

H6 : Z > Rþ 1,

hold, then clearly c4 > 0 and c6 > 0. In particular, we shall have two pure imaginary roots for the

characteristic equation (16) if and only if c4c5 ¼ c6 for some values of σ, say, σ∗2: Since at σ ¼ σ
∗

2,

there exists an interval σ
∗

2 � ε; σ∗2 þ ε
� �

containing σ
∗

2 for some ε > 0. Then, for σ∈ σ
∗

2 � ε; σ∗2

�

þεÞ, the characteristic Eq. (16) cannot have positive real roots. For σ ¼ σ
∗

2, we get (see [3, 10])
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λ2 þ c5
� �

λþ c4ð Þ ¼ 0, (18)

Consisting of three roots; λ1 ¼
ffiffiffiffi

c5
p

i, λ2 ¼ � ffiffiffiffi

c5
p

i, λ3 ¼ �c4: As for σ∈ σ∗2 � ε; σ∗2 þ ε
� �

, all

roots are in general of the form;

λ1 σð Þ ¼ α σð Þ þ β σð Þi,
λ2 σð Þ ¼ α σð Þ � β σð Þi,
λ3 σð Þ ¼ �c4 σð Þ,

To establish Hopf bifurcation towards system (8), we must show that

Re
dλj

dσ


 �

σ¼σ∗
2

6¼ 0, j ¼ 1, 2, 3: (19)

By substituting λ1 σð Þ ¼ α σð Þ þ β σð Þi and λ2 σð Þ ¼ α σð Þ � β σð Þi into characteristic equation (18)

and calculating the implicit derivative, we get the following equations;

A1 σð Þα0 σð Þ � A2 σð Þβ0 σð Þ þ B1 σð Þ ¼ 0,

A2 σð Þα0 σð Þ þ A1 σð Þβ0 σð Þ þ B2 σð Þ ¼ 0,

	

(20)

where

A1 σð Þ ¼ 3α2 σð Þ þ 2c1 σð Þα σð Þ þ c2 σð Þ � 3β2 σð Þ;
A2 σð Þ ¼ 6α σð Þβ σð Þ þ 2c1 σð Þβ σð Þ;

B1 σð Þ ¼ α2 σð Þc01 σð Þ þ c02 σð Þα σð Þ � c01 σð Þβ2 σð Þ þ c03 σð Þ;

B2 σð Þ ¼ 2α σð Þβ σð Þc01 σð Þ þ c02 σð Þβ σð Þ:

Since A1 σ∗2
� �

B1 σ∗2
� �

þ A2 σ∗2
� �

B2 σ∗2
� �

6¼ 0, we have

Re
dλj

dσ


 �

σ¼σ∗
2

¼ A1 σ∗2
� �

B1 σ∗2
� �

þ A2 σ∗2
� �

B2 σ∗2
� �

A1 σ∗2
� �� �2 þ A2 σ∗2

� �� �2
6¼ 0, j ¼ 1, 2, 3,

and λ3 σ∗2
� �

¼ �c4 σ∗2
� �

6¼ 0: We summarise the discussion above in the following theorem.

Theorem 11. Suppose that the equilibrium point

E3 s∗; x∗; y∗; σð Þ ¼ E3 s∗;
1� s∗

f 1 s∗ð Þ ;

2x∗ þ 1ð Þf 2 x∗ð Þ � x∗ � 1

bD1 1� f 2 x∗ð Þ
� � ; σ

 !

exists and those assumptions similar as in (2) for the system (3) together with hypotheses H4 until H6

hold. Then the system (8) undergoes Hopf bifurcation in the first octant, which leads to a family of

periodic solutions bifurcating from E3 s∗; x∗; y∗; σð Þ for some values of σ in the neighbourhood of σ∗2:

2.6. Discussion

We have proposed and analysed a simple nutrient-predator-prey model in a chemostat with

intratrophic predation. This system consisted of the nutrient s, prey organisms x and predator

organisms y. We conclude that intratrophic predation denoted as b does not affected the local

stability and existence of E1 and E2 when no predator organisms involved. Next, we have
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shown that the washout equilibrium point E1 1; 0; 0ð Þ (no prey and predator organisms present)

is locally asymptotically stable if λ3 ¼
f 1 1ð Þ
D1

� 1 < 0 holds. For stability of E2 and E3 of the

system (3), some sufficient criteria or conditions are derived and satisfied. The points E2 and

E3 are said to be asymptotically stable if all of their eigenvalues are less than zero.

In particular, we investigated the global stability analysis for E2: A suitable Lyapunov function

L is defined and E2 is globally asymptotically stable if and only if the conditions in Theorem 8

holds. Global stability of E2 indicates that predator organisms y might be washout in the

chemostat despites the initial prey and predator organisms’ density levels. Next, in the study

of the existence of positive interior equilibrium point E3, we presented some results regarding

uniform persistence analysis. It has shown that the system (3) is uniformly persistence and

thus, the positive interior equilibrium point E3 exists.

In the analysis of occurrence of Hopf bifurcation, Hopf bifurcation theorems in Hassard et al.

[9] are applied. We have shown that the system (8) undergoes Hopf bifurcation in the first

octant, which leads to a family of periodic solutions bifurcating from E2 ζs;
1�ζsð Þ
D1

; 0; σ

� �

and

E3 s∗; x∗; y∗; σð Þ for some values of σ in the neighbourhoods of σ∗1 and σ∗2, respectively. The

method used to obtain these results is similar to the method used in [3, 10].
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