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Abstract

Approximately 80% of the human genome contains functional DNA, including protein 
coding genes, non-protein coding regulatory DNA elements and non-coding RNAs 
(ncRNAs). An altered transcriptional signature is not only a cause, but also a conse-
quence of the characteristics known as the hallmarks of cancer, such as sustained pro-
liferation, replicative immortality, evasion of growth suppression and apoptotic signals, 
angiogenesis, invasion, metastasis, evasion of immune destruction and metabolic re-wir-
ing. Post-transcriptional events play a major role in determining this signature, which 
is evidenced by the fact that alternative RNA splicing takes place in more than half of 
the human genes, and, among protein coding genes, more than 60% contain at least one 
conserved miRNA-binding site. In this chapter, we will discuss the involvement of post-
transcriptional events, such as RNA processing, the action of non-coding RNAs and RNA 
decay in cancer development, and how their machinery may be used in cancer diagnosis 
and treatment.

Keywords: post-transcriptional control, splicing, microRNAs, long non-coding RNAs, 
mRNA decay

1. Introduction

The word cancer defines a group of diverse diseases, which share unique traits. Tumor cells 
display mechanisms of sustained proliferation, replicative immortality, evasion of growth 
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suppression and apoptotic signals, angiogenesis, invasion, metastasis, evasion of immune 

destruction and metabolic re-wiring [1]. These characteristics represent a great challenge 

to cancer treatment being both a cause and a consequence of an abnormal gene expression 

profile. Efforts to understand the consequences of these different expression profiles and the 
mechanisms underlying them contribute to clarify cancer biology and, consequently, to pre-

dict response to and optimization of therapeutic approaches [2–4].

There are several layers of gene expression modulation including epigenetics, transcriptional 

modulation, RNA expression control, translational regulation and post-translational modifi-

cations. All these mechanisms work in an orchestrated manner leading to specific expression 
signatures and phenotypes. In this chapter, we focus on RNA expression control mechanisms, 

which take place after RNA polymerase recognition of the gene promoter and start of RNA 

synthesis, discussing their implications to malignant transformation and cancer progression.

2. mRNA processing

RNA processing takes place after the start of transcription, resulting in a mature mRNA 

which is able to fulfill its function. This process comprises: 5′-Cap addition, splicing and 
poly(A) addition. RNA splicing is a process in which portions of the pre-RNA, denomi-

nated introns, are excised and the remaining portions (exons) are bound to form the mature 

RNA. Both cis and trans elements act to recognize exon/intron boundaries and/or to orches-

trate the splicing machinery, the spliceosome, a complex of five small nuclear ribonucleopro-

tein particles (snRNP) and 100–200 non-snRNP proteins which catalyze the splicing reaction 

[5–7]. Recognition of the intron/exon boundaries is context-dependent; as a result, a single 

gene can originate several mature RNAs and, therefore, several proteins with independent or 

even opposite functions. This alternative splicing (AS) occurs by recognition of the alternative 

donor or acceptor splice sites, exon inclusion or exclusion, intron incorporation or combina-

tory mechanisms as mutually exclusive exons and so on. AS stands out as a major source 

for transcripts and proteins variability, occurring in approximately 59% of human genes [8] 

and almost 95% of the multi-exon genes [9]. Splicing factor genes are commonly mutated in 

different types of cancer and several splice variants have already been implicated in cancer 
development [10].

The splicing profile of a certain tissue changes dramatically when compared with malig-

nant cells with their normal counterparts [11–13]. This difference may result from mutations 
or single-nucleotide polymorphisms (SNPs) on acceptor, donor splice sites, enhancing or 

silencing sequences which lead to alterations in the exon/intron boundary recognition; or 

due to deregulated expression or change of function mutation in a trans regulator (reviewed 

in [14, 15]). Serine-rich protein (SRP) and heterologous nuclear ribonuclear particle (hnRNP) 

are two protein families which are classically involved in splicing modulation by interacting 

with intronic or exonic enhancer or silencer sequences [16, 17]. The SRSF1 member of the 

SRP family is one of the most well characterized splice factor, being described as up-regu-

lated in lung [18] and breast cancers [19, 20]. In the breast cancer model, SRSF1 association to 
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a sequence near to a donor splice site usually promotes exon inclusion, while its association 

in the vicinities of an acceptor splice site leads to exon skipping or inclusion [20]. Important 

cancer-related gene transcripts, such as Casp9 [21], CD44 [22] and VEGF [23], are among 

SRSF1 known targets.

Cell survival outcome is a perfect example of the influence of AS in basic cellular mechanisms, 
with alternative isoforms of several apoptotic-related gene transcripts displaying opposite 

roles, when compared to their canonical variant, shifting the cell status from apoptosis-

prone to the survival state (reviewed in [24]). Upon an apoptotic stimulus, cytochrome C is 
released from the mitochondria and forms a complex with Apaf-1. The N-terminal portion 

of Apaf-1 interacts with the N-terminal pro-domain of pro-caspase-9, leading to Caspase-9 
activation, which, in turn, activates the Caspase-3 and -7 effector proteases (reviewed in [25]). 

Caspase-9, a key player in this process, has an alternative-splicing variant in which exclu-

sion of the exon cassette 3, 4, 5 and 6 leads to a protein isoform which lacks part of its large 
subunit. This Caspase-9b isoform retains the domain which interacts with Apaf-1, but lacks 
the Caspase-9 catalytic site, thus acting like a dominant negative and inhibiting the apoptotic 
pathway [26, 27]. The ratio between these two isoforms modulates the propensity of the cells 

to respond to death stimuli, altering their chemo-sensitivity and, potentially, the treatment’s 

outcome. Interestingly, while Akt mediates exclusion of the exon cassette via phosphoryla-

tion of the RNA splicing factor SRp30a [28]; in this case, SRSF1 interacts with an intronic 

enhancer site at intron 6 favoring the exon cassette inclusion, which renders the cells more 
sensitive to chemotherapeutic agents as the combined therapy with daunorubicin and erlo-

tinib [21]. Taking into account that SRSF1 is upregulated in non-small cell lung cancer cells, 

this case exemplifies the complexity of splicing as an expression regulator and how it can be 
explored to optimize therapy efficacy.

Another great source of transcripts variability is alternative polyadenylation (APA), since 

approximately 30% of human mRNAs display alternative polyadenylation sites [29]. 

Polyadenylation occurs in almost every mammalian transcript, a process in which an endo-

nucleolytic cleavage is catalyzed by polyadenylation machinery proteins, immediately fol-

lowed by polyadenylation (200–300 nucleotides, on average, in humans) of the 3′-end by 
poly(A) polymerases (reviewed in [30]). The resulting alternative transcripts will have differ-

ent sizes, depending on the localization of the alternative poly(A) site, originating alternative 

3′-untranslated regions (3′-UTR). Also, more rarely, when polyadenylation occurs inside the 
open reading frame region, it may originate truncated forms of the translated protein [31]. 

The 3′-UTR is extremely important to transcripts stability, localization and regulation by trans 
elements (such as miRNAs and RNA binding proteins), topics to be further discussed in this 

chapter and which have great implications for cancer development.

A shift in the polyadenylation global pattern occurs in tumor cells, with the proximal poly(A) 
sites being favored, when compared to their normal counterparts [29]. Also, highly prolif-

erative murine T lymphocytes favor shorter 3′-UTRs, which is also observed in colorectal 
cancer, but only for certain groups of genes, including those involved in cell cycle, nucleic 

acid-binding and processing factors. It has been proposed that such shortening would 

restrict miRNA modulation over the transcripts, increasing their expression [32, 33]. Such 
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a mechanism is observed upon treatment of ER+ breast cancer cells with the proliferation 

stimulant 17β-estradiol. This treatment leads to APA of the CD6 transcript, which is essential 

for the start of DNA replication, originating a shorter 3′-UTR. The generated CD6 variant is 

resistant to repression dependent on its 3′-UTR and is more efficiently translated, correlating 
with a higher rate of BrdU incorporation by the cells [34].

Curiously, mammalian RNAs can also be post-transcriptionally modified through a process 
called RNA editing. Well-known cases are the RNA editing enzymes adenosine and cytidine 

deaminases, which catalyze the conversion of adenine into inosine and of cytosine into ura-

cil, respectively [35]. Adenosine deaminases acting on RNA (ADAR) enzymes act on double-

stranded RNA regions, usually the secondary structure of a single mRNA molecule. Through 

a hydrolytic deamination at C6, ADAR enzymes catalyze adenine conversion into inosine, 
which pairs with cytosine. Cytidine deaminases are much more specific and different mem-

bers of the APOBEC3 family are transcriptionally regulated by p53 [36]. Altered RNA editing 

signatures were found in different types of tumors, such as glioblastoma [37], breast [38] and 

gastric cancers [39, 40]. If located at a coding region, these editing events may cause a missense 

mutation. One example is ADAR-1 editing of the Antizyme Inhibitor 1 (AZIN1), which leads to 

a serine-to-glycine substitution at residue 367 [41]. AZIN1 is an inactive homolog of ornithine 

decarboxylase (ODC) that competitively binds to antizymes [42]. ADAR-1 editing increases 

AZIN1 affinity to antizyme, leading to a decrease in ODC antizyme-mediated degradation and 
promoting polyamines biosynthesis, with consequent cell proliferation and a more aggressive 

behavior in hepatocellular carcinoma cells [41]. Although editing on consensus splicing sites 

are rare, ADAR enzymes alter the global splicing pattern of the cell by editing splicing regula-

tory cis elements and, possibly, indirectly, by altering the activity of trans elements [43, 44].

The interaction of transcripts with long non-coding RNAs (lncRNAs) and microRNAs are 

important post-transcriptional regulatory mechanisms which will be further addressed in this 

chapter. RNA edition adds a layer of complexity to this apparatus. It is estimated that over 

70% of potential editing sites within long non-coding RNAs may lead to changes in their 

secondary structure, a feature which is crucial for its target recognition [45]. If the editing 

takes place in a precursor miRNA, it can lead to alterations in its biosynthesis and target rec-

ognition, increasing their range of action [46–48]. Alterations in the mRNA 3′-UTR may alter 
its recognition by a specific miRNA or lncRNA [37, 40, 47]. Furthermore, RNA editing may 

also modulate RNA expression by regulating RNA decay. This is exemplified by the ADAR-1 
interaction with the RNA binding protein HuR, which promotes HuR binding to the target 

transcript, increasing its stability [49].

3. miRNAs

Several RNA-based mechanisms evolved in eukaryotes to modulate gene expression or sup-

press invading material. In animals, the small non-coding RNAs (18–30 nucleotides) are sub-

divided into three major classes, namely microRNA (miRNA), small interfering RNA (siRNA) 

and PIWI-interacting RNA (piRNA). The main purpose of piRNAs are suggested to be silenc-

ing of transposable elements in germline cells [45], siRNAs and miRNAs seem to have evolved 
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from an antiviral defense system into an ubiquitous gene expression modulation mechanism 

[46, 47]. Originally identified in Caenorhabditis elegans [48], miRNAs are the dominating class 

of small RNAs in most somatic tissues, being highly conserved and repressing the expression 

of target genes by inhibiting mRNAs translation and/or stability [49, 50]. The latest update of 

the human miRNA database lists 2588 mature miRNAs, processed out of 1881 precursors [51]. 

miRNA genes are originally transcribed by RNA polymerase II (Pol II) as a long (typically 

over 1 kb) primary transcript (pri-miRNA) bearing hairpins, in which miRNA sequences are 

embedded [52]. Hairpins are cropped by the Drosha nuclear RNase III liberating the stem-

loop shaped ~65 nucleotide long precursor miRNA (pre-miRNA) [53]. Upon exporting to the 

cytoplasm through Exportin 5 (EXP5), pre-miRNAs are cleaved by DICER near the terminal 
loop, liberating a small RNA duplex [54]. This duplex is subsequently loaded onto RNA-

induced silencing complex (RISC), RNP effector complexes containing Argonaut (AGO) pro-

teins. Finally, unwinding of the RNA duplex allows the final single-stranded miRNA to act 
as a guide for the effector complex [55]. Specific targeting is accomplished by base pairing 
between mRNA and miRNA, as miRNAs usually guide RISC to 3′UTR regions in target pro-

tein-coding transcripts [56], recruiting proteins that lead to target RNA degradation, deade-

nylation or decay [53]. However, miRNAs may also interact with 5′UTR and coding sequence 
(CDS) regions, culminating in a range of effects, from translational activation to repression.

More than 60% of human protein-coding genes contain at least one conserved miRNA-binding 

site [57], encompassing every major cellular functional pathway. Therefore, miRNAs biogenesis 

needs to be under tight temporal and spatial control, and their deregulation is evidently associ-

ated with a wide range of human diseases, including cancer [58]. The first instance of the direct 
involvement of a miRNA in cancer was uncovered in 2002. A critical region at chromosome 

13q14, frequently deleted in chronic lymphocytic leukemia (CLL), was shown to harbor miRNA 
genes miR-15a and miR-16-1. About 70% of CLL cases have null or reduced expression of these 
miRNAs, which normally control apoptosis by targeting BCL-2 [59, 60]. The following years 

revealed a remarkable number of additional examples, establishing the association of miRNAs 

and cancer to be the norm, rather than the exception. Currently, hundreds of human miRNAs are 
associated to the onset and progression of several malignancies, including lymphomas, colorec-

tal carcinoma, breast cancer, lung cancer, thyroid cancer and hepatocellular carcinomas [61].

Several miRNAs may be differentially expressed in cancer patients, when compared to nor-

mal samples, acting either as oncogenes or tumor suppressors [62] (Table 1). Most often, miR-

NAs are detected as tumor suppressors, with reduced expression in tumors when compared 

to normal tissues [63, 64]. These miRNAs have commonly been shown to negatively regulate 

protein-coding oncogenes. Thus, HER2 and HER3, two oncogenes which are significantly cor-

related with decreased disease-specific survival in breast cancer patients [65], are suppressed 

by miR-125a or miR-125b [66]. Additionally, the let-7 family of miRNAs targets several genes 

associated with cell cycle and cell division, including the RAS oncogene [67]. Inhibition of epi-

dermal growth factor receptor by miR-128b in non-small cell lung cancer (NSCLC) [68] and 

miR-7 in glioma [69] are additional pertinent examples of miRNAs acting as tumor suppres-

sors. However, several miRNAs have also been found to be overexpressed in cancer, being 

classified as oncomiRs, often repressing known tumor suppressors. Thus, overexpression of 
miR-155 and miR-21 is sufficient to induce lymphomagenesis in mice [70, 71].
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Mapping efforts have revealed that many miRNAs are located in fragile regions of the 
genome, which are deleted, amplified or translocated in cancer, directly altering miRNAs 
genes expression, hence leading to aberrant expression of downstream target mRNAs [59]. 

In addition to genomic alterations, miRNA expression is also modulated by tumor suppres-

sor or oncogenic factors, which function as transcriptional activators or repressors to control 

pre-miRNA transcription. One of the first examples of this interaction is the transcriptional 
upregulation of the miR-17/92 cluster by the c-myc oncogene product, counterbalancing the 

apoptotic activity of E2F1 and allowing c-Myc mediated-proliferation [72]. Likewise, p53 
stimulates transcription of the miR-34 family, inducing apoptosis and senescence. Loss of 
p53 function induces downregulation of the miR-34 family in a very high percentage of 
ovarian cancer patients with a p53 mutation [73]. The expression of miRNA genes may also 

be indirectly modulated. Aberrant epigenetic changes, such as DNA hypermethylation of 

tumor suppressor genes, extensive genomic DNA hypomethylation and alteration of histone 

modification patterns, are a well-known feature of cancer cells. In fact, epigenetic modifica-

tions represent another common mechanism related to the alteration of miRNA expression 

in cancer. Tumor-suppressing miRNAs are usually found to be hypermethylated in cancer, 

miRNA Cancer phenotype Target mRNA Cancer association References

miR-15a Tumor suppressor BCL2 Chronic lymphocytic leukemia [59, 60]

miR-16-1 Tumor suppressor BCL2 Chronic lymphocytic leukemia [59, 60]

miR-125a Tumor suppressor HER2/HER3 Breast cancer [66]

miR-125b Tumor suppressor HER2/HER3 Breast cancer [66]

let-7 Tumor suppressor RAS Lung tumor [67]

miR128-b Tumor suppressor EGFR Non-small lung cancer [68]

miR128-b Tumor suppressor EGFR Acute lymphoblastic leukemia [77]

miR-7 Tumor suppressor EGFR Glioma [69]

miR-155 Oncogenic BIC Lymphoma [70, 71]

miR-21 Oncogenic NA Lymphoma [70, 71]

miR-127 Tumor suppressor BCL6 Prostate cancer [75, 76]

miR-372/373 Oncogenic RAS, p53 Testicular germ cell tumor [170]

miR-17 Tumor suppressor c-MYC Large B-cell lymphoma [72, 171]

miR-34 Tumor suppressor P53 Ovarian cancer [73]

miR-210 Tumor suppressor DIMT1 Multiple myeloma [172]

miR-10b Tumor suppressor TIAM1 Gastric cancer [173]

miR-126 Tumor suppressor ADAM9 Breast cancer [174]

miR-335 Tumor suppressor BRCA1 Breast cancer [175]

Table 1. List of miRNAs involved in cancer and their respective mRNA targets.

Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects120



which, in turn, allows overexpression of their oncogenic targets [74]. Thus, epigenetic repres-

sion of the tumor-suppressor miR-127 in primary prostate cancer [75] and bladder tumor 

causes upregulation of its target transcripts, including that of the proto-oncogene BCL6 [76]. 

A cancer-driving alteration may arise early in the biogenesis of miRNAs, during transcrip-

tion of the pri-miRNA. For example, a point mutation in miR-128b gene blocks processing 

of pri-miR-128b and reduces the levels of mature miR-128b, thus leading to glucocorticoid 

resistance in acute lymphoblastic leukemia (ALL) [77]. Another mechanism which can lead 

to an aberrant expression of miRNAs and, thus, to cancer, is the altered expression and/or 

function of the enzymes involved in the biogenesis of microRNAs, such as DROSHA and 

DICER. Aberrant expression of these proteins affects the biogenesis of all miRNAs in the 
cell, influencing the regulation of a multitude of genes. Thus, the first heterozygous germline 
mutations in DICER1 were identified as causing pleuropulmonary blastoma (PPB), a rare 
pediatric lung tumor that arises during fetal lung development [78]. Likewise, decreased 
expression of DROSHA and DICER has been found in 39% of ovarian cancer patients [79]. 

miRNA biogenesis may also be modulated during nuclear translocation by exportin 5 (XPO5). 
XPO5 mutations in some tumors generate pre-miRNA accumulation in the nucleus, reducing 
miRNA maturation and availability in the cytoplasm [80]. miRNA processing is orchestrated 

by a large number of proteins assisting the basic machinery. Several of these modulatory 

proteins, such as DDX5 and DDX17, were shown to be either directly mutated or to serve as 
targets for oncoproteins or tumor suppressors, modulating miRNA biogenesis [81].

The functional outcomes of miRNAs deregulation coincide with the hallmarks of malignant 

cells, namely: (1) self-sufficiency in growth signals (let-7 family), (2) insensitivity to anti-growth 
signals (miR-17-92 cluster), (3) apoptosis evasion (miR-34a), (4) limitless replicative potential 
(miR-372/373 cluster), (5) angiogenesis (miR-210) and (6) invasion and metastases (miR-10b). 
miRNAs have also been shown to regulate the generation of cancer stem cells (CSCs) [82, 83] 

and epithelial-mesenchymal transition (EMT), paramount for the metastatic process [84]. Thus, 

as breast cancer cells metastasize, expression of miR-126 and miR-335 is lost. Overexpressing 
these miRNAs in cancer cells decreases lung and bone metastasis in vivo [85].

The high number of human miRNAs, regulating a wide range of cancer-related processes, 

renders these small non-coding RNAs an ideal profiling tool. miRNA expression profiles 
can distinguish not only between normal and cancerous tissue, but also help to discrimi-

nate different subtypes of a particular cancer, or even specific oncogenic abnormalities [86], 

increasing the accuracy of tumor classification. These expression profiles were able to classify 
tumors according to their tissue of origin with accuracy higher than 90%. miRNAs regulation 
of cancer progression also allows these molecules to serve as efficient predictors of prognosis, 
tumor metastasis and therapy selection. Specific miRNA signatures have recently been shown 
to correlate to metastatic breast and colon tumors, arising as potent biomarkers to predict 

metastatic outcome. miRNA profiles may also be applied to select for more personalized and 
efficient therapies and to adjust the therapeutic scheme during treatment to achieve a bet-
ter outcome. Noteworthy, in ovarian cancer, miRNA signatures are able to predict chemo-

resistant tumors, while a polymorphism (SNP34091), which creates a new binding site for 
miR-191, was suggested as a modulator of tumor chemosensitivity [75].
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miRNAs are highly stable molecules present in body fluids including plasma, blood, serum, 
urine, saliva and milk, being potential cancer biomarkers which may be found in different 
phases of the tumoral process [87, 88]. Although understanding of how miRNAs are selec-

tively released from cells and how circulating miRNAs are related to disease remains largely 

unclear, circulating miRNAs may serve as novel diagnostic and prognostic biomarkers for 

human diseases, including cancer [89].

4. Long non-coding RNAs

Recent studies based on the Encyclopedia of DNA elements (ENCODE) project indicate that 
more than 80% of the human genome contains functional DNA that includes protein coding 

genes, non-protein coding regulatory DNA elements and non-coding RNAs (ncRNAs) [90]. 

Non-coding RNAs is a class of genetic regulators, containing short (<200 nucleotides) and long 

(>200 nucleotides) transcripts with novel abilities to be used as biomarkers due to their role in 

disease development and their implications for genomic organization [91, 92]. Short ncRNAs 

include ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs) 

and small nucleolar RNAs (snoRNAs). Regulatory long non-coding RNAs (lncRNAs) have 

been found in a large variety of organisms, ranging from yeasts to mammals, including mice 

and humans [93]. lncRNAs have emerged as a fundamental molecular class whose members 

play critical roles in genome regulation and in tissue development and maintenance [92]. 

Based on their positions relative to the protein coding genes in the genome, lncRNAs can be 

classified into natural antisense transcripts (NATs), long intronic ncRNAs and long intergenic 
ncRNAs (lincRNAs) [93].

Recent transcriptional profiling of multiple human tissues, including both normal and tumor 
samples, has led to the assumption that misregulation of lncRNAs could disrupt these delicate 

processes and lead to tumorigenesis [94–97]. These studies have validated the tissue-specific 
expression of lncRNAs in normal tissues, and have identified large sets of lncRNAs which are 
aberrantly expressed in either a specific cancer or multiple types of cancer, suggesting these 
RNAs act as master regulators of gene expression [98, 99]. Differential expression of lncRNAs 
is increasingly recognized as a hallmark feature in cancer [100]. lncRNAs are a novel class of 

mRNA-like transcripts, which contribute to cancer development and progression, accelerat-

ing cancer cells proliferation, apoptosis, invasion and metastasis [101] (Table 2).

General mechanisms of lncRNA function implicated in cancer progression are associ-
ated with a wide-repertoire of biological processes. Among the main biological pathways, 

lncRNAs may be involved in epigenetic silencing, splicing regulation, translational control, 

regulation of apoptosis and cell cycle control [102]. Like protein-coding genes, lncRNAs can 
function as oncogenes or tumor suppressors. Many lncRNAs shuttle between the nucleus and 
the cytoplasm, suggesting that they may have dual functions, while others are restricted to 

the nucleus [103]. In the nucleus, lncRNAs are often part of the nuclear architecture and, in 

some cases, are critical for maintenance of sub-nuclear structures [104].
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lncRNAs bind to and target chromatin regulators allowing connection between RNA 

and chromatin, acting on the control of gene expression at the transcriptional level [105]. 

Moreover, several lncRNAs mechanistic themes have emerged, both at the transcriptional 

and post-transcriptional levels, such as decoys, scaffolds and guides [106]. Examples of the 
mechanisms of action of some lncRNAs on the control of gene expression and mammalian 

cells regulation are described below.

HOTAIR (Hox transcript antisense intergenic RNA) is expressed from the HOXC locus and 
was the first lncRNA shown to be acting in trans. HOTAIR binds to and targets the PRC2 
complex to the HOXD locus [107], functioning as an RNA scaffold containing two main func-

tional domains. The 5′ domain of HOTAIR binds PRC2, whereas a 3′ domain binds the LSD1/
CoREST/REST H3K4 demethylase complex [108], thus bridging two repressive complexes in 

order to coordinate their functions in gene silencing. Ectopic HOTAIR expression in epithelial 

cancer cells induces genome-wide retargeting of PRC2, leading to widespread changes in 

LncRNA Cancer phenotype Molecular mechanism Cancer association References

HOTAIR Oncogenic, promotes 

metastasis and invasion

Interacts with PRC2 and LSD1 
complex, promotes silencing 

of HOX genes in trans 
epigenetically

Overexpressed in liver, 

breast, lung and pancreatic 

tumors

[109, 176, 

177]

GAS5 Tumor suppressor, 

induces growth arrest 

and sensitizes cells to 

apoptosis

Inhibits and binds 

glucocorticoid receptor (GR) 
from activating target genes

Downregulated in breast 

cancer

[178, 179]

H19 Oncogenic, promotes cell 

proliferation and tumor 

growth

Unknown Breast cancer [180]

MALAT1 Oncogenic, promotes 

cell proliferation and 

metastasis

Related to alternative splicing 

and active transcription, 

regulation of gene expression

Overexpressed in lung, 

breast, pancreatic, colon, 

prostate and hepatocellular 

carcinomas

[117, 181, 

182]

MEG3 Tumor suppressor, 

inhibits cell proliferation 

and induces apoptosis

Enhancing p53’s 
transcriptional activity on 

its target genes. Controls 
expression of gene loci 

through recruitment of PRC2

Downregulated in multiple 

tumor types

[183, 184]

PTENP1 Tumor suppressor; 

Inhibits cell 

proliferation, migration, 

invasion and tumor 

growth

Binds and inhibits miRNAs 

from targeting and repressing 

PTEN

Locus lost in prostate 
cancer, colon cancer and 

melanoma

[185–187]

ZFas1 Tumor suppressor and 

inhibits proliferation

Unknown Breast cancer and 

dysregulated in many 

types of tumors

[128, 188]

Table 2. List of lncRNAs involved in cancer with their proposed functions.
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repressive (H3K27me3) and active (H3K4me3) chromatin markers, resembling those found in 
embryonic fibroblasts. This results in more invasive and metastatic cells and HOTAIR expres-

sion is predictive of cancer survival [109].

lncRNAs can also participate in global cellular behavior by controlling cell growth. The 

growth-arrest-specific 5 (GAS5) lncRNA sensitizes the cell to apoptosis by regulating the activ-

ity of glucocorticoids in response to nutrient starvation [110]. GAS5 binds to the DNA-binding 

domain (DBD) of the glucocorticoid receptor (GR), where it acts as a decoy, preventing GR 
interaction with cognate glucocorticoid response elements (GRE). Under normal conditions, 
GR target genes are involved in apoptosis suppression, such as cellular inhibitor of apoptosis 
2 (cIAP2) and inhibit the cell-death executioners caspases 3, 7 and 9 [111]. However, upon 

growth arrest, GAS5 activation compromises GR ability to bind to the cIAP2 GRE, reducing 
cIAP2 expression levels, thereby removing its suppressive effect on caspases [110]. GAS5 has 

also been associated with breast cancer because its transcript levels are significantly reduced, 
when compared to unaffected normal breast epithelium [110]. Therefore, GAS5 could act as a 

tumor suppressor if reduced levels of this lncRNA are unable to maintain sufficient caspase 
activity to activate an appropriate apoptotic response in disease-compromised cells.

H19 is an imprinted gene expressed exclusively from the maternal allele, which maintains silenc-

ing of IGF2. H19 is highly expressed in a wide variety of solid tumors. The majority of cancers 

express high levels of H19 when compared to normal tissues. H19 is generally overexpressed in 

stromal cells, rarely in tumor epithelial cells and has been found to be associated with the pres-

ence of estrogen receptor (ER) and progesterone receptor (PR) [112]. Data indicating both onco-

genic and tumor suppressive roles for H19 in different cancers are available [113]. In cancer cell 

lines, H19 RNA expression is directly regulated by E2F1, promoting cell cycle progression [114].

The lncRNA MALAT1 (metastasis associated in lung adenocarcinoma transcript) was iden-

tified in an attempt to characterize transcripts associated with early stage non-small cell 
lung cancer (NSCLC) [115]. Some studies found that MALAT1 regulates alternative splicing 

through its interaction with the serine/arginine-rich (SR) family of nuclear phosphoproteins, 

which are involved in the splicing machinery [116, 117]. Because the SR family of proteins 

affects the alternative splicing patterns of many pre-mRNAs, its activity must be tightly reg-

ulated. Small changes in SR protein concentration or phosphorylation status can upset the 

fragile balance that controls mRNA variability among different cells and tissue types [118]. 

Therefore, the lncRNA MALAT1 has been suggested to serve as a fine-tuning mechanism to 
modulate the activity of SR proteins.

The maternally expressed gene 3 (MEG3) is an imprinted lncRNA located on chromosome 

14q32 is expressed exclusively from the maternal allele. MEG3 has been shown to activate 

p53 and facilitate p53 signaling, including enhancement of p53 binding to target genes [119]. 

Furthermore, MEG3 regulates genes of the TGF-β pathway through formation of RNA-DNA 
triplex structures [120]. MEG3 overexpression in meningioma, hepatocellular carcinoma and 

breast cancer cell lines leads to suppression of cell proliferation [121–123].

The PTEN (phosphatase and tensin homolog) gene encodes a tumor suppressor that functions 

by negatively regulating the AKT/PKB signaling pathway [124, 125]. Mutations of this gene 
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constitute a step into the development of many cancers and it is one of the most commonly 

lost tumor suppressors in human cancer [126]. A highly homologous processed of PTENP1 

(phosphatase and tensin Homolog pseudogene 1) is a pseudogene which is associated with 

the lncRNA class found on chromosome 9, regulating PTEN by both sense and antisense 

RNAs. This long non-coding RNA acts as a decoy for PTEN, targeting microRNAs and exert-

ing a tumor suppressive activity [125, 127].

The lncRNA Zfas1 (Znfx1 antisense 1) is a transcript antisense to the 5′ end of the protein-cod-

ing gene Znfx1, which has functions in epithelial cells and was identified in large-scale stud-

ies aimed at isolating differentially expressed genes during mammary development [128]. 

Zfas1 intronically hosts three C/D box snoRNAs (Snord12, Snord12b and Snord12c) [128] and 

recently has been associated with ribosomes cancer cells [129].

The highly specific lncRNA expression signatures render them as attractive markers for accu-

rate disease diagnosis and patients prognosis. In addition, advancement of RNA-based thera-

peutics opens new avenues for lncRNAs as new targets for cancer therapy.

5. mRNA decay

mRNA degradation is an important mechanism for post-transcriptional control of gene 

expression, controlling both the quality and the abundance of cellular mRNAs. Deadenylation 

of the mRNA is the default process, often representing a rate-limiting step in cytoplasmic 

mRNA decay, in which the poly(A) tail of the transcript is degraded through recruitment of 

deadenylase complexes [130–132]. In the literature, different deadenylases or poly(A)-spe-

cific ribonucleases have been described, namely PARN (poly(A)-specific ribonuclease), Pan2/
Pan3 (poly(A) nuclease 2/3) complex and CCR4–NOT (carbon catabolite repression 4) com-

plex [131, 133]. The PARN deadenylase is involved in destabilization of different transcripts 
related to cell cycle progression and cell proliferation [133, 134], as well as in degradation of 

oncogenic miRNAs, such as miR-21 [135]. In addition, its expression is altered in different 
tumors, such as gastric tumors [136] and acute leukemias [137].

Different proteins are able to interact with each other and promote the recruitment of dead-

enylases to the mRNA poly(A) tail. Members of BTG/Tob family, associated with anti-prolif-
erative activities [138], are able to associate with both Caf1a and Caf1b (enzymatic subunits 
of the CCR4-NOT complex) [139], and, also, with PABPC1 (cytoplasmic poly(A)-binding 
protein) [139, 140], promoting mRNA poly(A) tail removal and cytoplasmic mRNA decay. 

Expression of the BTG/Tob proteins is classically associated with inhibition of cell cycle pro-

gression [138]. The Tob/Caf1 complex is also involved in the negative regulation of c-myc 
proto-oncogene expression by accelerating deadenylation and decay of its mRNA [141]. 

In addition, BTG2 has been characterized as a p53 transcriptional-target, being an essen-

tial component for suppression of Ras-induced transformation by p53 [142]. In agreement, 

reduced expression of BTG2 and TOB proteins are observed in human samples derived from 
different types of tumor [143–146]. On the other hand, interaction of Tob1 with Caf1a (but 
not with Caf1b) was recently associated with the metastatic phenotype in mouse mammary 
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carcinoma model and the deadenylase activity of Caf1a was shown to be required for promo-

tion of metastatic disease [147]. Using a human breast cancer model, it has also been shown 

that high expression of either TOB1 or CNOT1 (the scaffold subunit of the CCR4-NOT com-

plex) correlated with poor survival [147] and was associated with poor distant metastasis 

free survival in breast cancer patients [148]. Interestingly, PABPC1 has also been described 
as an oncogenic protein in gastric carcinoma. Zhu and collaborators showed that PABPC1 
is upregulated in gastric carcinoma tissues, predicting poor survival and inhibits apoptosis 

by targeting miR-34c [149]. Following shortening of the poly(A) tail, mRNA can either be 

degraded through the 3′ pathway, by the eukaryotic exosome complex, or, alternatively, by 
removal of the cap by Dcp2 and exonuclease decay through the 5′ pathway, promoted by 
exonuclease Xrn1 [130, 131].

AU-rich elements (ARE) are critical cis-acting elements in the 3′-UTRs of a variety of short-
lived transcripts. Tristetraprolin (TTP) and human antigen R (HuR) are two important RNA-

binding proteins which can bind to AREs in their target mRNAs. TTP promotes deadenylation 
and degradation of target mRNAs, whereas HuR, as already mentioned, is involved in sta-

bilization of target mRNAs. It has been extensively described that TTP expression is signifi-

cantly decreased in different types of tumors [150] and that it is involved in cell cycle control, 

angiogenesis and tumor metastasis [151]. Recently, it has been reported that TTP inhibits the 

epithelial-mesenchymal transition (EMT) of cancer cells through mRNA degradation of the 
EMT inducers, specifically, Twist1 and Snail1, and inhibits cell proliferation through down-

regulation of c-fos, CDC34 and VEGF [152]. Interestingly, TTP appears to bind to AREs and 
interact with proteins involved in mRNA decay, such as the PM-scl75 exosome component, 
Xrn1 5′–3′ exonuclease, CCR4deadenylase and Dcp1 decapping enzyme [153], supporting a 

model in which TTP promotes mRNA decay through the ability to recruit components of the 

cellular mRNA decay machinery to the target mRNAs. In recent publications, high expression 

levels of HuR have been correlated with tumor progression and aggressiveness by affecting 
cell cycle progression, migration, invasion, metastasis and apoptosis in different tumor mod-

els [154–157]. HuR enhances the stability of the human epidermal growth factor receptor 2 

(ERBB2/HER-2) mRNA, modulating the estrogen receptor-alpha-positive (ER+) breast cancer 
cells responsiveness to tamoxifen [158].

In addition, deadenylase complexes could be recruited to the mRNA poly(A) tail through the 

action of miRNAs. GW182 proteins, which participate of the miRNA-induced silencing com-

plex (miRISC), directly interact with PAN3 and NOT1 subunits, leading to recruitment of the 
PAN2-PAN3 and CCR4-CAF1-NOT deadenylase complexes to the 3′-UTR of target mRNAs 
[159]. Also, it has been described that PARN deadenylase binds to the 3′ UTR of p53 mRNA 
through recruitment mediated by miR-125b-loaded miRISC, promoting p53 mRNA decay 
[134]. Interestingly, this effect can be reverted by HuR proteins, which bind to the p53 AREs 
and increase p53 mRNA stability [134].

The deadenylation machinery is also an important target for antitumor agents and anticancer 

therapy. Cantharidin (an inhibitor of protein phosphatase 2A) inhibits the invasive ability of 
pancreatic cancer cells, with concomitant deadenylation-dependent degradation of MMP2 

mRNA [20]. Resveratrol (3,5,4′-trihydroxystilbene), a naturally occurring compound, induces 
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TPP expression in U87MG human glioma cells and leads to the decay of urokinase plasmino-

gen activator (uPA) and urokinase plasminogen activator receptor (uPAR) mRNAs, promot-

ing suppression of cell growth and inducing apoptosis [160].

Additionally, several mature mRNAs surveillance mechanisms guarantee quality and fidelity 
to encode a functional protein in a translation-dependent manner. The nonsense-mediated 

decay (NMD) pathway is the best understood surveillance mechanism; detecting and degrad-

ing transcripts which contain premature termination codons (PTCs), avoiding the expression 
of semi-functional and truncated proteins [161]. The UPF-1 (up-frameshift1) protein, a key 

component of the NMD mechanism, interacts with both Dcp2 and PARP, linking NMD with 

the decapping and deadenylation processes [162]. Low expression levels of UPF-1 protein 
as well as inactivation of UPF-1 function were described in several types of human cancer, 

suggesting that NMD downregulation is related to tumorigenesis. Decreased levels of UPF-1 

were detected in lung adenocarcinoma in comparison to normal tissues, and its downregu-

lation was correlated to poor prognosis and higher histological grade [163]. The pancreatic 

adenosquamous carcinoma (ASC) is an aggressive tumor which is associated with high meta-

static potential and poor prognosis. In these tumors, a mutation that promotes UPF-1 alterna-

tive splicing and results in a non-functional UPF-1 protein, has been observed. Inactivation of 

the NMD pathway promotes selective accumulation of a p53 isoform, which acts in a domi-
nant-negative manner, contributing to tumorigenesis [164].

NMD can also be inhibited by a wide variety of cellular stresses, some of which are associated 

to the tumoral context [165]. In response to stress events, phosphorylation of the alpha-subunit 

of the eukaryotic initiation factor 2 (eIF2α) is able to inhibit NMD. It has been described that 
phospho-eIF2α is necessary for oncogene c-myc-mediated NMD inhibition [106]. Inhibition 

of NMD by cellular stress promotes stabilization of the SLC7A11 mRNA, which encodes a 
subunit of the cystine/glutamate aminoacid transport system, leading to increased intracel-

lular levels of cysteine, accelerating the production of glutathione. SLC7A11 is upregulated 
in hypoxic cells, promotes tumorigenesis and chemotherapy resistance, suggesting that it 

could be an adaptive response that protects tumor cells against oxidative stress [166]. It has 

recently been described that NMD regulates the epithelial-mesenchymal transition (EMT) in 
the lung adenocarcinoma model, by targeting the TGF-β signaling pathway [163]. In addition, 

the NMD mechanism controls the expression of a novel human E-cadherin variant mRNA 
produced by alternative splicing. Overexpression of this alternatively spliced E-cadherin vari-
ant in MCF-7, breast cancer cells was able to induce EMT by promoting higher expression 
levels of Twist, Snail, Zeb1 and Slug, with a concomitant decrease in the wild type E-cadherin 
mRNA levels [167].

Several promising NMD targets mRNAs for cancer therapy have been proposed. The MDM4 

protein, which is undetectable in normal tissues, is frequently upregulated in cancer cells, 

acting by inhibiting the p53 tumor-suppressor function [168]. The abundance of the MDM4 

protein is controlled, at least in part, by alternative splicing mechanisms and the NMD path-

way. In most normal adult tissues, the lack of exon 6 in the Mdm4-spliced variant leads to 

the production of an unstable transcript (Mdm4-S), which contains a PTC and is targeted to 
NMD [168]. On the other hand, the oncogenic splicing-factor SRSF3 supports exon 6 inclusion 
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Figure 1. Schematic representation and key roles of different RNA species in the control of gene expression in mammalian 
cells. This scheme represents a genomic locus and the main molecular mechanisms associated with the control of gene 

expression pattern. Proximal control elements are located close to the promoter, while distal elements (called enhancers) 
may be far away from a gene or even located in an intron. Alternative splicing (AS) generates transcriptome diversity. 

During AS, cis-acting regulatory elements, present in the pre-mRNA sequence, determine which exons are retained and 

which exons are spliced out. For an individual pre-mRNA, several alternative exons show different types of alternative-
splicing patterns. Addition of 5’ Cap and Poly(A) tail are controlled events which are extremely important for the 
stability of the mRNA and its transport from the cytoplasm to the nucleus. Non-coding RNAs (ncRNAs) with regulatory 

functions can act in multiple pathways during the transcription process by controlling specific events which culminate 
in synthesis of different proteins. Long non-coding RNAs (lncRNAs) target protein complexes to specific genomic loci 
affecting transcription patterns (transcriptional interference), leading to chromatin modifications (interplay between 
epigenetic marks, such as DNA methylation and histone acetylation) and DNA polymerase II activity. Advances in 

transcriptomics have resulted in the discovery of large numbers of ncRNAs (miRNAs e lncRNAs), many of which 

display the capacity to regulate gene expression at the levels of transcription (control of AS), post-transcription (mRNA 

editing, mRNA decay and mRNA stability) and translation (translation initiation).

in the Mdm4 mRNA transcript (full-length Mdm4 variant), which is not efficiently degraded 
by NMD. Therapeutic strategies which lead to antisense oligonucleotide-mediated (ASO-

mediated) Mdm4 exon 6 skipping efficiently decreases MDM4 abundance and inhibits tumor 
cell growth in melanoma and diffuse large B cell lymphoma models, as well as increases 
sensitivity to MAPK-targeting therapies [169].

6. Final considerations

Different post-transcriptional mechanisms have been associated with gene expression con-

trol, leading to complex transcriptional signatures in cancer. The mechanisms presented 

in this chapter constitute fine regulators of gene expression which influence multiple and 
highly relevant pathways in cancer development (summarized in Figure 1). Several splicing 
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variants, miRNAs and lncRNAs, have been shown to act as possible oncoRNAs or as tumor 

suppressors. The functional roles of these RNAs are only beginning to be elucidated pro-

viding an uncharted resource for the development of diagnostic methods and novel cancer 

therapies.

Abbreviations

ADAR Adenosine deaminases acting on RNA

AGO Argonaut

Akt/PKB Protein kinase B

Apaf-1 Apoptotic protease activating factor 1

APOBEC Apolipoprotein B Mrna editing enzyme, catalytic polypeptide-like

ARE AU-rich elements

AS Alternative splicing

ASC Pancreatic adenosquamous carcinoma

ASO Antisense oligonucleotide

AZIN1 Antizyme inhibitor 1

BCL B cell lymphoma gene family

BrdU Bromodeoxyuridine (5-bromo-2′-deoxyuridine)

BTG BTG anti-proliferation factor

Caf1 Chromatin assembly factor-1 complex

Casp Caspase

CCR4 C-C motif chemokine receptor 4

CCR4–NOT Carbon catabolite repression 4 complex

CD44 CD44 molecule (Indian blood group)

CD6 Cluster of differentiation 6

CDC34 Cell division cycle 34

CDS Coding DNA sequence

c-fos Proto-oncogene c-Fos

cIAP2 Cellular inhibitor of apoptosis 2
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CLL Chronic lymphocytic leukemia

c-Myc Myc proto-oncogene

CNOT1 CCR4-NOT transcription complex subunit 1

CoREST REST corepressor 1

CSCs Cancer stem cells

DBD DNA-binding domain

Dcp1 Decapping protein 1

DDX DEAD-box helixases

DICER Dicer 1, ribonuclease III

DROSHA Drosha ribonuclease III

E2F1 E2F transcription factor 1

eIF2α Eukaryotic initiation factor 2

EMT Epithelial-mesenchymal transition

ENCODE Encyclopedia of DNA elements

ER Estrogen receptor

ER+ Estrogen receptor-alpha-positive

ERBB2/HER Human epidermal growth factor receptor 2

EXP5 Exportin 5

GAS5 Growth-arrest-specific 5

GR Glucocorticoid receptor

GRE Glucocorticoid response elements

H19 H19, imprinted maternally expressed transcript

H3K4 Histone H3 lysine 4

hnRNP Heterologous nuclear ribonuclear particle

HOTAIR Hox transcript antisense intergenic RNA

HOXC Homeobox C cluster

HuR Human antigen R

IGF2 Insulin-like growth factor 2

lincRNAs Long intergenic ncRNAs
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lncRNAs long non-coding RNAs

LSD1 Lysine-specific histone demethylase 1

MALAT1 Metastasis associated in lung adenocarcinoma transcript

MAPK mitogen-activated kinase-like protein

MDM4 MDM4, p53 regulator

MEG3 Maternally expressed gene 3

miRISC miRNA-induced silencing complex

miRNA/miR microRNA

MMP2 Matrix metalloproteinase 2

NATs Natural antisense transcripts

ncRNAs Non-coding RNAs

NMD Nonsense-mediated decay

NSCLC Non-small cell lung cancer

ODC Ornithine decarboxylase

p53 Tumor protein p53

PABPC1 Cytoplasmic poly(A)-binding protein

PABPC1 Poly(A) binding protein cytoplasmic 1

Pan2/Pan3 Poly(A) nuclease 2/3 complex

PARN Poly(A)-specific ribonuclease

piRNA PIWI-interacting RNA

Pol II RNA polymerase II

PPB Pleuropulmonary blastoma

PR Progesterone receptor

PRC2 Polycomb repressive complex 2

Pri-miRNA miRNA primary transcript

PTCs Premature termination codons

PTEN Phosphatase and tensin homolog

PTENP1 Phosphatase and tensin homolog pseudogene 1

Ras HRas proto-oncogene, GTPase
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REST RE1-silencing transcription factor

RISC RNA-induced silencing complex

rRNAs Ribosomal RNAs

siRNA Small interfering RNA

SLC7A11 Solute carrier family 7 member 11

Slug Snail family transcriptional repressor 2

Snail1 Snail family transcriptional repressor 1

snoRNAs Small nucleolar RNAs

SNPs Single-nucleotide polymorphisms

snRNAs Small nuclear RNAs

snRNP Small nuclear ribonucleoprotein particles

SRP Serine-rich protein

SRSF1 Serine and arginine-rich splicing factor 1

TGF-β Transforming growth factor beta 1

Tob Transducer of ERBB2

tRNAs Transfer RNAs

TTP Tristetraprolin

Twist1 Twist family BHLH transcription factor 1

uPA Urokinase plasminogen activator

uPAR Urokinase plasminogen activator receptor

UPF-1 Up-frameshift1 protein

UTR Untranslated region

VEGF Vascular endothelial growth factor

XPO5 Exportin 5

Xrn1 5′–3′ exoribonuclease 1

Zeb1 Zinc finger E-box binding homeobox 1

Zfas1 Znfx1 sntisense 1

Znfx1 Zinc finger NFX1-type containing 1
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