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Abstract

This chapter deals with the design of multiple input multiple-output (MIMO) radar space-
time transmit code (STTC) and space-time receive filter (STRF) to enhance moving targets
detection in the presence of signal-dependent interferences, where we assume that some
knowledge of target and clutter statistics are available for MIMO radar system according
to a cognitive paradigm by using a site-specific (possible dynamic) environment database.
Thus, an iterative sequential optimization algorithm with ensuring the convergence is
proposed to maximize the signal to interference plus noise ratio (SINR) under the similar-
ity and constant modulus constraints on the probing waveform. In particular, each itera-
tion of the proposed algorithm requires to solve the hidden convex problems. The
computational complexity is linear with the number of iterations and polynomial with
the sizes of the STTW and the STRF. Finally, the gain and the computation time of the
proposed algorithm also compared with the available methods are evaluated.

Keywords: multiple input multiple output (MIMO), space-time transmit code (STTC),
space-time receive filter (STRF), signal-dependent interferences, signal to interference
plus noise ratio (SINR)

1. Introduction

Multiple-input multiple-output (MIMO) radar emits multiple probing signals via its transmit

antennas, which provides the greater flexibility for the design of the whole radar system, and

boosts the development of more sophisticated signal processing algorithms [1]. On the basis of

the configurations of transmitter/receiver antennas, MIMO radar systems can be classified into

two categories: widely distributed [2, 3] and colocated [4, 5]. The former has different angles of

view on the target owing to widely separated antennas, and this feature can be used to improve

the performance of target detection and angle estimation, as well as the capabilities of target

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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identification and classification [6]. The latter shares the same aspect angle of the target by using

tightly spaced antennas. However, colocated MIMO radar exploits the waveform diversity to

form a long virtual array, thus providing better results concerning spatial resolution, target

localization, and the interference rejection, as well as obtaining the degrees of freedom for the

design of transmit beam pattern [1, 7, 8].

Recently, colocated MIMO radar waveform design is a hot and challenging topic and has

received significant attention. In general, these works can be divided into two categories. The

first category focuses on the fast-time waveforms design exploiting some a priori information.

In particular, in [6], by using the a priori knowledge of target power spectral density, the

minimax robust waveforms are designed based on the rules of the mutual information (MI)

and minimum mean-square error (MMSE). In [9], MIMO waveforms for the case of an

extended target are devised based on the maximization of signal-to-interference plus-noise

ratio (SINR) through a gradient-based algorithm assuming the knowledge of both the target

and signal-dependent clutter statistics. In [10], by considering MMSE as figure of merit, MIMO

radar waveforms are synthesized under signal-dependent clutter. The join design of the trans-

mit waveform and the receive filter is addressed for improving the extended target delectabil-

ity in the presence of signal-dependent clutter, by employing a cycle iteration algorithm with

ensuring convergence [11]. In [12], by designing the transmit waveform and the receive filter,

two sequential optimization algorithms are proposed to maximize SINR subject to the constant

modulus and similarity constraints. Based on the rule of the worst-case output SINR in the

presence of unknown target angle, the robust joint design of transmit waveform and the

receive filter is considered [13]. Some more works can be found in [7, 8, 14, 15].

The second category addresses the MIMO radar space-(slow) time code design for moving

target scenarios. In particular, in [16], MIMO radar slow-time code shares the ability of

improving the resolution in angle-Doppler images and obtaining enhanced moving target

detection performance. In [17], the signal-dependent interference is alleviated by the space-

time coding framework based on a beamspace space-time adaptive processing (STAP). In [18],

based on the max-min SINR optimization criteria, the time-division beamforming signal is

designed for a multiple target scenario. For a moving point-like target detection, based on the

worst case SINR over the actual and signal-dependent clutter statistics, the robust joint design

of the space-time transmit code (STTC) satisfying the energy and similarity constraints and the

space-time receive filter (STRF) is addressed in [19].

This chapter handles the joint design of the STTC and STRF with the aim of enhancing the

moving target detectability under signal-dependent interferences and white Gaussian noise.

Unlike [19, 20], some knowledge of target and clutter statistics is assumed to be available. In

particular, the SINR is considered as figure of merit to maximize subject to a constant modulus

constraint on the transmit signal in addition to a similarity constraint. To deal with the

resulting nonconvex design problem, an iterative algorithm ensuring convergence is proposed.

Each iteration of the proposed algorithm involves the solution of hidden convex problems.

Specifically, both a convex problem with closed-form solution and a set of fractional program-

ming problems, which can be globally solved through the Dinkelback’s algorithm, are solved.

The resulting computational complexity is linear with the number of iterations and polynomial

with the sizes of the STTC and the STRF.
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The remainder of the chapter is organized as follows. In Section 2, the system model is

formalized. In Section 3, the constrained optimization problem under constant modulus and

similarity constraints is formulated. In Section 4, the new optimization algorithm is presented.

In Section 5, the performance of the new procedure is evaluated. Finally, in Section 6, conclud-

ing remarks and possible future research tracks are provided.

2. System model

We focus on a colocated narrow band MIMO radar system consisting of NT transmitters

antennas and NR receivers. Each transmitter emits a slow-time phase-coded coherent train

with K pulses. Let s kð Þ ¼ s1 kð Þ; s2 kð Þ;⋯; sNT kð Þ½ �T ∈C
NT , k ¼ 1, 2,⋯, K denote the transmitted

space code vector at the kth transmission interval, where snt kð Þ denotes the kth transmitted

phase-code pulse of the ntth transmitting antenna, for nt ¼ 1, 2,⋯, NT, �ð ÞT stands for the

transpose, and C
N is the set of N-dimensional vectors of complex numbers. At each receiver,

the received waveform is downconverted to baseband, undergoes a pulse matched filtering

operation, and then is sampled. Hence, the observations of the kth slow-time sample for a far-

field moving target at the azimuth angle θ0 can be expressed as [21]

x kð Þ ¼ α0e
j2π k�1ð Þvd0A θ0ð Þs kð Þþd kð Þþv kð Þ, (1)

where

• α0 is a complex parameter taking into account the target radar cross section (RCS),

channel propagation effects, and other terms involved into the radar range equation.

• vd0 denotes the normalized target Doppler frequency, which is related to the radial veloc-

ity vr via the equation vd0 ¼ 2vrT=λ with λ being the carrier wavelength and T being the

pulse repetition time (PRT).

• A θð Þ ¼ a∗r θð Þat† θð Þ, in which at θð Þ and ar θð Þ denote the transmit spatial steering vector

and the receive spatial steering vector at the azimuth angle θ, respectively, and �ð Þ∗ and

�ð Þ† are the conjugate and the conjugate transpose operators, respectively. In particular, for

the uniform linear arrays (ULAs), they are given by

at θð Þ ¼ 1
ffiffiffiffiffiffiffi

NT

p 1; ej2π
dT
λ
sinθ;⋯; ej2π

dT
λ

NT�1ð Þ sinθ

h iT

, (2)

ar θð Þ ¼ 1
ffiffiffiffiffiffiffi

NR

p 1; ej2π
dR
λ
sinθ;⋯; ej2π

dR
λ

NR�1ð Þ sinθ

h iT

(3)

with dT and dR being the array interelement spacing of the transmitter and the receiver,

respectively.

• d kð Þ∈C
NR , k ¼ 1, 2,⋯, K, considering M signal-dependent uncorrelated point-like inter-

fering scatterers. Specifically, as shown in Figure 1, the angle space is discretized as

Θ ¼ 0; 1;⋯f ;Lg� 2π
Lþ1ð Þ. For the mth interfering source located at the range-azimuth bin
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rm; lmð Þ, rm ∈ 0; 1;⋯f ;K�1g, lm ∈ 0; 1;⋯;Lf g, the received interfering vector d kð Þ can be

expressed as the superposition of the returns from M interference sources, i.e.,

d kð Þ ¼
XM

m¼1

rme
j2πvdm k�1ð ÞA θmð Þs k�rmð Þ, 0 ≤ rm ≤k�1, (4)

with rm, vdm , and θm, respectively, the complex amplitude, the normalized Doppler frequency,

and the look angle, given by θm ¼ 2π
Lþ1ð Þ lm, of the mth interferences. Furthermore, M is nomi-

nally equal to K� Lþ1ð Þ.

• v kð Þ∈C
NR , k ¼ 1, 2,⋯, K denotes additive noise, modeled as independent and identically

distributed (i.i.d.) complex circular zero-mean Gaussian random vector, i.e., v kð Þ�

CN 0;σ2INR
ð Þ, where INR

denotes NR�NR-dimensional identity matrix.

Let x ¼ xT 1ð Þ;⋯; xT Kð Þ
� �T

, s ¼ sT 1ð Þ;⋯; sT Kð Þ
� �T

, d ¼ dT 1ð Þ;⋯; dT Kð Þ
h iT

, and v ¼ vT 1ð Þ;⋯;

�

vT Kð Þ�T . Then, Eq. (1) can be expressed in a compact form as

x ¼ α0
bA vd0 ;θ0

� �
sþdþv, (5)

where

bA vd;θ0ð Þ ¼ Diag p vdð Þð Þ⊗A θ0ð Þ (6)

with p vdð Þ ¼ 1; ej2πvd ;⋯; ej2π K�1ð Þvd
� �T

being the temporal steering vector, ⊗ denotes the

Kronecker product, and Diag �ð Þ denotes the diagonal matrix formed by the entries of the

vector argument. Additionally, we assume that the noise vector v is a zero-mean circular

complex Gaussian random vector with covariance matrix Σv ¼ E v v†
� �

¼ σ2
v INRK . Finally,

interference vector d can be expressed as

Figure 1. Range-azimuth bins (the target of interest is represented by the red (solid) circle).
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d ¼
XM

m¼1

rmPrm
bA vdm ;θm

� �
s, (7)

where Prm is given by

Prm ¼ Jrm ⊗ INR
, (8)

in which Jr denotes the shift matrix [23], whose k1; k2ð Þth entry is defined as1,

Jr k1; k2ð Þ ¼
1 k1�k2 ¼ r

0 k1�k2 6¼r,

�
(9)

r∈ 0; 1;⋯;K�1f g and k1; k2ð Þ∈ 1; 2;⋯;Kf g2. In particular, we assume that rm, m ¼ 1, 2,⋯,M,

and α0 are a zero-mean uncorrelated random variables with, respectively, σ2
m ¼ E jr2mj

� �
and

σ2
0 ¼ E α0j j2

� �
. As to the normalized Doppler frequency of the interfering signals, we model vdm

as a random variable uniformly distributed around a mean Doppler frequency vdm, i.e.,

vdm�U vdm�
εm

2
; vdmþ

εm

2

� 	
, m∈ 1, 2,⋯,M (10)

where εm accounts for the uncertainty on vdm . Basing on the previous assumptions, the inter-

ference vector d has zero mean and covariance matrix

Σd sð Þ ¼ E dd†
h i

¼
XM

m¼1

Jrm ⊗A θmð Þð Þ ss†
� �

⊙Ξm

� �
Jrm ⊗A θmð Þð Þ†, (11)

where

Ξm ¼ σ
2
mΦ

vdm
εm ⊗ϒ t , (12)

in which

Φ
vdm
εm k1; k2ð Þ ¼ ej2πvdm k1�k2ð Þ sin πεm k1�k2ð Þ½ �

πεm k1�k2ð Þ
, ∀ k1; k2ð Þ∈ 1; 2;⋯;Kf g2, (13)

and ϒ t ¼ 1t1t
T with 1t ¼ 1; 1;⋯; 1½ �T being the NT�1 vector, ⊙ and E �½ � denote the Hadamard

product and the statistical expectation, respectively. This expression, for the covariance matrix

Σd sð Þ, follows from the results obtained in ([19], Appendix 1).

Inspection of (11) and (12) reveals that the interference covariance matrix Σd sð Þ requires the

knowledge of θm and σ2
m as well as vdm and εm, for m ¼ 1, 2,⋯,M. These information can be

obtained according to a cognitive paradigm [22–24] through exploiting a site-specific (possible

dynamic) environment database, which involves a geographical information system (GIS),

1

Notice that based on its definition, the shift matrix satisfies the condition Jr ¼ J�rT .
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digital terrain maps, previous scans, tracking files, clutter models (in terms of electromagnetic

reflectivity and spectral density), and meteorological information.

3. Problem formulation

This section formulates the joint design problem of the STTC and STRF based on the maximi-

zation of the output SINR considering practical constraints.

3.1. Output SINR

Letting the observations x be processed via the STRF w∈C
NRK, the SINR br s;wð Þ at the output

of the receiver can be expressed as

br s;wð Þ ¼
α0w

†bA vd0 ;θ0

� �
s









2

E w†dj j
2

h i
þE w†vj j

2
h i ¼

σ
2
0w

†bA vd0 ;θ0

� �
ss†bA† vd0 ;θ0

� �
w

w†Σd sð Þwþσ2
vw

†w
, (14)

where we exploit

E w†d


 

2
h i

¼ w†
E dd

†

h i
w (15)

and

E w†v


 

2
h i

¼ w†
E v v†
� �

w (16)

and assume w 6¼0 and the independence between the disturbance and the noise random

processes.

In particular, the numerator in (14) denotes the useful energy at the output of the STRF,

w†
Σd sð Þw and σ2

vw
†w represent the clutter energy and noise energy, respectively, at the output

of w . Observe that the clutter energyw†
Σd sð Þw functionally relies on the STTC w and the STRF

s through Σd sð Þ as well as the useful energy. Furthermore, we note that the objective function

br s;wð Þ requires that the exact angle θ0 and normalized Doppler frequency vd0 are known.

However, from a practical point of view, the explicit knowledge of θ0 and vd0 cannot be

available. To circumvent this drawback, the averaged SINR defined as r s;wð Þ ¼ E br s;wð Þ½ � as

figure of merit is exploited. More specifically, we suppose that vd0 and θ0 are independent

random variables uniformly distributed around a mean Doppler frequency vd0 and a mean

azimuth θ0, respectively, i.e., vd0�U vd0�
ε0

2 ; vd0þ
ε0

2

� �
, θ0�U θ0�

ϑ0

2 ;θ0þ
ϑ0

2

� �
, where � means

“distribute” and U represents uniform distribution and ε0 and ϑ0 accounts for the uncertainty on

vd0 and θ0, respectively. Interestingly, after some algebraic manipulations, the objective function

r s;wð Þ shares the following two equivalent expressions,
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where

Γ Sð Þ ¼ σ2
0E Diag p vdð Þð Þ⊗A θ0ð Þð ÞS Diag p vdð Þð Þð Þ†⊗A† θ0ð Þ

� 	h i

(17)

Σdv Sð Þ ¼
X

M

m¼1

Jrm ⊗A θmð Þð Þ S⊙Ξmð Þ Jrm ⊗A θmð Þð Þ†þσ2
vINRK (18)

Θ Wð Þ ¼ σ2
0E Diag p vdð Þð Þð Þ†⊗A† θ0ð Þ

� 	

W Diag p vdð Þð Þ⊗A θ0ð Þð Þ
h i

(19)

Σdv Wð Þ ¼
X

M

m¼1

Jrm ⊗A θmð Þð Þ† W⊙Ξm

� �

Jrm ⊗A θmð Þð Þþ σ2
vtr Wð ÞINTK

E
, (20)

While S ¼ ss† ∈H
KNT and W ¼ ww† ∈H

KNR , Ξm is given by (12), E denotes the energy of s ,

Ξm ¼ σ2
mΨ

vdm
εm ⊗ϒ r , Ψ

vdm
εm k1; k2ð Þ ¼ Φ

vdm
εm k1; k2ð Þ

� 	∗

, ∀ k1; k2ð Þ∈ 1; 2;⋯;Kf g2 and ϒ r ¼ 1r1r
T

with 1r ¼ 1; 1;⋯; 1½ �T ∈C
NR , and tr �ð Þ denotes the trace of square matrix. These expressions

follow from the results obtained in ([19], Appendix 3).

Note that Γ Sð Þ and Θ Wð Þ can be rewritten in block matrix form, i.e.,

Γ Sð Þ ¼ σ2
0Γm1m2

� �

K�K
(21)

Θ Wð Þ ¼ σ2
0Θi1i2

� �

K�K
(22)

where Γm1m2
∈C

NR�NR and Θi1i2 ∈C
NT�NT can be computed by (38) and (46) respectively,

∀ m1;m2; i1; i2ð Þ∈ 1; 2;⋯;Kf g4, as shown in Appendix A.

3.2. Constant modulus and similarity constraints

In practical applications, the designed STTC is enforced to be unimodular (i.e., constant

modulus) since the nonlinear property of radar amplifiers [24, 25]. To this end, we limit the

modulus of each element of the code s as a constant. Precisely, the ith element si of s can be

written as

si ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

NTK
p ejφi , i ¼ 1, 2,⋯, NTK, (23)

with φi denoting the phase of si. Furthermore, K different similarity constraints are enforced

on the NT transmitting waveforms, namely

∥s kð Þ�s0 kð Þ∥
∞
≤ ξk, k ¼ 1, 2,⋯, K, (24)

where s0 kð Þ∈C
NT is the reference code vector at the kth transmission interval, ξk is a real

parameter ruling the extent of the similarity, and ∥x∥
∞
denotes the infinite norm.
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Without loss of generality, we assume the same similarity parameter ξ0 (i.e., ξ0 ¼ ξ1 ¼ ⋯

¼ ξK) [12, 26, 28–30] on the sought STTC. Thus, Eq. (24) can be written as ∥s�s0∥∞ ≤ ξ0, where

s0 ¼ sT0 1ð Þ;⋯; sT0 Kð Þ
� �T

is the reference code vector. Several reasons are presented to show the

motivation to exploit the similarity constraints on radar codes. Actually, an arbitrary optimi-

zation of SINR via designing an STTC does not offer any kind of control on the shape of the

resulting designed waveforms. Specifically, an pure optimization of the SINR can cause signals

sharing high peak sidelobe levels and, in general, with an undesired ambiguity function

feature. To this end, by exploiting the similarity constraint, when s0 possesses suitable proper-

ties, such as low peak sidelobe levels, and reasonable Doppler resolutions, the designed STTC

can enjoy some of the good ambiguity function feature of s0. In other words, the similarity

constraint compromises the performance between SINR improvement and suitable waveform

features [31].

3.3. Design problem

Summarizing, the joint design of the STTC and the STRF can be formulated as the following

constrained optimization problem:

P1

max
s,w

r s;wð Þ

s:t: ∥s kð Þ�s0 kð Þ∥
∞
≤ ξk, k ¼ 1, 2,⋯, K,

∣si∣ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

NTK
p , i ¼ 1, 2,⋯, NTK,

∥w∥2 ¼ 1,

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(25)

where ∣�∣ and ∥�∥, respectively, represent the modulus and the Euclidean norm. Without loss of

generality, we add the constraint ∥w∥2 ¼ 1. P1 is a NP-hard problem [12, 28] whose optimal

solution cannot be found in polynomial time. Next, we develop a new iterative algorithm to

offer high-quality solution to the NP-hard problem (25).

4. STTC and STRF design procedure

This section focuses on the design of an iterative algorithm ensuring convergence properties,

which is capable of offering high-quality solutions to the NP-hard problem P1 by sequentially

improving the SINR. In particular, we exploit the pattern search framework to cyclically

optimize the design variables w; s1; s2;⋯; sNTKð Þ.

4.1. STRF optimization

In this subsection, we deal with the STRF optimization for a fixed STTC s . Specifically, we

handle the optimization problem
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Pw

max
w

w†Γ ss†
� �

w

w†Σdv ss†ð Þw
s:t: ∥w∥2 ¼ 1:

8

>

<

>

:

(26)

We observe that the optimal solution wo to Pw is the maximum eigenvector of the matrix

Σdv ss†
� �� ��1

Γ ss†
� �

,

i.e., to a generalized eigenvector of the matrices Γ s s†
� �

and Σdv s s†
� �

corresponding to the

maximum generalized eigenvalue. Thus, a closed-form solution to Pw can be obtained by

normalizing wo.

4.2. STTC optimization

This subsection is devoted to the optimization of the STTC under a fixed STRF. Precisely, each

code element in s is sequentially optimized under the fixed remaining NTK�1 elements.

Performing some algebraic manipulations to similarity constraints [26], the optimization prob-

lem Psi with respect to the ith STTC variable, i ¼ 1,…, NTK, is written by,

Psi

max
si

s†Θ ww†
� �

s

s†Σdv ww†ð Þs
s:t: argsi ∈ γ

i
;γ

i
þδ

� �

,

∣si∣ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

NTK
p ,

8

>

>

>

>

>

<

>

>

>

>

>

:

(27)

where s ¼ s1; s2;⋯; si�1; si; siþ1;⋯; sKNT
½ �T , γ

i
¼ arg s0i�arccos 1�ξ2=2

� �

, δ ¼ 2arccos 1�ð ξ2=2Þ,
ξ ¼

ffiffiffiffiffiffiffiffiffiffiffi

NTK
p

ξ0 with 0 ≤ ξ ≤ 2, and s0i is the ith element of s0. Notice that for ξ ¼ 0, the code s is

equal to the reference code s0, whereas the similarity constraint would become the constant

modulus constraint with ξ ¼ 2.

Remark: This procedure by resorting to pattern search framework offers a new strategy to

address the code design problem under a fixed filter. In addition, this STTC optimization

problem can be efficiently but approximatively settled by semidefinite relaxation (SDR) and

randomization procedure with the computational complexity of O NTKð Þ3:5
� 	

þO L NTKð Þ2
� 	

,

where L is the number of randomization trials. However, the SDR technique usually shares a

huge computational complexity, especially in large dimension NTK, thus limiting its applica-

tions in real-time systems; moreover, the existing approach also needs the reasonable selection

of L. On the other hand, it is shown that a higher quality solution can be further obtained via a

sequential iteration optimization algorithm, which is capable of monotonically increasing the

SINR value and achieving a stationary point of the formulated NP-hard problem [27].

Next, we focus on the proposed iteration algorithm to solve problem (27) in a polynomial time.

In particular, performing some algebraic manipulations to the objective function in (27), Psi
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can be equivalently rewritten as a fractional programming optimization problem by the fol-

lowing proposition.

Proposition 4.1 The problem Psi is equivalent to

max
si

ℜ a1, isið Þþa3, i
ℜ b1, isið Þþb3, i

s:t: si ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

NTK
p ejφ,φ∈ γi;γiþδ

� �

,

8

>

>

<

>

>

:

(28)

where

a3, i ¼
a0, i
NTK

þa2, i, b3, i ¼
b0, i
NTK

þb2, i, (29)

and ak, i, bk, i are constants for k ¼ 0, 1, 2, ℜ xð Þ denotes the real part of x.

Proof. See Appendix B.

Problem (28) is solvable [32] since the objective function is continuous with ℜ b1, isið Þþb3, i>0

and the constraint is a compact set (closed and bounded set of C). Thus, we consider the

following parametric problem [32],

max
si

ϱ μð Þ ¼ ℜ a1, isið Þþa3, i�μ ℜ b1, isið Þþb3, i½ �
� �

s:t: si ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

NTK
p ejφ,φ∈ γi;γiþδ

� �

:

8

>

<

>

:

(30)

After some simple manipulations, problem (30) can be rewritten as

max
si

ℜ cisið Þ

s:t: si ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

NTK
p ejφ,φ∈ γi;γiþδ

� �

,

8

>

<

>

:

(31)

where ci ¼ a1, i�μb1, i and the constant a3, i�μb3, i do not affect the optimal value.

Interestingly, problem (31) shares a closed-form solution whose phase φ∗ is given by,

φ∗ ¼ �φci
,�φci

∈ γi;γiþδ
� �

,

where φci
is the phase of ci; otherwise, the optimal solution φ∗ is given by,

φ∗ ¼
γiþδ cos φci

þγiþδ
� 	

≥ cos φci
þγi

� 	

γi cos φci
þγiþδ

� 	

< cos φci
þγi

� 	

:

8

>

<

>

:

(32)

We observe that problems (28) and (30) are relevant in each other via Lemma 2.1 of [32].

Specifically, we can find a solution to problem (28) by obtaining a solution of the equation
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ϱ μð Þ ¼ 0 concerning si. To this end, the Dinkelbach-type procedure [32, 33] summarized in

Algorithm 1 is introduced to solve problem (27).

Algorithm 1. Dinkelbach-type algorithm for solving Psi

Input: a1, i, a3, i, b1, i, b3, i, γi
and δ;

Output: An optimal solution bsi to Psi ;

1. Randomly generate si, 0 within the feasible sets;

2. Compute μ1 ¼
ℜ a1, isi, 0ð Þþa3, i

ℜ b1, isi, 0ð Þþb3, i
and let k≔ 1;

3. Find the optimal solution si, k by solving problem (30),

4. If ϱ μk
� �

¼ 0, then si, k is an optimal solution of Psi with optimal value μk and stop.

Otherwise, go to step 5;

5. Let μk ¼
ℜ a1, isi,kð Þþa3, i

ℜ b1, isi,kð Þþb3, i
and k≔ kþ1; Then go to step 2.

Algorithm 1 sharing a linear convergence rate [34] is needed to handle the problem (30) in each

iteration. The objective value of the generated sequence of points has a monotonic convergence

property, and the optimal value of (28) can be achieved eventually. We set the exit condition

ϱ μð Þ ¼ 0, actually, which can be replaced by ϱ μð Þ ≤ ς, with ς being a prescribed accuracy.

4.3. Transmit-receive system design

This subsection reports the iteration optimization procedure for the STTC and STRF in Algo-

rithm 2. In particular, Algorithm 2 guarantees that the SINR monotonically increases2. Fur-

thermore, we need to point out that the maximum block improvement (MBI) [24] framework

could be used to ensure the convergence to a stationary point of problem P1.

The global computation consume of the Algorithm 2 is linear to the number of iterations and

polynomial with the sizes of the STTC and the STRF. More specifically, each iteration of the

proposed algorithm involves the computational cost associated with the solution to problems

(26) and Psi , for i ¼ 1, 2,⋯, NTK. The former requires to solve the generalized eigenvalue

decomposition with the order of O NRKð Þ3
� 	

(see [35], p. 500). Similarly, the latter is linear to

polynomial with the size of the STTC, while each iteration needs the solution of a generalized

fractional programming problem with the computational complexity of O NTKð Þ2
� 	

. We need

to point out that SOA2, based on the SDR and randomization method, can also be used to the

solution of problem (25). However, it cannot guarantee the convergence to a stationary point

due to the use of randomized approximations. Moreover, from computational complexity,

each iteration of SOA2 has the order of O NRKð Þ3
� 	

+ O NTKð Þ3:5
� 	

+ O L NTKð Þ2
� 	

, whereas

Algorithm 2 is O NRKð Þ3
� 	

+ O NTKð Þ3
� 	

.

2

Notice that the similar convergence analysis can be obtained in [23].
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Algorithm 2. Algorithm for the joint STTC s and STRF w design

Input: θ0, ϑ0, s0, ξ, σm, rm, vdm , εm, for m ¼ 0, 1,⋯,M, and θp, for p ¼ 1, 2,⋯,M;

Output: An optimal solution s∗;w∗ð Þ to P1;

1. Construct γm,δ, m ¼ 1, 2,⋯, NTK exploiting s0;

2. For n ¼ 0 and initialize s nð Þ ¼ s0;

3. Compute w 0ð Þ ¼ w
0ð Þ
o

∥w
0ð Þ
o ∥

and r0 ¼ r s 0ð Þ;w 0ð Þ
� �

;

4. n≔nþ1 and i ¼ 0;

5. Compute Σdv w nð Þw nð Þ†
� �

and Θ w nð Þw nð Þ†
� �

by (20) and (22), respectively;

6. i≔iþ1;

7. Compute ak, i and bk, i by (50) and (51), k ¼ 0, 1, 2, respectively;

8. Find a3, i and b3, i by (29);

9. Exploit Algorithm 1 to update si by maximizing the problem (27);

10. If i ¼ NTK, output s nð Þ ¼ s1; s2;⋯; sKNT½ �T . Otherwise, return to step 7;

11. Compute Σdv s nð Þ s nð Þ†
� �

and Γ s nð Þ s nð Þ†
� �

by (18) and (21), respectively;

12. Find the generalized eigenvector w
nð Þ
o of matrices Γ s nð Þ s nð Þ†

� �

and Σdv s nð Þ s nð Þ†
� �

corresponding to the maximum generalized eigenvalue;

13. Compute w nð Þ ¼ w
nð Þ
o

∥w
nð Þ
o ∥

and rn ¼ r s nð Þ;w nð Þ
� �

;

14. If ∣rn�rn�1∣ ≤ κ, where κ is a user selected parameter to control convergence, output

s∗ ¼ s nð Þ and w∗ ¼ w nð Þ; Otherwise, repeat step 5 until convergence.

5. Numerical results

This section focuses on assessing the capability of the proposed algorithm for designing opti-

mized STTC and STRF in signal-dependent interference for both a nonuniform and an uniform

point-like clutter environment. In particular, for both scenarios, we consider an L-band radar

with operating frequency f c ¼ 1:4 GHz, which is equipped with an ULA of NT ¼ 4 transmit

elements and NR ¼ 8 receive elements under an interelement spacing dt ¼ dr ¼ λ=2. We set the

code length K ¼ 13 for each transmitter and the orthogonal linear frequency modulation (LFM3)

is used as the reference waveform s0 [12] with the nt; kð Þth entry of the reference S 0ð Þ given by,

3

Notice that LFM waveforms have good properties in the pulse compression and ambiguity feature.
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S 0ð Þ nt; kð Þ ¼
exp j2πnt k�1ð Þ=NT

� �

exp jπ k�1ð Þ2=NT

n o

ffiffiffiffiffiffiffiffiffiffi

KNT

p (33)

where nt ¼ 1, 2,⋯, NT and k ¼ 1, 2,⋯, K. Hence, the reference code is derived as

s0 ¼ vec S 0ð Þ
� 	

. Moreover, we assume the target located at range-azimuth bin of interest (0,0)

with power σ2
0 ¼ 10 dB. In addition, we set a mean azimuth θ0 ¼ 0 ∘ with azimuth uncertainty

ϑ=2 ¼ 1 ∘ , and a normalized mean Doppler frequency vd0 ¼ 0:4 with Doppler uncertainty

ε0=2 ¼ 0:04 for the presence of target. We set the noise variance to σ2
v ¼ 0 dB. Finally, the exit

condition4 ς ¼ 10�3 for Algorithms 1 and 2 is κ ¼ 10�3, i.e.,

∣rn�rn�1∣ ≤ 10
�3: (34)

All simulations are performed using Matlab 2010a version, running on a standard PC (with a

3.3 GHz Core i5 CPU and 8 GB RAM).

5.1. Nonuniform point-like clutter environment

This subsection focuses on a scenario where three disturbances, respectively, are located at the

spatial angles θ1 ¼ �55
�
,θ2 ¼ �20

�
,θ3 ¼ 40

�
, with corresponding range bins ri ¼ 0, i ¼ 1, 2, 3

and powers σ2
1 ¼ 30dB, σ2

2 ¼ 28dB, σ2
3 ¼ 25 dB. Moreover, we suppose vd1 ¼ �0:35,

vd2 ¼ �0:15, vd3 ¼ 0:25, εm=2 ¼ 0:04, m ¼ 1, 2, 3 for the presence of the disturbances.

For comparison purpose, we also perform simulations for the SOA2 with constant modulus and

similarity constraints as well as the algorithm in [19] with energy constraint (i.e., ∥s∥2 ¼ 1),

respectively. In particular, Figure 2 shows the SINR versus the iteration number for different ξ

by also comparing the results obtained via Algorithm 2 and SOA2 considering L = 100 and

exploiting the CVX toolbox [36] to handle the semidefinite programming (SDP) involved in

SOA2. The results exhibit that the SINR values achieved using Algorithm 2 and SOA2 increase

as the iteration number increases. In addition, the SINR increases as ξ increases owing to the

higher degrees of freedom available at the design stage. Precisely, Algorithm 2 is superior to

SOA2 for ξ ¼ 0:1, 0:5, 1:3. It is interesting to note that Algorithm 2 and SOA2 share almost the

same SINR for ξ ¼ 2, whereas both obtain lower SINR than the case considering energy

constraint. Finally, it is worth pointing out that a loss of SINR caused by constant constraint

can be observed since the gap of SINR between ξ ¼ 2 and energy constraint is about 1 dB.

Table 1 reports the achieved SINR values, iterations number, and global computation time of

Algorithm 2 and SOA2 supposing a target with �π=180 ≤θ0 ≤π=180, 0:36 ≤vd0 ≤ 0:44 for

ξ ¼ 0:1, 0:5, 1:3, 2 and setting the same exit condition for SOA2. We observe that Algorithm 2

and SOA2 both converge very fast. Additionally, Algorithm 2 is superior to SOA2 concerning

4

Notice that we consider the exit condition A=104 both for Algorithms 1 and 2, where A denotes the upper bound of the

objective function neglecting the signal-dependent interference (for example, A ¼ 10 is considered in this simulation).

Space-Time Transmit-Receive Design for Colocated MIMO Radar
http://dx.doi.org/10.5772/intechopen.71946

37



the achieved SINR value for ξ ¼ 0:1, 0:5, 1:3 and concerning the required computational cost

for ξ ¼ 0:1, 0:5, 1:3, 2.

In the following, the joint frequency and azimuth behavior of STTC and STRF are considered

corresponding to ξ ¼ 2 supposing �π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 for different iteration

numbers, by using the contour map of the slow-time cross ambiguity function (CAF) [19],

g nð Þ s nð Þ;w nð Þ; r; v;θ
� 	

¼ w nð Þ†Pr
bA v;θð Þs nð Þ









2

, (35)

where bA v;θð Þ and Pr are obtained by exploiting Eqs. (6) and (8), respectively. Figure 3 plots

the contour map of the Doppler-azimuth plane of CAF at r ¼ 0 versus the iteration number

n ¼ 0; 1; 4; 15½ � for Algorithm 2. As expected, the lower and lower values in the regions of

(highlighted by black ellipses) θ1 ¼ �55
�

and �0:39 ≤ v ≤�0:31, θ2 ¼ �20
�

and �0:19 ≤ v ≤

Algorithm 2 SOA2

ξ SINR n Time SINR n Time

0.1 2.7 2 0.3236 2.3 3 4.0145

0.5 5.2 6 0.8942 3.5 3 3.9688

1.3 8.3 12 1.7175 6.3 4 5.3498

2 8.8 13 1.8102 8.8 7 9.3621

Table 1. SINR values (in dB), iterations number, and global computation time (in seconds) of Algorithm 2 and SOA2

assuming a target with �π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 for ξ ¼ 0:1, 0:5, 1:3, 2, s0 as the initial point.

Figure 2. The SINR behavior versus iteration number assuming a target with �π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 for

ξ ¼ 0:1, 0:5, 1:3, 2, s0 as the initial point.
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�0:11, and θ3 ¼ 40
�
and 0:21 ≤ v ≤ 0:29 are achieved, with the increase of n. Thus, it is worth

pointing out that the proposed algorithm can suitably shape the CAF to resist interferences.

For the uniform distribution, we define both standard deviations σvd0
and σθ0

of target Dopp-

ler and azimuth as, respectively,

σvd0
¼ ε0=

ffiffiffiffiffi

12
p

,σθ0
¼ ϑ0=

ffiffiffiffiffi

12
p

:

Figure 4 shows the SINR behaviors versus the standard deviations σvd0
(Figure 4a) and σθ0

(Figure 4b) supposing θ0 ¼ 0
�
, vd0 ¼ 0:4, respectively. Our curves highlight that the proposed

algorithm can further improve SINR gain in comparison with SOA2 for ξ ¼ 0:1, 0:5, 1:3. We

also observe that the higher σvd0
and σθ0

and the lower SINR can be obtained due to the larger

inaccuracies on the knowledge of Doppler and azimuth of the actual target. Finally, we need to

point out that the proposed design procedure still has the better robustness against a large

uncertain set in comparison with SOA2.

5.2. Uniform clutter environment

This subsection focuses on a scenario where we consider a homogeneous range-azimuth

ground clutter interfering with the range-azimuth bin of interest (0,0). Specifically, for each

range-azimuth ground clutter bin, a clutter to noise ratio (CNR) of 25 dB and a normalized

Doppler frequency v ¼ 0 with Doppler uncertainty ε=2 ¼ 0:04 are considered. We suppose

Figure 3. Doppler-azimuth plane of CAF at r ¼ 0 for ξ ¼ 2 of Algorithm 2 for n ¼ 0; 1; 4; 15½ � assuming a target with

�π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 (black ellipses represent the locations of three interference sources), s0 as the initial

point.
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M ¼ 50 range-azimuth ground clutter bins located within the azimuth angular sector

�π=2;π=2½ �. Moreover, we set the range ring ri ¼ 0 for all range-azimuth ground clutter bins.

In Figure 5, we show the SINR of Algorithm 2 and SOA2 for ξ ¼ 0:1, 0:5, 1:3, 2 supposing a

target �π=180 ≤θ0 ≤π=180, 0:36 ≤vd0 ≤ 0:44. The SINR values increases both for Algorithm 2

and SOA2 with the increasing iteration number n. Furthermore, we observe the higher ξ, the

better SINR values reflecting the larger and larger feasible set. Interestingly, Algorithm 2

significantly outperforms SOA2 for all the considered ξ, except for ξ ¼ 2 where they both

Figure 4. The SINR behaviors versus the standard deviations σvd0 (Figure 4a) and σθ0
(Figure 4b) of Doppler and azimuth

of target with θ0 ¼ 0
�

, vd0 ¼ 0:4 considering ξ ¼ 0:1, 0:5, 1:3, 2, respectively, s0 as the initial point.

Figure 5. The SINR behavior versus iteration number assuming a target with �π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 in

uniform clutter environment for ξ ¼ 0:1, 0:5, 1:3, 2, s0 as the initial point.
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achieve the same SINR value. In particular, we see that the gap between ξ ¼ 2 and energy

constraint is about 1.1 dB because of the introduction of constant modulus constraint. We also

observe that in this scenario, Algorithm 2 needs a higher number of iterations to achieve

convergence compared with that in Figure 2. For instance, for ξ ¼ 0:1, Algorithm 2 converges

with about 12 iterations in Figure 5, whereas in Figure 2 after about 2 iterations.

In Table 2, we summarize the SINR values, iterations number, and the global computation

time of Algorithm 2 and SOA2. In particular, Algorithm 2 shows a lower computational time

for ξ ¼ 0:1, 2. Furthermore, it is observed that the gains of 2.3 and 3 dB are achieved using

Algorithm 2 with a slightly higher computational cost for ξ ¼ 0:5, 1:3, respectively.

Figure 6 shows the joint frequency and azimuth behavior of STTC and STRF concerning CAF.

Specifically, the contour map of the Doppler-azimuth plane of CAF at r ¼ 0 against the

Algorithm 2 SOA2

ξ SINR n Time SINR n Time

0.1 2.3 12 2.6325 1.7 3 4.3007

0.5 4.9 68 13.0183 2.6 8 11.4606

1.3 8.0 120 21.4875 5.0 10 14.5547

2 8.8 82 15.8699 8.8 24 35.0873

Table 2. SINR values (in dB), iterations number, and global computation time (in seconds) of Algorithm 2 and SOA2

assuming a target with�π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 in uniform clutter environment for ξ ¼ 0:1, 0:5, 1:3, 2, s0 as the

initial point.

Figure 6. Doppler-azimuth plane of CAF at r ¼ 0 for ξ ¼ 2 of Algorithm 2 for n ¼ 0; 10; 30; 82½ � assuming a target

with�π=180 ≤θ0 ≤π=180, 0:36 ≤ vd0 ≤ 0:44 in uniform clutter environment (black rectangles represent the locations of

uniform clutter), s0 as the initial point of Algorithm 2 and SOA2.
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iteration number (n ¼ 0; 10; 30; 82½ �) considering ξ ¼ 2 for Algorithm 2 is plotted. We observe

that g nð Þ s nð Þ;w nð Þ; r; v;θ
� �

obtains lower and lower values in the region of �π=2 ≤θ ≤π=2,

�0:04 ≤ v ≤ 0:04 (highlighted by black rectangles) with the increase of iteration number n. This

performance behavior highlights that the proposed algorithm of joint design STTC and STRF

possesses the ability of sequentially refining the shape of the CAF to achieve better and better

clutter suppression levels.

Figure 7 plots the SINR versus the standard deviations σvd0
(Figure 7a) and σθ0

(Figure 7b) of

Doppler and azimuth of target with θ0 ¼ 0
�

, vd0 ¼ 0:4, respectively. Again, we see that Algo-

rithm 2 obtains a higher SINR gain than SOA2 for ξ ¼ 0:1, 0:5, 1:3, whereas they both fulfill the

near same gain at ξ ¼ 2. Interestingly, we also observe that a decreasing trend in gain with the

increase in standard deviation. This is reasonable due to that the larger standard deviation

results in the larger uncertainty on the knowledge of target.

6. Conclusions

This chapter has considered the joint STTC and STRF design for MIMO radar under signal-

dependent interference. We focus on a narrow band colocated MIMO radar with a moving

point-like target considering imprecise a prior knowledge including Doppler and azimuth.

Summarizing,

• We have devised an iterative algorithm to maximize the SINR accounting for both a

similarity constraint and constant modulus requirements on the probing waveform. Each

iteration of the algorithm requires the solution of hidden convex problems. The conse-

quent computational complexity is linear with the number of iterations and polynomial

with the sizes of the STTC and the STRF.

Figure 7. The SINR behaviors versus the standard deviations σvd0 (a) and σθ0
() of Doppler and azimuth of target with

θ0 ¼ 0
�

, vd0 ¼ 0:4, respectively, s0 as the initial point of Algorithm 2 and SOA2.
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• We have assessed the performance of the proposed iteration algorithm through numerical

simulations. The results have manifested that the larger the similarity parameter (i.e., the

weaker the similarity constraint), the larger the output SINR due to the expanded feasible

set. Moreover, we observed that the devised iteration procedure can provide a monotonic

improvement of SINR and ensuring convergence to a stationary point, which possesses

excellent superiority in computation complexity and performance gain compared with the

related SOA2. The numerical examples also have revealed the capability of the developed

procedure to sequentially refine the shape of the CAF both in nonuniform point-like

clutter environment and uniform clutter environment.

Possible future work tracks might extend the proposed framework to consider spectral con-

straint [37] and MIMO radar beampattern design by optimizing integrated sidelobe level (ISL)

with practical constraints.
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Appendices

Appendix A: Computation of Γ Sð Þ and Θ Wð Þ

Let us denote S in block matrix form, i.e.,

S ¼ Sn1n2ð ÞK�K , (36)

where the block matrix Sn1n2 ∈C
NT�NT can be computed as

Sn1n2 ¼ s n1ð Þs† n2ð Þ, n1; n2ð Þ∈ 1; 2;⋯;Kf g2: (37)

Hence, exploiting the fact that vd0 and θ0 are statistically independent random variables, the

block matrix Γm1m2
of Γ Sð Þ in (21) can be expressed as

Γm1m2
¼ σ

2
0E ej2π m1�m2ð Þvd0

h i

E A θ0ð ÞSm1m2
A†

θ0ð Þ
� �

, m1;m2ð Þ∈ 1; 2;⋯;Kf g2: (38)

Since vd0 is a uniformly distributed random variable, e.g., vd0�U vd0�
ε0

2 ; vd0þ
ε0

2

� �

, the first

expectation of (38) can be computed as

E ej2π m1�m2ð Þvd0

h i

¼
1

ε0

ð

vd0þ
ε0
2

vd0�
ε0
2

ej2π m1�m2ð Þvd0 dvd0 ¼ ej2πvd0 m1�m2ð Þ sin πε0 m1�m2ð Þ½ �

πε0 m1�m2ð Þ
, m1;m2ð Þ∈ 1; 2;⋯;Kf g2: (39)

Let Φθ0

ϑ0
denote the second expectation of (38) whose q1; q2

� �

entry is given by
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Φ
θ0

ϑ0
q1; q2
� �

¼ E ~aT
q1

θ0ð ÞSm1m2
~a∗

q2
θ0ð Þ

h i

¼ tr Sm1m2
Φq1q2

� �

, q1; q2
� �

∈ 1; 2;⋯;NRf g2, (40)

where

~aq θ0ð Þ ¼ 1
ffiffiffiffiffiffiffi

NR

p e�j
2π sinθ0

λ
dr q�1ð Þat

∗
θ0ð Þ, q∈ 1; 2;⋯;NRf g, (41)

and

Φq1q2
¼ E ~a∗

q2
θ0ð Þ~aT

q1
θ0ð Þ

h i

: (42)

Based on θ0 as a uniformly distributed random variable, e.g., θ0�U θ0� ϑ0

2 ;θ0þ ϑ0

2

� �

, the

q1; q2
� �

entry of expectation Φq1q2
can be computed as

Φq1q2
p1; p2
� �

¼ 1

NTNRϑ0

ð

θ0þϑ0
2

θ0�ϑ0
2

ej
2π sinθ0

λ
dr q2�q1ð Þþdt p1�p2ð Þ½ �dθ0 q1; q2

� �

∈ 1; 2;⋯;NRf g2, p1;p2
� �

∈ 1; 2;⋯;NTf g2:

(43)

As to the computation of (43), we can adopt numerical integration.

Next, we focus on the computation of Θ Wð Þ. Similarly, let us write W in block matrix struc-

ture, given by

W ¼ W i1i2ð ÞK�K , (44)

where block matrix W i1i2 ∈C
NR�NR is given by

W i1i2 ¼ w i1ð Þw† i2ð Þ, i1; i2ð Þ∈ 1; 2;⋯;Kf g2: (45)

As a consequence, based on the statistical independence of vd0 and θ0, the block matrixΘi1i2 of

Θ Wð Þ in (22) is

Θi1i2 ¼ σ
2
0E e�j2π i1�i2ð Þvd0

h i

E A†
θ0ð ÞW i1i2A θ0ð Þ

� �

, i1; i2ð Þ∈ 1; 2;⋯;Kf g2: (46)

Following the same lines of reasoning in (39) and (43), both expectations in (46) can be evaluated.

Appendix B: Proof of (25)

The Θ ww†
� �

can be rewritten as

Θ ww†
� �

¼ a1; a2;⋯; aKNT
½ �, (47)

where an ¼ αn, 1;αn, 2;⋯;αn,KNT½ �T ∈C
KNT , for n ¼ 1, 2,⋯, KNT. Hence, the s†Θ ww†

� �

s can be

expressed as
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s†Θ ww†
� �

s ¼
X

KNT

n ¼ 1

n6¼i

s†ansnþs†aisi ¼
X

KNT

n ¼ 1

n6¼i

s∗iαn, isnþs†aisiþ
X

KNT

k ¼ 1

k6¼i

X

KNT

l ¼ 1

l 6¼i

s∗lαk, lsk: (48)

Using the property αn, i ¼ α∗

i, n since Θ ww†
� �

is a positive semidefinite matrix, (48) can be

computed as

s†Θ ww†
� �

s ¼ αi, i sij j2þℜ
X

KNT

n ¼ 1

n6¼i

2siαi, ns
∗

n

8

>

>

<

>

>

:

9

>

>

=

>

>

;

þ
X

KNT

k ¼ 1

k6¼i

X

KNT

l ¼ 1

l 6¼i

s∗lαk, lsk: (49)

Hence, we obtain

a0, i ¼ αi, i, a1, i ¼ 2

X

KNT

n ¼ 1

n6¼i

αi, ns
∗

n, a2, i ¼
X

KNT

k ¼ 1

k6¼i

X

KNT

l ¼ 1

l6¼i

s∗l αk, lsk: (50)

Following the same line of reasoning, the coefficients b0, b1, b2 are given by,

b0, i ¼ β
i, i, b1, i ¼ 2

X

KNT

n ¼ 1

n6¼i

β
i, ns

∗

n, b2, i ¼
X

KNT

k ¼ 1

k6¼i

X

KNT

l ¼ 1

l 6¼i

s∗l βk, lsk (51)

where β
m, n denotes the m; nð Þth entry of Σdv ww†

� �

.
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