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Abstract

The purpose of this study is to analyze the railway bridge vibrations and control their
negative effects through semi-active magnetorheological (MR) damper. Dynamic analysis
of a railway bridge subjected to the moving load is performed. The real structural param-
eters are used, and the six-axle train is simulated as moving loads. The railway bridge is
modeled as Euler-Bernoulli beam theory, and it is discretized through Galerkin method. To
mitigate the bridge vibrations, MR damper with a fuzzy logic-based controller (FLC) is
positioned at the ends of the bridge. The simulations of the system are performed by
MatLab software. Finally, the results are examined both in the time and frequency domains.

Keywords: bridge vibration, vibration control, semi active control, magnetorheological
damper, adaptive control

1. Introduction

In general, because of the increasing air pollution and traffic problems, rail vehicles gained

importance as a mass transportation system. While the transportation speeds increased with

the development of technology, expectations of comfort are also raised along the entire line,

including bridges and viaducts. On the other hand, the bridges are enabled to be built light and

slender. This made the bridges prone to the vibrations triggered by moving rail vehicles. The

resulting vibrations reduce the safety of travel while also affecting the comfort of the passen-

gers negatively. For this reason, the vibration analyses of railway bridges are considered as a

significant factor in bridge design [1]. In recent years, research and development activities on

suppressing railway bridge vibrations are increasingly concentrated, especially to increase

passenger comfort without compromising safety at high speeds [1, 3, 11, 12]. For conventional

speeds in railway transport, it may be sufficient to apply only passive methods such as

polyurethane materials to insulate the bridge vibrations. However, after the increasing speeds
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on the railways, semi-active and active control methods are begun to be tried as only passive

methods do not provide the desired performance in suppressing bridge vibrations [1, 3, 11, 12].

The dynamic behavior of railway bridges under moving load is a complicated and challenging

phenomenon and has drawn the attention of scientists and engineers due to the complex struc-

ture of railway bridges. The interaction between rail vehicle and bridge creates a dynamic effect.

The most crucial parameters determining the dynamic response of bridges are rail vehicle speed,

characteristics of bridge, and rail irregularity. The comfort level of the rail vehicles must meet

expectations, while the safety of running is at the highest level. In order to do so, suppressing the

railway bridge vibrations is significant as well as rail vehicle suspensions. In addition, the

vibration control of a rail bridge is better both for bridge’s life and safety of the rail vehicles. This

also brings passengers’ comfort improvement and allows them to pass faster.

Structural damping is one of the typical characteristics that damps the vibration effect of struc-

tures. Yet, that damping is regarded as insufficient. So, when the disturbance force is applied, it

may cause strong and long-lasting vibrations. Hence, passive, semi-active, and active suspen-

sions to mitigate vibrations are investigated.

Related literature shows that the structural control of the railway bridges subjected to the

moving load is studied by many researchers. The bridge can be modeled as a simply

supported Euler-Bernoulli beam [2], and the train mass is modeled at a constant speed as a

time and spatially changing load. For this aim, lumped parameters of the vehicle can be

neglected [3]. Also, some models which have lumped parameters are adopted subsequently

in the related study [4, 5]. On the other hand, several researches on bridges’ dynamic response

under the moving load demonstrate the effects of moving train.

The suspension types of railway bridges are separated into three groups which are passive,

semi-active, and active suspensions. However, only the active suspensions can be controlled

by applying an external force. The idea in implementing a semi-active suspension is to change

active force generator with adaptive elements that can shift the rate of energy dissipation in

response to a momentary condition of motion. The force of suspension can be controlled

through active causes in response to sensory feedback, whereas the actuators are used in active

controllers to implement an independent force on suspension [6]. We could say that semi-

active systems are more practical than passive systems and less expensive and complicated

than active systems [7]. It is widely known that the MR damper is quite feasible and reliable to

implement in reducing vibrations [8] since its performance is better than passive suspension as

its power requirements are low and its hardware is less expensive than active suspension [9].

Usually, the MR damper-based semi-active controller works through a two-step progress.

Firstly, a system controller designates the desired control force in respect of the responses; then

damper controller sets the command applied to the MR damper so that it can track the desired

control force. Hence, the success of MR damper-based semi-active controller depends on two

aspects: One of them is to select a proper control strategy, and the other is to establish the

accurate damper controller [10].

In this paper, the vibration of railway bridges subjected to the moving load is investigated. The

bridge model is taken into consideration as a simple support beam. As themodel is a continuous
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one, it is changed to discrete model through the Galerkin method, and its vibration is investi-

gated when subjected to the force which is due to the train passing on the bridge. To mitigate

vibrations, two symmetric MR dampers are applied to the bridge from the bottom. Fuzzy logic

control method is used on MR dampers to determine the voltage input. Controlled and

uncontrolled results of vibration analyses are analyzed.

2. Mathematical modeling

Figure 1 shows a model of railway bridge. Bridge modeled as Euler-Bernoulli beam is a constant

cross section, homogeneous, and simply supported. At that time MR dampers that modeled as

modified Bouc-Wen model is located on two sides of bridge. In addition, forces are thought as

axial forces of railway train axles:

m
∂
2w x; tð Þ

∂t2
þ c

∂w x; tð Þ

∂t
þ EI

∂
4w x; tð Þ

∂x4
¼

X

6

j¼1

δ x� vtð ÞPj þ
X

2

j¼1

δ x ¼ xdj
� �

FMRj (1)

where EI, m, c, and w(x, t) were flexural rigidity mass per length, the damping coefficient, and

transverse displacement of bridge at point x and time t, respectively. Parameters of bridge were

given in Table 1. Right hand of equation is axial forces (P) represented by Dirac-delta function

Young’s modulus (N/m2) 210 � 109

Area moment of inertia (m4) 0.61

Mass per length (kg/m) 18,400

Length of the beam (m) 42

Moving load (N) 80,000

Damping ratio 0.1

MR damper locations (m) 5.37

Table 1. Properties of railway bridge [11].

Figure 1. Railway bridge with MR dampers acted on moving axle loads.

Vibration Mitigation of Railway Bridge Using Magnetorheological Damper
http://dx.doi.org/10.5772/intechopen.71980

19



and MR damper forces. Dirac-delta function δ xð Þ was thought as a unit concentered force

acting at point x ¼ 0. Dirac-delta function was defined in Eq. (2):

ð

b

a

δðx� vtÞfðxÞdx ¼ fðξÞ for a < ξ < b (2)

By using Galerkin method, transverse function w (x, t) was transformed into two separate

functions Eq. (3). A sinus function sin iπx
L

� �

depending on x, in order to satisfy boundary condi-

tions, was selected:

w x; tð Þ ¼
X

N

i¼1

T tð Þ sin
iπx

L
i ¼ 1, 2,…, N (3)

Trial function (3) is implemented in Eq. (1), multiplied full equation with trial function and

integrated from 0 to L. Finally, a partial differential equation (Eq. (1)) is turned into ordinary

differential equation (Eq. (4)):

m €T i tð Þ þ c _T i tð Þ þ EI iπ
L

� �4
Ti tð Þ ¼

X

6
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2Pj

L
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� �

þ
X

2
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2FMRj

L
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iπxdj

L

� �

i ¼ 1, 2, 3,…, N

(4)

At the right-hand side of equation, there are eight forces. The first six forces are moving forces

that represented train axle loads. L1, L2… are distance from first wheel (Figure 1). The last ones

are the MR damper forces that were located two sides (xd1, xd2) of bridge.

Damping of bridge is modeled as Rayleigh structural damping [2] and depends onmass, rigidity,

and natural frequencies of the bridge (Eqs. (5)–(6)). ωi and ωj are represented natural frequencies

of the simply supported bridge. Railway bridge model parameters are given in Table 1:

c ¼ a0mþ a1k (5)

a0 ¼ ξ
2ωiωj

ωi þ ωj
; a1 ¼ ξ

2

ωi þ ωj
(6)

As mentioned above, MR Dampers modeled modified Bouc-Wen Model that related equations

are given Eqs. (7)–(12) [12]:

_z ¼ �γ _x � _yj j zj jn�1z� β _x � _yð Þ zj jn þ A _x � _yð Þ (7)

_y ¼
1

c0 þ c1
azþ c0 _x þ k0 x� yð Þ½ � (8)
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where k1 is the accumulator stiffness, c0 is the viscous damping at larger velocities, c1 is viscous

damping for force roll-off at low velocities, x0 is the initial displacement of spring k1, and A, β,

γ, and n are the constants about MR damper. The force was calculated as Eq. (9) [12]. Model

parameters of MR damper is given in Table 2:

FMR ¼ azþ c0 _x � _yð Þ þ k0 x� yð Þ þ k1 x� x0ð Þ

¼ c1 _y þ k1 x� x0ð Þ
(9)

c0, c1, and a have form of third-order polynomial with respect to electrical current i, expressed

as Eqs. (10)–(12):

a ið Þ ¼ 16566i3 � 87071i2 þ 168326iþ 15114 (10)

c0 ið Þ ¼ 437097i3 � 1545407i2 þ 1641376iþ 457741 (11)

c1 ið Þ ¼ �9363108i3 þ 5334183i2 þ 48788640i� 2791630 (12)

Axle loads of Asea Brown Boveri (ABB) brand light rail vehicle used in the Istanbul urban trans-

portation are considered as moving loads (Figure 2). Railway vehicle parameters are given in

Table 3.

A (m�1) 2769

β, γ (m�1) 647.46

k0 (N/m) 137,810

n 10

x0 (m) 0.18

k1 (N/m) 617.31

Table 2. Model parameters of MR damper [12].

Figure 2. ABB railway vehicle.
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3. Fuzzy control design

Fuzzy logic-based controllers (FLC) are frequently used in vibration reduction problems.

Classical fuzzy logic controller is used in this paper which is based on two-input one-output

FLC structure. The overall structure of used controller is shown in Figure 3.

The structure of fuzzy logic controller has two inputs and one output. The inputs are, respec-

tively, “V1”which is defined as the velocity of middle point of bridge model, and “V2”which is

defined as the velocity of the upper end point of MR damper. Linguistic variables which imply

inputs and output are classified as NB NM NS ZO PS PM PB. Inputs and output are all

normalized in the interval of [�1, 1], as well as outputs are normalized at range of [0, 1] as

shown in Figure 4. Linguistic values which are used as output values are the following: ZO,

VS, S, SM, M, B, and VB.

The variables are scaled with coefficient of SV1, SV2, and Su. The fuzzy control rule is in the form of:

IF e = Ei and de = dEj than V = V(i,j).

Length (m) 23.2

Width (m) 2.65

Passengers capacity 257

Max design axle load (kN) 80

Wheel diameter (m) 0.68–0.6

Wheel width (m) 0.125

Max speed (km/h) 80

Table 3. ABB railway vehicle parameters [13].

Figure 3. Block diagram of the two-input one-output fuzzy logic controller.
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These rules are written in a rule base lookup table which is shown in Table 4. The rule base

structure is Mamdani type.

The linguistic labels used to describe the Fuzzy sets are “negative big” (NB), “negative

medium” (NM), “negative small” (NS), “zero” (ZO), “positive small” (PS), “positive medium”

(PM), “positive big” (PB), very small (VS), small (S), small medium (SM), medium (M), big (B),

and very big (VB). It is possible to assign the set of decision rules as shown in Table 1. These

Figure 4. Membership functions of inputs V1 (a) and V2 (b) and output u (c).
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rules contain the input-output relationships that define the control strategy. Each control input

has 7 fuzzy sets, so that there are 49 fuzzy rules.

4. Simulations

According to Eq. (4), the bridge model is considered for five modes. It was enough for the

reliable responses of the bridge. MR damper models and bridge equations with fuzzy control

tools are simulated in MATLAB-Simulink and performed in ode45 solver.

In all analysis train’s speed was fixed to a maximum of 80 km/h for urban transportation.

Moving loads are acting on bridge during 2.853 s. In uncontrolled system, supplied electrical

current is fixed 0.05 A.

Figures 5–7 show the dynamic responses of midpoint of the railway bridge. Blue straight and

red dashed lines show the uncontrolled and fuzzy controlled system, respectively. Maximum

values of bridge responses are suppressed successfully, especially in velocity and acceleration.

Also, settlement time of controlled bridge vibrations turns out to be better than uncontrolled

system:

Figures 8–9 show the dynamic MR damper forces and electrical current that supplied the

dampers. Straight lines and dashed lines represent the responses of the first and second MR

dampers. Figures 5, 6, and 8 show that the MR dampers generate forces in the same direction

with the bridge velocity and in the opposite direction with the bridge motion. To control the

MR damper structure, the maximum current occurs at 1.8 A.

If it is considered that displacement is concerned with running safety and acceleration with

passenger comfort, Figure 5 and 7 show that the MR damper performance is quite good in

terms of both safety and comfort.

Power spectral density (PSD) of bridge vertical acceleration is shown in Figure 10. When we

analyze Figure 10, it can be seen that the fuzzy logic controller reduced the magnitude of the

bridge vertical acceleration in all frequencies significantly.

V1/V2 NB NM NS ZO PS PM PB

NB SM S VS ZO VS S SM

NM M SM VS ZO VS SM M

NS B M S ZO S M B

ZO VB B SM ZO SM B VB

PS B M S ZO S M B

PM M SM VS ZO VS SM M

PB SM S VS ZO VS S SM

Table 4. Rules of fuzzy logic controller.
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Figure 5. Displacement of the midpoint of the railway bridge.

Figure 6. Velocity of the midpoint of the railway bridge.
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Figure 7. Acceleration of the midpoint of the railway bridge.

Figure 8. Two MR dampers’ forces.
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Natural frequencies are calculated as 2.29, 9.17, 20.63, 36.69, and 57.32 Hz, by using Eq. (13). It

is widely known that the most dangerous frequency is the first natural frequency in the

structures. In this regard, the first natural frequency is well suppressed via fuzzy logic-

controlled MR dampers:

Figure 9. Applied current on the MR dampers.

Figure 10. Power spectral density of acceleration data of the railway bridge.
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Wn ¼

iπ

L

� �2
ffiffiffiffiffi

EI

m

r

i ¼ 1, ::5 (13)

5. Conclusions

The responses of a passive system to track inputs or other disturbances are obtained by using

parameters such as inertia, spring, and damping. However the response for an active suspen-

sion system is developed by using a control algorithm. In this study the railway bridge

vibrations are controlled through magnetorheological (MR) damper by using fuzzy logic

control algorithms. This controller is preferred because of its superior performance in semi-

active vibration control.

Firstly, the railway bridge is modeled as Euler-Bernoulli beam. Equations of the bridge are

achieved according to Galerkin method. To suppress the railway bridge vertical vibrations,

two MR dampers are positioned at the bridge ends. In the mathematical model of the bridge,

MR damper is considered as friction-based modified Bouc-Wen model. The damping force of

MR damper which changes with applied electrical current is controlled by the use of fuzzy

logic controller. This control method’s high performance, easy design, and robust character are

some of the reasons for using it.

In simulations, railway vertical vibrations are analyzed for active and passive MR damper

situations while six-axle railway vehicle is passing through the bridge. When the simulation

results are examined, the vibration reduction performance of fuzzy logic controller in time and

frequency domain can be seen. FLC performance has been simulated by comparing the results

of passive and semi-active MR damper models.

Extension of bridge life, mitigation of negative effect of vibrations on human bodies and rail

vehicles, and increasing of passenger comfort can be provided by reduction of bridge displace-

ments and accelerations when passing the railway vehicle. It is observed that the method used

in this study shows superior performance in the simulation environment and produces results

that are suitable for all these purposes.

For the future work, fuzzy logic controller performance should be investigated taking into

account the rail roughness resulting from wearing. In this way, adaptive methods for input and

output parameters of controller should be developed to improve the controller performance. Also,

different control algorithms can be compared, and it can be applied on the real bridge systems.
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