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Abstract

Coal burst is referred to as the violent failure of overstressed coal, which has been
recognised as one of the most critical dynamic failures in coal mines. This chapter aims
to analytically and numerically evaluate the energy transformation between the differ-
ent strata and coal layers. An accurate closed-form solution is developed. Due to the
complexity of the causes and mechanisms contributing to the coal burst occurrence, 3D
finite element modelling as well as discrete element models will be developed to vali-
date the suggested analytical assessments of rock/coal burst occurrence. The energy
concept is emphasised in order to improve the understanding of the underlying mecha-
nisms of coal burst. Only with enhanced understanding of the driving mechanisms, a
reliable coal burst risk assessment can be achieved.

Keywords: analytical modelling, numerical modelling, released energy, coal burst,
failure mechanism

1. Introduction

One of the critical engineering problems faced by the coal mining industry is coal burst. It is

caused by a dynamic release of energy within the overstressed rock mass/coal during the

mining process. It occurs under the effects of complex environments of geology, stress and

mining conditions. It has been recognised that the unstable releases of potential energy of the

rock around the excavations, mainly in the form of kinetic energy, contributes to the coal burst

occurrence. Interactions between the coal and rock interface, as well as the confinement, can

completely determine the failure mode and the ultimate bearing capacity of coal pillars,

influencing the amount of stored energy within a pillar. Many authors define rock/coal burst

© 2018 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



as a sudden, rapid rupture of the rock mass with a violent, explosive release of elastic/strain

energy from the surface of an excavation, which is generally associated with a seismic event

and produces rock particle ejections [1–5]. The coal burst source is the mechanism that

triggers or induces the damage mechanism visible on the excavation surface. The coal burst

source is generally associated with a seismic event that can be performed at a wide range of

local magnitudes, normally ranging from undetectable up to 5 [6]. Indeed, mining-induced

seismicity can reach moderate values of ground velocity and acceleration, and in some cases

its effects on the surface can be compared with low-intensity earthquakes [7]. The mecha-

nism that produces the seismic event is a sudden release of the strain energy that has been

stored above a critical level within the rock/coal mass. Some portion of this energy is

demolished by crack development, and the rest of the energy is converted into the kinetic

energy [8, 9]. When the energy source is located near the roadway, the released energy may

lead to coal fragmentation. At the place of the source of the energy, where it is located in a

plane of weakness inside the coal mass, the released energy provokes shear displacement

along the plane, which in revolve generate vibrations that persuade coal ejections when they

are situated near the excavation boundaries [7]. Tarasov and Randolph [6] have explained a

number of special and inconsistent behaviours of hard rock at the significant depth that are

directly related to rock failure mechanisms in deep excavations. They determined that the

procedures of the shear failure, with respect to the significant low friction, can be classified as

the main reason to release energy. Based on the suggested frictionless mechanism, the level of

the brittleness of the confined rock/coal masses might be increased under high stress condi-

tions. This may result in reducing the overall ductility which would in line with the abrupt

fracture failure. Under an energy-balance approach, the methods to predict coal burst risk

are based on energy indexes such as energy release rate (ERR) [8–10], energy storage rate

(ESR), strain energy storage index (WET) [11], potential energy of elastic strain (PES) or

strain energy density (SED) (i.e., the elastic strain energy in a unit volume of the coal mass,

which can be computed by the uni-axial compressive strength of the coal and the relevant

unloading tangential modulus), and burst potential index (BPI). A combination of both

analytical as well as numerical methods, where they can comprehensively evaluate the

structural performance of the mine scale, would be broadly addressed in the current

research. Thus, the following aims explicitly will be addressed.

1. Develop a full 2D and 3D finite element as well as discrete element models to compute the

inducted energies in a single pillar with different high to width ratios. In this approach,

different loading conditions varying from the static, quasi-static as well as dynamic

loading will be exclusively examined.

2. Considering the effect of the energy transformations between the rock/coal layers due to

the different contact/joint properties.

3. Suggest empirical equations to predict the amount of the released strain energy due to the

mining activities.

The main novelty of this research is to simulate the effect of the failure and post-failure of the

engaged material as well as joint/contact properties on the energy transformation.
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2. Numerical modelling strategy

Numerical simulations can be considered as an individual tool to predict possible failure

modes and the actual capacity of the mining setting. It is mostly useful to undertake paramet-

ric and sensitivity analyses to gain better understanding the nature and level of indecision, or

remaining hazard, associated with design process.

First, a finite element model is developed by taking advantage from the commercial software

package ABAQUS/Explicit. All the geotechnical components, including the rock and coal,

were modelled by the eight-node linear brick element (C3D8R) available in the ABAQUS

library. Element C3D8R relies on reducing integration and hourglass control. The assigned

meshes were established by using the structured technique available in ABAQUS. The solution

to the nonlinear problem was sought using the explicit dynamic analysis procedure available

in ABAQUS. In the current study, Figure 1 presents a quarter of a single pillar.

Thus, by taking advantage from the symmetrical boundary conditions, a finer mesh was

assigned to the model. Finding the right input material properties would be a significant

assumption, which has not been appropriately studied in the available literature. Modelling of

mechanical behaviour of the coal under both compression and shear stresses would be very

complicated, since there are no articulated reports which might be concerned with the uni-axial

and tri-axial behaviour of coal under both static and dynamic loading conditions. According to

Figure 1. Illustration of a typical single pillar model using ABAQUS/Explicit.
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the elastic analysis, the stress analysis and energy computations were organised in line with the

linear relationship between the stress and the strain in coal and overburden properties. The peak

and post-peak behaviour of coal and surrounding rock masses will be ignored. Therefore, in the

current literature, the computed stress, strain and kinetic energy have been noticeably

overestimated. At the second stage, a combination of the 2D and 3D discrete element models

using UDEC and 3DECwas developed. Figure 2 illustrates the pillar model incorporating half of

coal, roof and floor along the symmetrical centre-line of the pillar. The height of the roof and floor

was 20 m and the mining height was fixed at 3 m, while the pillar widths varied in order to

simulate the pillars with width to height (w/h) ratios from 1 to 5.

A Mohr-Coulomb (MC) material that presents a constant strength after failure and a Mohr-

Coulomb strain-softening material that can reach the peak strength and then decrease to a

residual strength have been considered. A quasi-static loading condition as a velocity was

applied on the top and bottom of the model. The applied velocity was started with a very

small, constant velocity to represent a relative loading system to promote a model of a coal

failure that progresses slowly. Simulating a proper loading/displacement condition is signifi-

cantly crucial, specifically, gaining a sound understanding of the structural reaction of a single

Figure 2. Geometry and zoning of coal pillar model using UDEC.
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coal sample under dynamic or quasi-static loading conditions. Consideration was also given to

defining a joint interface. A Coulomb Slip (CS) joint interface property, where it is represented

by displacement softening parameters, was taken into account to simulate the interface prop-

erties between the different joints.

The uniform zone size of 0.1 m was applied to the coal, and a smooth variation of zoning

from the coal to the boundaries was used for roof and floor with appropriate aspect ratios to

avoid numerical instability. Roller boundaries were applied along the side of the roof and

floor, the bottom of the floor and the vertical line. The same trend was applied to develop the

three-dimensional discrete element using 3DEC (see Figure 3).

3. Analytical approach

An analytical method is developed to evaluate shear stress and strain distributions between

the engaged surfaces throughout different joint layers by considering the beam theory

Figure 3. Geometry and zoning of coal pillar model using 3DEC.
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method in different directions with respect to the different planes, where it can indepen-

dently calculate shear forces between the different layers and shear strain as well as the

curvature distribution along the different layers that have been extracted. The main concept

to derive the following equations was extracted from [12, 13]. The cross-sectional analysis is

based on the assumption of the Euler-Bernoulli beam model. The strain distribution across

the section can be calculated by ε ¼ εr � y� κ, where εr is the strain at the reference point

(which can be determined at any point), y is the distance between the selected point and

location of the neutral axis of the cross-section and κ is the curvature across the section in

different strata layers. A vector can be introduced by K Dð Þ which will be included in the

internal action N (axial forces) and M (internal moment). External loads, which might be due

to the effect of the self-weight of the strata layers as well as the possible applied forces due to

the vertical or horizontal displacement in the different layers, can induce the external axial

force Ne and external moment Me. The relationship between the internal and external actions

can be presented by:

ε ¼
εr

κ

" #

(1)

r εð Þ ¼
N

M

" #

(2)

re ¼
Ne

Me

" #

(3)

r εð Þ ¼ re This is the vector for strainð Þ (4)

By considering the nonlinear interactions, the presented equations can be re-written by:

r ε
iþ1ð Þ

� �

¼ r ε
ið Þ

� �

þ rt ε
ið Þ

� �

� Δε
ið Þ ¼ re (5)

rt ε
ið Þ

� �

� Δε
ið Þ ¼ r

ið Þ
R (6)

r
ið Þ
R ¼ re � r ε

ið Þ
� �

(7)

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂εr
� Δε

ið Þ
r þ

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂κ
� Δκ ¼ N

ið Þ
R (8)

N
ið Þ
R ¼ Ne �N ε

ið Þ
r ; κ

ið Þ
� �

(9)

M
ið Þ
R ¼ Me �M ε

ið Þ
r ;κ

ið Þ
� �

(10)
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All the equations can be re-presented in matrix format:

rt ε
ið Þ

� �

¼

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂εr

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂κ

∂M ε
ið Þ
r ;κ

ið Þ
� �

∂εr

∂M ε
ið Þ
r ;κ

ið Þ
� �

∂κ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(11)

Δε
ið Þ ¼

Δε
ið Þ
r

Δκ
ið Þ

" #

Changing strain and curvatureð Þ (12)

r
ið Þ
R ¼

N
ið Þ
R

M
ið Þ
R

" #

(13)

The partial derivatives of N and M with respect to εr and κ can be re-arranged in a more

practical form, recalling the definitions of internal actions as:

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂εr
¼

ð

∂σ

∂εr
dA (14)

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂κ
¼

ð

∂σ

∂κ
dA (15)

∂M ε
ið Þ
r ;κ

ið Þ
� �

∂εr
¼ �

ð

y
∂σ

∂εr
dA (16)

∂M ε
ið Þ
r ;κ

ið Þ
� �

∂κ
¼ �

ð

y
∂σ

∂κ
dA (17)

where the values of the stress depend on the constitutive models adopted for the materials and

on the magnitude of the strain

∂N ε
ið Þ
r ; κ

ið Þ
� �

∂εr
¼

ð

∂σ

∂εr
dA ¼

ð

∂σ

∂ε
�

∂ε

∂εr
dA ¼

ð

∂σ

∂ε
�

∂ εr � y� κð Þ

∂εr
dA ¼

ð

∂σ

∂ε
dA (18)

∂N ε
ið Þ
r ;κ

ið Þ
� �

∂κ
¼

ð

∂σ

∂κ
dA ¼

ð

∂σ

∂ε
�

∂ εr � y� κð Þ

∂κ
dA ¼ �

ð

y�
∂σ

∂ε
dA (19)

∂M ε
ið Þ
r ;κ

ið Þ
� �

∂εr
¼ �

ð

y�
∂σ

∂εr
dA ¼ �

ð

y�
∂σ

∂ε
�

∂ εr � y� κð Þ

∂εr
dA ¼ �

ð

y�
∂σ

∂ε
dA (20)

∂M ε
ið Þ
r ;κ

ið Þ
� �

∂κ
¼ �

ð

y�
∂σ

∂εr
dA ¼ �

ð

y�
∂σ

∂ε
�

∂ εr � y� κð Þ

∂κ
dA ¼

ð

y2 �
∂σ

∂ε
dA (21)
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σ ¼ E� ε for εj j ≤ εp elastic strainð Þ (22)

σ ¼ f p for εj j > εp plastic strain
� �

(23)

∂σ

∂ε
¼

∂ E� εð Þ

∂ε
¼ E for εj j ≤ εp elastic strainð Þ (24)

∂σ

∂ε
¼

∂ f p

� �

∂ε
¼ 0 for εj j > εp plastic strain

� �

(25)

N ε
ið Þ
r ;κ

ið Þ
� �

¼

ð

σdA ¼
X

nj

j¼1

σ yj; ε
ið Þ
r ; κ

ið Þ
� �

� Aj (26)

M ε
ið Þ
r ;κ

ið Þ
� �

¼ �

ð

yσdA ¼ �
X

nj

j¼1

yj � σ yj; ε
ið Þ
r ;κ

ið Þ
� �

� Aj (27)

∂N ε
ið Þ
r ;κ ið Þ

� �

∂εr
¼

ð

∂σ

∂ε
dA ¼

X

nj

j¼1

∂σ yj; ε
ið Þ
r ;κ ið Þ

� �

∂ε
� Aj (28)

∂N ε
ið Þ
r ;κ ið Þ

� �

∂κ
¼ �

ð

y�
∂σ

∂εr
dA ¼ �

X

nj

j¼1

yj �
∂σ yj; ε

ið Þ
r ; κ ið Þ

� �

∂ε
� Aj (29)

∂M ε
ið Þ
r ;κ ið Þ

� �

∂εr
¼ �

ð

y�
∂σ

∂εr
dA ¼ �

X

nj

j¼1

yj �
∂σ yj; ε

ið Þ
r ;κ ið Þ

� �

∂ε
� Aj (30)

∂M ε
ið Þ
r ; κ ið Þ

� �

∂κ
¼

ð

y2 �
∂σ

∂ε
dA ¼

X

nj

j¼1

y2j �
∂σ yj; ε

ið Þ
r ;κ ið Þ

� �

∂ε
� Aj (31)

r x;deð Þ ¼
N x;deð Þ

M x;deð Þ

� �

¼

ð

A

σ x; y;de

� �

dA

-

ð

A

yσ x; y;de

� �

dA

2

6

6

6

6

6

4

3

7

7

7

7

7

5

¼

X

nj

j¼1

σ x; y;de

� �

Aj

�
X

nj

j¼1

yjσ x; y;de

� �

Aj

2

6

6

6

6

6

4

3

7

7

7

7

7

5

(32)

I ¼

ð

b

a

f xð Þdx ¼
b� a

2

� 	

�

ð

1

�1

f
aþ b

2
þ
b� a

2
� x

� 	

¼
b� a

2

� 	

�
X

nG

k¼1

wk � f
aþ b

2
þ
b� a

2
� xk

� 	

(33)

ke x;deð Þ ¼

ð

L

BT xð Þr x;deð Þ dx ¼
L

2

X

nG

k¼1

wkB
T xkð Þr xk;deð Þ (34)
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qe ¼

ð

L

NT
e xð Þp xð Þdx ¼

L

2

X

nG

k¼1

wkN
T
e xkð Þp xkð Þ xk ¼

L

2
xk þ 1ð Þ (35)

u xð Þ

v xð Þ

� �

¼
Nu1 xð Þ

0

0

Nv1 xð Þ

0

Nv2 xð Þ

Nu2 xð Þ

0

Nu3 xð Þ

0

0

Nv3 xð Þ

0

Nv4 xð Þ

2

4

3

5�

uL

vL

θL

uM
uR

vR

θR

2

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

5

¼Ne xð Þde

(36)

Nu1 xð Þ ¼ 1�
3x

L
þ
2x2

L2
(37)

Nu2 xð Þ ¼
4x

L
þ
4x2

L2
(38)

Nu3 xð Þ ¼ �
x

L
þ
2x2

L2
(39)

Nv1 xð Þ ¼ 1�
3x2

L2
þ
2x2

L3
(40)

Nv2 xð Þ ¼ x�
2x2

L
þ
x3

L2
(41)

Nv3 xð Þ ¼
3x2

L2
�
2x3

L3
(42)

Nv4 xð Þ ¼ �
x2

L
þ
x3

L2
(43)

u xð Þ ¼Nu1 xð ÞuL þNu2 xð ÞuM þNu3 xð ÞuR

v xð Þ ¼Nv1 xð ÞvL þNv2 xð ÞθL þNv3 xð ÞvR þNv4 xð ÞθR

(44)

B xð Þ ¼
N0

u1 xð Þ

0

0

N00
v1 xð Þ

0

N00
v2 xð Þ

N0
u2 xð Þ

0

N0
u3 xð Þ

0

0

N00
v3 xð Þ

0

N00
v4 xð Þ

2

4

3

5 (45)

N0
u1 xð Þ ¼ �

3

L
þ
4x

L2
(46)

N0
u2 xð Þ ¼

4

L
�
8x

L2
(47)
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N0
u3 xð Þ ¼ �

1

L
þ
4x

L2
(48)

N00
v1 xð Þ ¼

12x

L3
�

6

L2
(49)

N00
v2 xð Þ ¼

6x

L2
�
4

L
(50)

N00
v3 xð Þ ¼

6

L2
�
12x

L3
(51)

N00
v4 xð Þ ¼

6x

L2
�
2

L
(52)

ke x;d ið Þ
e

� �

¼
L

2

X

nG

k¼1

wkB
T xkð Þr ið Þ xk;d

ið Þ
e

� �

¼
L

2

X

nG

k¼1

wk �

N0
u1 xkð Þ 0

0 N00
v1 xkð Þ

0 N00
v2 xkð Þ

N0
u2 xkð Þ 0

N0
u3 xkð Þ 0

0 N00
v3 xkð Þ

0 N00
v4 xkð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

�
N xk;d

ið Þ
e

� �

M xk;d
ið Þ
e

� �

2

6

4

3

7

5

(53)

qe ¼
L

2

X

nG

k¼1

wk �

Nu1 xkð Þ 0

0 Nv1 xkð Þ

0 Nv2 xkð Þ

Nu2 xkð Þ 0

Nu3 xkð Þ 0

0 Nv3 xkð Þ

0 Nv4 xkð Þ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

�
n xkð Þ

w xkð Þ

� �

(54)

N xk;d
ið Þ
e

� �

¼
X

nj

j¼1

σ xk;yi;d
ið Þ
e

� �

Aj (55)

M xk;d
ið Þ
e

� �

¼�
X

nj

j¼1

yjσ xk;yi;d
ið Þ
e

� �

Aj (56)

Thus, by calculating stress and strain at the different points in the different layers of the

overburden, the internal axial forces as well as internal moments can be calculated. It was

assumed that the strain energy can be calculated by:
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A ¼
1

2
�∭ σxx � εxx þ σyy � εyy þ σzz � εzz þ σxy � εxy þ σxz � εxz þ σyz � εyz

� �

dxdydz (57)

where σxx � εxx,……, σyz � εyz can be calculated, according to the principal of the virtual work

and virtual deformation δA ¼ δR1 þ δR2, when the induced stresses and strains cannot be

directly extracted from the simulated model.

4. Energy calculation based on the numerical approach

According to Xie et al. [14], the coal burst proneness of a coal can be determined by the coal

burst proneness assessments. Special attentions were devoted by the number of researchers to

develop coal burst proneness indexes, which are broadly utilised, such as elastic energy,

impact energy, dynamic failure time as well as elastic deformation and stiffness ratio indexes.

The elastic energy index WET is defined as the ratio of the elastic strain energy and the strain

energy dissipation at point E (75–85% of the peak strength). As shown in Figure 4, the ratio of

the area SEAC (between the unloaded line EA and the strain axis) and the area SEOA (between

the load and unload line) is the elastic energy index

WET ¼
SEAC
SEOA

� 	

(58)

The impact energy index KE is defined as the ratio of the pre-peak area and the post-peak area,

KE namely, the ratio of energy in the pre-peak stage and the energy released in the post-peak

stage.

Figure 4. A typical stress-strain curve.
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K =
S

SOEFD

S FDHG

The amount of the energy in the 

Pre-peak Stage  

E

OEFD( )

The energy released in 

FDHGS

the post-peak stage 

The impact energy index 

5. Energy calculation based on the analytical approach

According to Xie et al. [14], dissipated and released energy can play a significant role which

may result in coal deformation and failure. Based on the failure mechanism, the fracture

procedure of a coal mass might be started from a partial fracture which would be followed by

local damage. This procedure will be finally resulting in collapsing the mining structures. The

failure process is thermodynamically permanent, which includes released and dissipated

energy. The dissipated energy can cause damage as well as a permanent deformation of the

coal mass, which is followed by weakening of strength. A sudden release of the strain energy

may lead to a catastrophic failure, which clearly indicates a certain condition where the coal

mass collapses. The released and dissipated energy from the coal mass, individually, plays an

essential role in the relevant sudden failure, which would be one of the major requirements to

investigate the procedure of the deformation and failure of a coal mass. Figure 5 is a typical

compression curve of coal under a constant displacement.

Figure 5 explicitly demonstrates the calculation of the dissipated, released and residual ener-

gies. With respect to the constant development of the inner micro-defects, energy dissipation is

an indispensable characteristic of the deformation and failure of the coal mass. The evolution

declines the strength of the coal, which may result in total failure. In this content, the dissi-

pated energy is directly concerned with the damage as well as mitigating strength of the coal.

ud1 ¼

ð

ε1

0

σadεð Þ ¼
X

ε1

0

ε1 ið Þ � ε1 i�1ð Þ

� �

�
σa ið Þ þ σa i�1ð Þ

4

� 	� �

Dissipated energy before peak (59)

ud2 ¼

ð

ε4

ε3

σcdεð Þ ¼
X

ε4

ε3

ε jð Þ � ε j�1ð Þ

� �

�
σc jð Þ þ σc j�1ð Þ

4

� 	� �

Dissipated energy after peak (60)

ur ¼

ð

ε2

ε1

σmdεð Þ ¼
X

ε2

ε1

ε kð Þ � ε k�1ð Þ

� �

�
σm kð Þ þ σm k�1ð Þ

4

� 	� �

Released elastic energy (61)
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ued ¼

ð

ε3

ε2

σpdε
� �

¼
X

ε3

ε2

ε lð Þ � ε l�1ð Þ

� �

�
σp lð Þ þ σp l�1ð Þ

4

� 	� �

Residual elastic energy (62)

Tables 1 and 2 presents a comparison between the different elastic and post-failure energy

components using UDEC and 3DEC output results as well as semi-close form solutions. As it

can be found, there is a good agreement between the suggested semi-analytical methods as

well as the calculated key energy components which were extracted from the UDEC and 3DEC

output results.

Elastic strain

energy (kJ/m3)

Dissipated elastic

strain energy (kJ/m3)

The amount of the energy

in the pre-peak stage (kJ/m3)

The energy released in

the post-peak stage (kJ/m3)

Ratio (w/h) UDEC Analytic UDEC Analytic UDEC Analytic UDEC Analytic

1 1.56 1.63 0.78 0.77 3.61 3.73 12.47 10.59

1.5 1.92 1.35 0.8 0.78 7.89 7.44 12.48 11.03

2 2.0621 2.004 0.991 0.92 10.22 9.83 18.31 17.09

2.5 4.70 4.82 1.16 1.11 14.47 13.43 21.17 23.14

3 11.13 10.58 2.51 2.41 35.825 32.87 11.73 10.6

4 14.72 13.27 4.07 4.60 60.26 55.00 56.34 70.02

5 16.63 16.24 5.334 5.37 75.83 73.67 91.19 84.04

Table 1. A comparison between the different energy components (UDEC and the analytical solution).

Figure 5. Analytically calculation of dissipated energy and released energy (Xie et al. [14]).
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6. Progress of the failure in different pillar ratios

Different loading conditions varying from the quasi-static to dynamic loading has been

applied to the coal pillar with the different width to height (w/h) ratio to determine the pillar

capability as well as the possible observed failure modes. A strain-based criterion, as a major

failure criterion, was implemented in the ABAQUS/Explicit to predict of the cracking path due

to the different applied loadings as well as different pillar geometrical properties. A quarter

Elastic strain

energy (kJ/m3)

Dissipated elastic

strain energy (kJ/m3)

The amount of the energy in

the pre-peak stage (kJ/m3)

The energy released in the

post-peak stage (kJ/m3)

Ratio (w/h) 3DEC Analytic 3DEC Analytic 3DEC Analytic 3DEC Analytic

1 2.58 2.65 1.767 1.55 4.91 4.77 14.87 14.77

1.5 2.94 2.37 1.88 0.78 8.88 8.46 16.56 15.23

2 4.24 4.01 2.891 2.92 12.55 11.98 21.23 20.14

2.5 6.72 6.84 3.18 3.11 15.37 15.41 24.35 23.99

3 13.15 12.62 5.51 5.44 37.15 36.87 28.45 27.68

4 16.76 16.27 7.07 7.20 60.26 62.33 59.11 57.88

5 19.83 19.28 8.334 8.22 76.22 75.12 96.54 92.66

Table 2. A comparison between the different energy components (3DEC and the analytical solution).

Figure 6. Failure mode of a single pillar with the different w/h ratios.
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coal pillar model based on the symmetrical boundary conditions with respect to the different

width by height (w/h) ratios of 1–10 were developed. It was observed that when the w/h ratios

are less than 4, the failure mode of pillar can be either a double or a single diagonal shear

failure in which the trajectory cracking starts from the edges and progresses towards the centre

of the pillar. While the w/h ratios are greater than 4, the obtained possible failure mode would

be a combination of the shear and compression failure modes. Thus, the trajectory of the

cracking due to the pure compression failure would be propagated from the centre to the

corners where a pillar gradually starts towards fully squashed (see Figure 6).

7. Remarkable conclusions

Analytical method is an important part of coal burst evaluation and forecasting. Analytical

forecasting methods, either alone or combined with numerical simulations, can be used to

estimate both in situ stress and induced stress, which leads to the prediction of failure-prone

areas and calculation of critical values of the energies. The behaviour of a single pillar under

different applied loads ranging from the quasi-static towards the dynamic loading conditions

was simulated using commercial finite element package ABAQUS/Explicit. A strain-based

failure condition was evaluated to determine the failure modes in a single pillar by respecting

to the different w/h ratios. The observed numerical failure modes can be classified by shear

and compression failures as well as a combination of both shear and compression were

comprehensively illustrated. The released energy or residual energy is either transferred into

kinetic energy or dissipated energy in non-elastic behaviour such as joint shear and fracturing.

The unstable release of potential energy of the coal around the excavations, mainly in the form

of kinetic energy, causes coal burst.
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