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Abstract

The chalcogens selenium (Se) and tellurium (Te) are rare earth elements, which are mainly 
present in the environment as toxic oxyanions, due to the anthropogenic activities. Thus, 
the increased presence of these chalcogen-species in the environment and the contamina-
tion of wastewaters nearby processing facilities led to the necessity in developing reme-
diation strategies aimed to detoxify waters, soils and sediments. Among the different 
decontamination approaches, those based on the ability of microorganisms to bioaccumu-
late, biomethylate or bioconvert Se- and/or Te-oxyanions are considered the leading strat-
egy for achieving a safe and eco-friendly bioremediation of polluted sites. Recently, several 
technologies based on the use of bacterial pure cultures, bacterial biofilms or microbial 
consortia grown in reactors with different configurations have been explored for Se- and 
Te-decontamination purposes. Further, the majority of microorganisms able to process 
chalcogen-oxyanions have been described to generate valuable Se- and/or Te-nanomaterials 
as end-products of their bioconversion, whose potential applications in biomedicine, opto-
electronics and environmental engineering are still under investigation. Here, the occur-
rence, the use and the toxicity of Se- and Te-compounds will be briefly overviewed, while 
the microbial mechanisms of chalcogen-oxyanions bioprocessing, as well as the microbial-
based strategies used for bioremediation approaches will be extensively described.

Keywords: selenium, tellurium, bioremediation, microbial consortia, biological reactors

1. Introduction

The chalcogens tellurium (Te) and selenium (Se) are naturally occurring rare elements of the 

Earth crust belonging to the group 16 of the periodic table that are defined as metalloids, 
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due to their intermediate chemical–physical properties between metal and non-metals [1]. Te 

estimated average amount in the environment is around 0.027 ppm [2], while Se is unevenly 

distributed on the Earth’s surface with a concentration ranging from 0.01 to 1200 ppm [3, 4]. 

These elements can be found in natural rocks and ores, soils, sediments or in association with 

rare minerals (e.g., calaverite AuTe
2
, sylvanite AgAuTe

4
, crooksite CuTlSe, calusthalite PbSe) 

[4–6]. Moreover, Se is an essential micronutrient for living systems, being part of the structure 

of several important enzymes, (i.e., glutathione peroxidases and thioredoxin reductases), as 

the 21st amino acid seleno-cysteine, in at least 25 human selenoproteins [7], while, to date, 

any biological function has been ascribed to Te [8]. Both these chalcogens exist in four differ-

ent valence states in the environment (i.e., +VI, +IV, 0 and –II), and among them the oxyanion 

forms of Selenate (SeO
4

2−), Tellurate (TeO
4

2−), Selenite (SeO
3

2−) and Tellurite (TeO
3

2−) are the 

most abundant in soils and waters [9, 10].

The wide spread use of Se- and Te-compounds by anthropogenic activities related to oil refin-

ing, phosphate and metal ore mining, electronics and industrial glasses, have led to an increase 

in the presence of these chemicals in the environment [6, 11]. In this regard, although Se is an 

essential micronutrient, it is toxic at concentrations higher than the human dietary requirement 

(25–30 μg day−1) [10], while the toxicity exerted by Te is even more dramatic, negatively affecting 
both prokaryotes and eukaryotes at concentration as low as 1 μg mL−1 [6]. Particularly, Se- and 

Te- oxyanions are recognized as harsh toxicants of public health and environmental concern 

due to their association with oxygen, which makes them highly bioavailable, enabling the mobi-

lization of Se- and Te-compounds through water and soil [12, 13]. On the contrary, Se and Te 

organic forms (e.g., dimethyl selenide, trimethyl selenonium, selenomethionine, selenocysteine, 

Se-methilselenocysteine, dimethyl telluride), as well as their zero-valence states (Se0 and Te0) 

showed lower toxicity levels [2, 12, 14]. Considering the shared physical–chemical features of 

Se and Te, the suggested mechanism of toxicity exerted by the chalcogen-oxyanions is based 

on their interaction with glutathione molecules (GSHs) and related molecules, which are likely 

responsible for their reduction [8, 13, 15]. This bioconversion mechanism leads to the generation 

of reactive oxygen species (ROS), such as hydrogen peroxide (H
2
O

2
) [16] or superoxide ions 

(O2−) [17], therefore causing cell death [18–20]. An additional target of TeO
3
2− is the impairment 

of the heme metabolism in E. coli K-12 cells, by which this oxyanion is responsible for the accu-

mulation of the heme precursor protoporphyrin IX, causing iron depletion and, subsequently, 

cell death [21].

Despite the toxic effects of Se- and Te-oxyanions, in the last 20 years several microorgan-

isms able to sequester, bioconvert or biomethylate these chalcogen-ions have been isolated 

from extreme environments, such as ocean hydrothermal vents and the highly alkaline water 

Monolake (California), to name a few [22]. Mainly anaerobic or facultative-anaerobic bacteria 

capable of growing phototrophycally or chemotrophycally under oxic and anoxic conditions 

have been described for their metabolic potential in bioconverting these species, while much 

less is known about strictly aerobic microorganisms [23]. In this regard, anaerobic microorgan-

isms have been described for their use of chalcogen-oxyanions as terminal electron acceptors 

to sustain their growth [19, 22, 24–29]. Although the exact biochemical mechanisms behind Se 

and Te metabolism and bioconversion in these microorganisms have not been fully elucidated, 
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there is a strong movement toward eco-friendly approaches for bioremediation of chalcogen-

contaminated areas of interest. Moreover, among bacterial strains able to bioconvert Se- and 

Te-oxyanions in their less toxic and less bioavailable elemental form (i.e., Se0 and Te0), some of 

them were characterized for the generation of either intra- or extracellular precipitates and/or 

nanomaterials, for example, nanoparticles (NPs) and nanorods (NRs) [8, 19].

Here, we will overview the microbial-based strategies that, to date, are applied as tools for 

bioremediation purposes of chalcogens polluted environments, and briefly will be described 
the valuable role of bacteria for the recovery of metalloids in their zero-valence state in the 

form of nanomaterials.

1.1. Environmental toxicity of selenium and tellurium compounds

Annually, the total average amount of either Se or Te produced worldwide is 2500–2800 or 

220 tons, respectively, with USA, Japan, Russia, Canada, Germany, Belgium and Sweden as 

main manufacturers [7, 30]. The accumulation of Se- or Te-compounds in the environment 

mainly relies on their anthropogenic use in several application fields, causing therefore their 
emission in the atmosphere [31, 32]. Se-accumulation derives from metallurgic industries, 

glass manufactures, pigments production, electronics and agriculture applications [33], while 

Te-containing compounds are used in copper refining [19], tarnishing metals [34], vulcani-

zation of rubber [8], production of color glass or ceramics [19], photovoltaic cells and solar 

panels [8], as well as catalysis of several reactions [19]. Recently, the possibility to develop new 

Te-based nanomaterials such as fluorescent quantum dots (QDs) has been extensively inves-

tigated to create new high-tech probes in biological detection [8, 35], exasperating the already 

dramatic waste disposal circumstances.

Among the different Se-species present in the environment, the inorganic forms of Se2−, SeO
4
2−, 

or SeO
3
2− are generally found in surface and ground waters as pollutants [36], while the organic 

and volatile ones (i.e., methylselenides, trimethylselenonium ions and selenoamino acids) 

occur in air and soils [37]. Similarly, Te-compounds result to be highly concentrated either 

in soils [38, 39] or waters [34] mainly in the form of TeO
4
2− and TeO

3
2−, being the latter highly 

soluble and toxic [35, 40, 41].

The presence of Se- and Te-compounds in water reservoirs has become a problem for both 

human health and ecological wildlife [42–45], which led to the development of several strate-

gies aimed to protect aquatic and human life [46], as Se-poisoning events have occurred in 

the last few years worldwide, such as in the Kesterson Wildlife reservoir (California) [47], the 

uranium mine in Saskatchewan (Canada), and the Lake Sutton (USA) [48], causing physical 

deformities and mutations [46]. The major areas of the world affected by water contamination 
due to the presence of SeO

4
2− and SeO

3
2− are North America, Australia and New Zealand [23], 

while higher level of Te-oxyanions has been detected in the surface waters of Te-contaminated 

basins in Angola and Panama as compared to the deep ones, indicating a difference in behav-

ior between Te and Se, which, as nutrient, is usually highly concentrated in the deep ocean 

[49]. Finally, Te-compounds emission in the atmosphere is now investigating, even if the 

implication related to the presence of Te-species in the air has not been established yet [19].
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2. Bioremediation of chalcogen-contaminated environments

The exploitation of microorganisms for the decontamination of Se- and/or Te-polluted environ-

ments is based on the capability of several bacterial strains to sequester, bioconvert or biometh-

ylate chalcogen-oxyanions [19]. Se- or Te-species sequestration is achieved by microorganisms 

through either their uptake in the bacterial cell or the interaction with charged surface biomol-

ecules [19], while the bioconversion of these oxyanions in bacteria leads to their reduction to Se0 

and Te0 in the form of metalloid precipitates [19]. Further, some microorganisms can biomethyl-

ate Se or Te-oxyanions, producing volatile methyl derivatives, which can react in the atmosphere 

with NO
3
 radicals, ozone and atmospheric particles, increasing their residence times [19, 50].

2.1. Bioremediation of Se-polluted environments using bacterial pure cultures as 

planktonic cells

In the last 30 years, Se-oxyanions sequestration by microorganisms has been investigated as a 

potential strategy for the decontamination of Se-polluted environments. Indeed, several bacte-

rial strains have been described for their ability to uptake SeO
4
2− and/or SeO

3
2− using several pro-

cesses, such as the sulfate transporter in E. coli [51], the sulfate permease in Salmonella typhimurium 

[52], the sulfite uptake system in Clostridium pasteurianum [53], the polyol ABC transporter in 

R. sphaeroides [54]. Thus, once inside the bacterial cell, the sequestered Se-oxyanions are usu-

ally incorporated into Se-amino acids (i.e., seleno-cysteine and -methionine) to biosynthesize 

selenoproteins [55].

An alternative Se-bioremediation approach is based on the bacteria’s ability to biomethyl-

ate Se-oxyanions, resulting in the production of Se-methyl derivates (i.e., dimethyl selenide, 

dimethyl selenyl sulfide, dimethyl diselenide), as in the case of Aeromonas sp. VS6, Citrobacter 

freundii KS8 and P. fluorescens K27 [56], Clostridium collagenovorans, Desulfovibrio gigas and 

Desulfovibrio vulgaris [57], Enterobacter cloacae SLS1a-1 [58], R. sphaeroides and R. rubrum S1 [59]. 

Se-oxyanions biomethylation is achieved in microorganisms through the Challenger mecha-

nism [56], which consists of several reduction-methylation steps that change Se-redox state from 

either VI or IV to II [60].

Recently, the exploitation of microorganisms able to bioconvert Se-oxyanions to Se0 has emer  

ged as a cost-effective green alternative strategy for the decontamination of Se-polluted environ-

ments, with a particular focus on surface waters and wastewaters. To date, Se-bioremediation 

approaches exploit bacterial strains capable of reducing SeO
4
2− and SeO

3
2− [23] either to conserve 

energy [61–63] or to detoxify their environmental niches [23]. Since Se-oxyanions bio-reduc-

tion under anoxic conditions is more characterized as compared to the aerobic mode, mainly 

anaerobic bacterial strains have been used for Se-decontamination purposes [23]. However, 

studies evaluating either SeO
4
2− or SeO

3
2− bioconversion by aerobic or microaerophilic micro-

organisms have also been conducted [61, 64–67], highlighting some disadvantages of these 

experimental conditions: a competition between the dissolved oxygen and the Se-oxyanion as 

terminal electron acceptor [68, 69], and the additional energetic cost to aerate a bioreactor [23]. 
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Regardless, aerobic bacterial strains have been explored as pure cultures at laboratory scale for 

Se-bioremediation purposes, yet little work about the use of these microorganisms for large-
scale applications have been conducted [23].

Among the microorganisms described for their tolerance toward Se-oxyanions, bacterial strains 

belonging to Pseudomonas, Desulfovibrio, Thauera, Enterobacter, Wolinella and Bacillus genera have 

been characterized for their capability to bioconvert SeO
4
2− to SeO

3
2− mainly under anoxic growth 

conditions [61, 70, 71]. Moreover, several anaerobic microorganisms have been characterized for 

their use of SeO
4
2− as terminal electron acceptor to support their growth [26, 70–73], coupling 

the bioconversion of this Se-oxyanion to the oxidation of different carbon sources, such as ali-
phatic (pyruvate, lactate, acetate) as well as aromatic compounds (i.e., benzoate, 3-hydroxyben-

zoate, 4-hydroxybenzoate) [61, 74, 75]. Nevertheless, facultative anaerobes, such as Pseudomonas 

stutzeri, showed their proficiency of bioreducing SeO
4
2− solely for detoxification purposes [70].

Unlike SeO
4
2−, both aerobic and anaerobic microorganisms can bioconvert the highly soluble 

and reactive SeO
3
2− [76] into Se0 through either detoxification strategies or anaerobic respira-

tion [77–79]. SeO
3
2− detoxification occurs through several mechanisms based on Painter-type 

reactions [17, 80–82], where glutaredoxin/thioredoxin reductase systems [19, 83] and sidero-

phores mediate the oxyanion reduction [19, 65]. SeO
3
2− detoxification is mostly achieved by thiol 

molecules present in the cytoplasm of bacterial cells, such as GSHs, mycothiols (MSHs), and 

glutaredoxins [17, 84]. Moreover, GSHs can be exported into the periplasm of Gram-negative 

bacteria, leading to the bioreduction of SeO
3
2− in the periplasm or at their cell membrane [85]. 

Secondary SeO
3
2−-detoxification strategies exploited by microorganisms involved the interac-

tion between SeO
3
2− and reactive biogenic sulfide, [86, 87], as well as the exploitation of iron 

siderophores [19, 88]. On the other hand, SeO
3
2− bioconversion during anaerobic respiration is 

mostly mediated by the presence of terminal nitrite, sulfite or fumarate reductases [19, 24, 61, 

66, 67, 72, 89, 90], as described for T. selenatis AX, Rhizobium sullae HCNT1 and C. pasteurianum, 

to name a few [91–93]. Further, Geobacter sulfurreducens [94], Shewanella oneidensis MR-1 [90] and 

Veillonella atypica [94] showed high proficiency in bioreducing SeO
3
2− to Se0 through dissimila-

tory reduction in anoxic conditions, while among the bacterial strains able to anaerobically 

bioconvert SeO
4
2− into SeO

3
2−, a high yield of Se0 production by further reducing SeO

3
2− has been 

observed for Bacillus beveridgei [22], D. indicum [75], Desulfovibrio desulfuricans [95], E. cloacae 

SLD1a-1 [96] and Sulfospirillum barnesii SES-3 [25, 96]. Nevertheless, fewer bacterial species (i.e., 

Bacillus selenitireducens and Aquificales sp.) have been described for their ability to use SeO
3
2− as 

terminal electron acceptor as compared to those using SeO
4
2− [26, 27].

2.2. Bioremediation of Te-polluted environments using bacterial pure cultures as 

planktonic cells

Although Te does not have an essential biological role for living organisms [8], bacterial 

cells are able to uptake Te-oxyanions and to biomethylate and/or bioconvert them either as 

a decontamination strategy or during the anaerobic respiration [8, 19]. Particularly, TeO
3
2− 

uptake within bacterial cells has been ascribed to the phosphate transporter in E. coli [97], 
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Lactococcus lactis [98] and R. capsulatus [99, 100], considering that this Te-species is a strong 

competitive inhibitor of the phosphate group [19]. However, other carriers can be used to 

assist TeO
3

2− uptake in microorganisms, such as the ActP monocarboxylate transporter of R. 

capsulatus [101], as well as an ATP-dependent efflux pump responsible for the arsenite/arse-

nate/antimonite resistance in E. coli [102]. Since Te shares several chemical properties with Se, 

microorganisms tolerant and/or resistant toward Te-oxyanions process them exploiting simi-

lar mechanisms to those described above for Se-species. In this regard, the biomethylation of 

Te-oxyanions to produce dimethyl telluride and dimethyl ditelluride [56] has been observed 

in several bacteria able to biomethylate Se-oxyanions as well, such as R. rubrum G9, R. cap-

sulatus [59], P. fluorescens K27 [103] and D. gigas [57]. Moreover, P. aeruginosa ML4262 [104], 

G. stearothermophilus V [105] and Mycobacterium tuberculosis [106] showed their capability of 

biomethylating only Te-oxyanions.

Despite of TeO
3
2− presence in lower amount in the environment compared to TeO

4
2− [39], tellu-

rite showed toxicity 10 times higher than tellurate [40, 41], leading the experimental research to 

focus on the study of TeO
3
2−-tolerant/resistant microorganisms as ideal candidate for bioremedi-

ation purposes. Nevertheless, B. beveridgei [22], B. selenitireducens, S. barnesii [29] and Shewanella 

frigidimarina ER-Te-48 [28, 107] showed their ability under anaerobic growth conditions to 

use both TeO
4
2− and TeO

3
2− oxyanions as terminal electron acceptors in the respiratory chain 

to sustain their growth [8]. To date, the proposed mechanisms of Te-oxyanions bioconversion 

in microorganisms are similar to those described for Se-species [13, 56, 88, 104, 108]. Further, 

TeO
3
2− processing in microorganisms have been ascribed to enzymatic reductions by periplas-

mic or cytoplasmic oxidoreductases [107, 109], such as nitrate reductases [109, 110], catalases 

[111] and thiol:disulfide oxidoreductase [112]. However, the function of all these enzymes for 

bioconverting Te-oxyanions appears to be not specific, leading to a low resistance level toward 
Te-species in these microorganisms. To date, only one specific TeO

3
2− reductase has been identi-

fied as responsible for the anaerobic respiration of this Te-oxyanion in Bacillus sp. GT-83 [113].

2.3. Bioremediation of chalcogen-polluted environments based on bacterial biofilms

The majority of the investigations regarding the bioremediation of Se- and Te-contaminated 

environments have been focused on the exploitation of bacterial species grown as free plank-

tonic cells [8]. However, in natural settings microorganisms are most often found in close asso-

ciation with surfaces and interfaces as complex communities, which are indicated as biofilms 
[114–116]. In bacterial biofilms, the cells are embedded and protected from the surrounding 
environments by the presence of a matrix defined as Extracellular Polymeric Substance, contain-

ing a high amount of water, polysaccharides, proteins, extracellular-DNA (e-DNA) and lipids 

[117, 118]. The communal life of bacterial cells in the form of biofilm offers them several advan-

tages [114, 117, 119], resulting in their innate ability to populate a vast array of environments 

[119], including those contaminated by chalcogen-oxyanions. Thus, peculiar features of bacterial 

biofilms (i.e., quorum sensing signaling process, different cellular physiology, presence of the 
EPS and colony morphology variants) [120–124] confer them tolerance and/or resistance toward 

either Se- or Te-oxyanions without having specific Se- and Te- genetic resistant determinants 
[19]. In this regard, sulfate-reducing bacteria (SRB) within a biofilm produce sulfide (S

2
), which 
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can abiotically bioconvert SeO
4
2− and/or SeO

3
2−, leading to the precipitation of Se0 in the EPS 

[86]. Unlike SRB, S. oneidensis biofilms grown under anaerobic conditions can reduce TeO
3
2− and 

SeO
3
2−, accumulating Te0 and Se0 in both the cells and the EPS, respectively [125].

Since microorganisms grown as biofilms showed to play an important role in metal and chal-
cogen geochemistry [126], several biofilm-based reactors have been used to support the bio-

sorption and the bioconversion of Se- and Te-oxyanions as detoxification strategy [8]. Indeed, 

Burkholderia cepacia biofilm grown on alumina surface [127], as well as a mixed species biofilm 
composed of Dechloromonas sp. and Thauera sp. [128] have been explored for Se-oxyanions 

bioremediation, resulting in the uptake and bioconversion of SeO
4
2− to Se0 by the bacterial cells. 

Similarly, biofilms-containing denitrifying and sulfate-reducing microorganisms grown on a 
hallow-membrane biofilm reactor have been successfully used to remove SeO

4
2− from waste-

water [129, 130], while the pre-grown biofilm of the SRB Desulfomicrobium norvegicum resulted 

able to abiotically reduce SeO
3
2− extracellularly through its production of S-Se granules within 

the EPS [86]. Further, biofilm formed by TeO
3
2−-resistant isolates of non-sulfur marine photo-

synthetic bacteria showed their proficiency in bioconverting this Te-oxyanion through intra-

cellular reduction [131].

3. Microbial consortia for the treatment of selenium and tellurium 

contaminated wastewaters

3.1. Microbial consortia

In the environment, microorganisms usually thrive as communities composed by multiple 

species, generally referred as microbial consortia [132]. The employment of these microbial 

consortia in the treatment of environmental matrices contaminated with different inorganic or 
organic pollutants is currently a field of great interest for researchers [133]. There are signifi-

cant advantages for the utilization of microbial consortia over pure cultures, such as the larger 

volumes of wastewaters treatable, the ability of microbial communities to adapt to diverse 

conditions, the presence of synergic interactions among members within the consortium and 

the possibility to work in non-aseptic conditions [23]. This last aspect is particularly significant, 
since it facilitates process control and it reduces both maintenance and operational costs [134].

In the following section, the different biological systems based on processes of biosorption and 
bioconversion of Se- and Te-oxyanions from contaminated matrices by using microbial consortia 

will be discussed.

3.2. Microbial consortia for Se-removal from contaminated environments

In recent years, the utilization of biological treatments based on the exploitation of microbial 

consortia has become the leading approach for the removal of toxic Se-species from envi-

ronmental matrices, particularly from wastewaters (i.e., mine runoff, agricultural drainage, 
and flue gas desulfurization wastewater from plants) [23]. This decontamination strategy has 
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several advantages over chemical–physical remediation technologies, being: the cost-effec-

tiveness of microbial-based remediation approach, the avoidance in employing hazardous 

chemicals, and the possibility to recover Se0 in a recyclable form either as precipitates or as 

nanostructures, which are technologically and economically more valuable [23, 135]. Since 

using microbial consortia under aerobic conditions has a lower efficiency of the whole sys-

tem compared to the anaerobic processes, microbial communities used in these systems are 

mostly capable of anaerobically bioconverting Se-oxyanions to their elemental state [136]. In 

this regard, the dissimilatory reduction of SeO
4
2− under anaerobic conditions by a microbial 

community was firstly reported for sediment slurries by Oremland and coworkers [89], while 

an anaerobic co-culture isolated from agricultural drainage water in the San Joaquin Valley in 

California of a not-identified Gram-positive rod-shaped bacterium and a Pseudomonas sp. was 

capable of bioconverting both SeO
4
2− and SeO

3
2− to Se0 [72]. Further, several anaerobic micro-

bial consortia able to process Se-species have been found in biological wastewaters, such as 

activated, denitrifying, sulfate-reducing and methanogenic sludges [135]. Among them, meth-

anogenic anaerobic granular sludges were the most effective to remove high SeO
4
2− concentra-

tions using different electron donors (e.g., methanol, ethanol, acetate, lactate, glucose) [137].

Considering the large amount of Se-oxyanions present in laden wastewaters, different tech-

nologies and reactor configurations have been developed in order to treat these environmen-

tal samples (Figure 1), such as the ABMet® biofilter system, the electro-biochemical reactors 
(EBR), the biofilm reactors (BSeR), the membrane biofilm reactors (MBfR), the upflow anaero-

bic sludge blanket reactors (UASB) and the sequencing batch reactors (SBR) [23]. In the follow-

ing sub-sections, examples of bioreactor configurations used to bioremediate Se-contaminated 
waters and their operating procedures are briefly discussed.

3.2.1. The ABMet® reactor system

The ABMet® reactor is both a biological and a filtration system, in which microbial consortia are 
grown on porous granular activated carbon (GAC) beds, creating anoxic conditions for optimal 

SeO
4
2− and SeO

3
2− reduction [23]. The system consists of biofilter tanks where Se-oxyanions are 

bioconverted to their elemental state, followed by the removal of Se0 from the biofilter through 
a backwash cycle [138, 139]. This reactor uses a nutrient dosage tank generally containing a 

molasses-based solution, which acts as an electron donor sink for the microbial consortia, allow-

ing the bioconversion of Se-oxyanions [139]. Thus, in this reactor configuration, the microbial 
communities require only a small amount of supplemented nutrient, decreasing the mainte-

nance costs of the entire system [23]. Further, the GAC beds are used as substratum to sustain 

the bacterial growth, allowing the formation of a biofilm, which is morphologically more robust 
as compared to planktonic cells, resisting to the washing steps of the reactor [23]. Recently, 

Se-oxyanions bioconversion using anaerobic microbial communities inoculated in a ABMet® 

biofilter system has been observed within 16 h of empty bed contact time (EBCT) (i.e., the resi-
dence time of the water in the reactor) with a removal efficiency of 99.3% at the Duke Energy 
and Progress Energy in North Carolina [138]. Moreover, co-contaminants present in these 

wastewaters, such as NO
3
− and heavy metals, along with Se-oxyanions resulted to be removed 

with a high efficacy by the microbial consortium grown on the ABMet® biofilter system [23].
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3.2.2. The EBR system

Se-wastewater treatment is also achieved by using the electro-biochemical reactor (EBR), 

which utilizes the ability of certain microbial consortia to accept electrons from graphite elec-

trodes reducing inorganic compounds (e.g., SeO
4
2− and SeO

3
2−) through direct interspecies elec-

tron transfer [140]. In this process, electrons obtained from the oxidation of electron donors 

(i.e., graphite electrodes) are transferred to the outer surface of a bacterial cell to reduce the 

extracellular terminal electron acceptor (i.e., Se-oxyanions) [140]. The efficiency of this system 
is strictly dependent on the retention times of the microbial consortia, with optimal perfor-

mances between 6 to 18 h [141]. In this regard, on-site pilot scale study using an EBR sys-

tem in British Columbia (Canada) for the decontamination of coal mine wastewaters from 

Se-oxyanions reported a decrease of their concentration from over 500–5 μg L−1 (below US 

discharge limits), showing its high effectiveness even with influent streams at temperature as 
low as 1°C [141].

Figure 1. Schematic illustration of bioreactor configurations used for bioremediation of chalcogen-contaminated matrices.

Microbial-Based Bioremediation of Selenium and Tellurium Compounds
http://dx.doi.org/10.5772/intechopen.72096

125



3.2.3. The BSeR and MBfR systems

Reactors containing multispecies biofilms (BSeR) represent another promising approach for the 
treatment of Se-contaminated wastewaters. Indeed, microbial biofilms play a dominant role in 
the biogeochemical natural cycle of different inorganic compounds. In a recent study, a mul-
tispecies biofilm composed of strains (i.e., Rhodococcus sp., Pseudomonas sp., Bacillus sp. and 

Arthrobacter sp.) adapted to high concentration of SeO
3
2− has been investigated for its potential in 

converting these oxyanions to their elemental form (Se0) [142]. Moreover, it has been highlighted 

the presence of specific biofilm regions where Se0 was deposited as sub-micrometer-sized par-

ticles, associated with the microbial biomass [142]. In the BSeR methodology, bacterial biofilms 
are grown on granular activated carbon in anaerobic fixed-film reactors showing a high biopro-

cess proficiency toward both SeO
4
2− and SeO

3
2− [143], which resulted in the recovery of ca. 97% of 

Se0 from agriculture drainage wastewater (Garfield Wetlands-Kessler Springs, Utah, USA) [144].

Another configuration of reactor based on microbial biofilms is the membrane biofilm reac-

tor (MBfR) [129, 130, 145, 146]. MBfR in its standard configuration consists of a bundle of 
bubble-less gas transfer to a membrane delivering H

2
 directly to the grown biofilm consisting 

of autohydrogenotrophic bacteria (e.g., Cupriavidus metallidurans) on the outer surface of the 

membrane [146], resulting in a higher efficiency of Se-oxyanions bioconversion as compared 
to other systems [143]. Although the membrane of the MBfR system can be made of either 

organic or inorganic materials, mostly hollow-fiber membranes are used at high gas pressures, 
providing a high surface-to-volume ratio [23]. Moreover, hydrophobic membranes are gener-

ally used in these systems, allowing to maintain the pores dry to achieve a fast diffusion of gas 
molecules [23]. In the MBfR system, the reduction of Se-oxyanions is coupled with the oxida-

tion of H
2
, acting as electron donor, which supports the growth of the autotrophic microbial 

consortia [129]. SeO
4
2− removal in this system has been improved to 94% by changing H

2
 pres-

sure, with Se0 retained inside the microbial biofilm [129] in the form of crystalloid aggregates 

[147]. Similarly to the ABMet® system, the MBfR reactor resulted able to remove several oxi-

dized toxic contaminants, such as chromium and arsenic, along with Se-oxyanions [23]. The 

microbial composition of a MBfR system exposed to different concentrations of SeO
4
2− was 

characterized by Ontiveros-Valencia and coworkers through 16S rRNA pyrosequencing [147]. 

Results showed that biofilms exposed to a high load of SeO
4
2− were composed principally 

by denitrifying bacteria belonging to the genera of Denitratisoma and Dechloromonas, which 

were previously reported as capable of reducing SeO
4
2− [147]. Recently, Lay and coworkers 

developed an MBfR system in which methane gas (CH
4
) acted as electron donor instead of 

H
2
, exploiting the microbial consortium capability to oxidize CH

4
 coupled with SeO

4
2− reduc-

tion [148]. Particularly, the utilization of methane over H
2
 has the advantages of lower cost 

and high availability from anaerobic digestion. Once again, the final product of the process 
are Se0-nanospheres, accumulated in the microbial biomass [148]. A characterization of the 

microbial consortium by 16S rRNA sequencing revealed the presence of a specific methano-

trophic genus (Methylomonas) that is able to simultaneously oxidize CH
4
 and reduce SeO

4
2−, 

along with methanotrophic bacteria, which, upon methane utilization, are capable of gen-

erating organic metabolites suitable as electron donors for SeO
4
2−-reducing microorganisms 

present in the biofilm [148]. Although the MBfR system resulted to be a promising technology 
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to efficiently remove Se-oxyanions from contaminated environments, its implementation at 
industrial scale has not been investigated yet, likely due to the high cost of electron donors 

needed to the working-system, which is still prohibitive for large-scale applications [143].

3.2.4. The UASB system

Sludge-based reactors have also been employed for the treatment of Se-contaminated waste-

waters [68]. Indeed, the most implemented process for anaerobic treatment of industrial efflu-

ents is the upflow anaerobic sludge blanket (UASB) reactor, because of the accumulation of 
microbial biomass and suspended solid, and a dense sludge bed at the bottom of the reactor, 
in which Se-oxyanions bioconversion occurs [68]. In this regard, the natural aggregation of 

some bacteria forming flocculates or granules leads to a high retention of active anaerobic 
sludge even at great organic load rates [149]. Additionally, the wastewater is kept in good 

contact with the bacterial biomass through both the turbulence of the upflow influent flow 
and the biogas produced by the anaerobic microorganisms [68]. UASB reactors have been 

pilot-tested for Se-removal at the Adams Avenue Agricultural Drainage Research Center in 

San Joaquin Valley (California) [150]. The influent had a total Se content of 500 μg L−1 and 

the removal efficiency ranged from 58 to 90% [150]. The efficiency of UASB reactors for the 
removal of Se-oxyanions was tested by Lenz and coworkers in a series of studies evaluat-

ing SeO
4
2− removal from synthetic wastewater by microbial consortia under methanogenic, 

sulfate-reducing and denitrifying conditions [151–153]. Using lactate as electron donor, a 

SeO
4
2− removal efficiency of 99% was obtained in both methanogenic and sulfate-reducing 

conditions, demonstrating that UASB reactors can be effectively applied to remove SeO
4
2− 

from contaminated wastewaters, with the involvement of sulfate-reducing bacteria (sulfate-

reducing conditions) and a selenium-respiring sub-population (methanogenic conditions) 

[151]. Since the use of UASB reactors under methanogenic conditions leads to the recovery of 

decontaminated water, Se0 and energy, methanogenic sludges are promising for Se-oxyanions 

bioconversion [143]. Further, Dessì and coworkers evaluate SeO
4
2− removal in UASB reac-

tors as function of the temperature, observing that the maximum efficiency of removal was 
obtained at thermophilic conditions (55°C) [154]. Another advantage of working at this tem-

perature is the better retention of reduced Se in the microbial biomass. Additionally, they 
performed a characterization of the microbial consortia through DGGE analysis, correlating 

the high SeO
4
2− removal efficiency to the presence of SeO

4
2−-respiring microorganisms, such as 

Sulfurospirillum barnesii and D. indicum [154]. UASB reactors are very promising for removing 

Se-oxyanions from contaminated wastewaters, however they require constant control, since 

any change in operation conditions may lead to an increase of the effluent Se-concentration 
through either biomethylation or bioconversion of Se-species [23].

3.2.5. The SBR system

Se-wastewater can be processed using a sequencing batch reactor (SBR), in which the biodeg-

radation and solid separation take place in the same reactor [23]. In this configuration, the 
treatment is carried out in consecutive stages in the same tank: filling, reaction, sedimentation, 
draw, purging and inactivity [155]. The selection and enrichment of the desired microbial 
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consortia is achieved by the alternation of anaerobic and aerobic phases, which results in the 

complete integration of both oxic and anoxic conditions in the same reactor [69, 155]. The 

SRB systems have been mostly used in the treatment of textile wastewater, thanks to their 

efficiency in removing dyes [69]. Further, this system has been employed for Se-laden waste-

water treatment by Rege and coworkers, which used a denitrifying bacterial consortium for 

the reduction of both SeO
3
2− and SeO

4
2− with acetate as electron donor, observing a lag phase of 

150 h and a SeO
3
2− reduction rate higher than SeO

4
2− [156]. In other studies, SBR reactors have 

been used for the remediation of SeO
4
2− specifically inoculating the bacterial strains Thauera 

selenatis [157] and Bacillus sp. SF-1 [158]. However, SeO
3
2− accumulation in the reactor over the 

time exerted to a toxic effect toward the bacteria present in the system [158]. More recently, 

Mal and coworkers studied the potential of SeO
4
2− removal in the presence of NH

4
+ in an SBR 

inoculated with an activated sludge collected from a wastewater treatment plant [159]. In 

this study, the microbial consortium removed up to 100% of SeO
4
2− and 95% of ammonium 

through partial nitrification as well as nitrification/denitrification, with alternating between 
anaerobic and aerobic phases [159]. The efficiency of the system was improved by prolonging 
the anaerobic phase from 3 to 4.5 h. Interestingly, the effluent presented low concentrations of 
both volatile and elemental Se, suggesting that most part of biogenic Se0 formed by the micro-

bial consortium was retained in the activated sludge [159].

Even if the performances of the bioreactor configurations described above are promising, 
there are still challenges for the utilization of these approaches to remediate Se-laden waste-

water, such as the presence of co-contaminations with different types of metals, the discharge 
limits for the effluent, and the disposal of the concentrated selenium solids [23, 143]. The 

bioremediation of Se-contaminated soils has been less explored than wastewater treatment. In 

this regard, a study by Prakash and coworkers, analyzing the capability of a microbial consor-

tium, composed by aerobic rhizo-bacteria belonging to Bacillus genus, to remove SeO
4
2− and 

SeO
3
2− contamination from soils amended with different concentrations of these oxyanions 

[160]. The study revealed higher rate of removal for SeO
3
2− as compared to SeO

4
2−, due to the 

greater bioavailability in the soils of SeO
3
2− [160]. Moreover, microbial consortia can play a 

major role in assisting hyperaccumulator plants in phytoremediation approaches by enhanc-

ing both plant growth and Se-accumulation (Figure 2) [161, 162].

3.3. Microbial consortia for Te-removal from contaminated environments

Since Te-biogeochemistry is still poorly understood [34], to date few examples of microbial 

consortia employed for the bioconversion of Te-oxyanions into their elemental state (Te0) are 

available in the literature [8]. Further, although Te-species are toxic for living organisms at 

very low concentrations [6], evaluating the actual amount of Te-contaminants present in envi-

ronmental samples is challenging, due to their low general availability on Earth [34]. Indeed, 

even if TeO
4
2−- and/or TeO

3
2−- reducing bacteria are frequently isolated from natural microbial 

communities adapted to the stress exerted by Te-oxyanions [28, 107], the application of micro-

bial consortia for their removal from contaminated matrices is still in its infancy.

One of the first studies regarding bioremediation of Te-contaminated environments was carried 
out by Baesman and coworkers, which isolated sediment slurries resistant to TeO

3
2− at Mono 
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Lake (California) [22]. Thus, the identified slurries were exposed under anaerobic conditions 
of growth to different concentrations of TeO

3
2− with either lactate or H

2
 as electron donors, and 

they were incubated at 28°C for 30 days [22]. During the timeframe of microbial consortium’s 

growth, a progressively blackening of the cultures has been observed, which indicated both 

Te-oxyanions bioreduction and the simultaneous accumulation of Te0 precipitates, as proven 

by electron microscopy observations of the solid phase of the slurries [22].

More recently, Ramos-Ruiz and coworkers analyzed an anaerobic mixed microbial culture 

in a methanogenic granular sludge obtained from a wastewater treatment plant at Mahou’s 

(beer brewery in Spain) [163]. In this regard, the granular sludge was chosen over planktonic 

cells considering that the latter one should be exposed more directly to the toxic Te-species 
[163]. As a result, the anaerobic sludge was able to catalyze the reduction of both TeO

4
2− and 

TeO
3
2− added to the system at a concentration of 20 mg L−1, showing a rate of TeO

3
2− reduc-

tion seven-fold higher than TeO
4
2− one in all conditions tested [163]. As a consequence of 

Te-oxyanions bioconversion by the anaerobic sludge, the formation of intra and extracellular 

Te-nanoprecipitates has been detected through electron microscopy [163]. Interestingly, the 

microbial consortium did not show any lag phase when exposed to Te-oxyanions even in the 

case of a sludge originated from wastewater not contaminated with Te-species [163]. In order 

to avoid the possibility of an abiotic bioreduction of TeO
4
2− and/or TeO

3
2− by biogenic S2− pro-

duced by SRB microorganisms generally present in microbial consortia, all the experiments 

have been performed in a (S)-free medium. Furthermore, the authors observed an increase 

of both TeO
4
2− and TeO

3
2− reduction rates after the amendment of different redox mediators, 

with riboflavin and lawsone causing the highest effect [163]. Finally, the addition of these 

redox mediators increased the percentage of extracellular Te-nanoprecipitates, determining a 

change in the shape of the nanomaterials produced [163].

Figure 2. Schematic illustration of a phytoremediation system for the treatment of Se-wastewater through a synergistic 

cooperation of a Se-hyperaccumulator plant and selenite/selenate bioconverting bacteria of the rhizosphere [162].
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A following study by the same research group evaluated the feasibility to use UASB reactors 

for the bioconversion of TeO
3
2− to Te-nanoprecipitates using a methanogenic microbial consor-

tium in granular sludge, and the subsequent separation of the nanomaterials from the water 

effluent [164]. In this study, ethanol was added to the system as exogenous source of electron-

donating substrate, while riboflavin was supplied as redox mediator during the biological 
process [164]. UASB reactors were operated with hydraulic retention time of 14 h at 28°C and 

supplemented with up to 20 mg L−1 of TeO
3
2− [164]. Similarly to the above-mentioned study 

[164], the presence of riboflavin as redox mediator enhanced the efficiency of TeO
3
2− biocon-

version, lowering the toxicity of this oxyanion toward the microbial consortium. Moreover, 

a continuous removal of TeO
3
2− by the anaerobic microbial consortium was observed in the 

UASB reactor, showing a bioreduction efficiency ranging from 83%, when riboflavin was 
absent, to 99.5%, when riboflavin was added to the system [164].

TeO
3
2− removal from wastewater using a UASB bioreactor was also recently investigated by 

Mal and coworkers, which inoculated a UASB reactor with anaerobic granular sludge fed with 

lactate as carbon source, with a hydraulic retention time of 12 h at 30°C [165]. In the UASB 

reactor, firstly a concentration of 10 mg L−1 of TeO
3
2− was added, which was subsequently 

increased after 42 days to 20 mg L−1. Te-oxyanion removal started immediately after the initial 

TeO
3
2− addition [165]. Particularly, after the first 3–4 weeks of sludge incubation in the reactor, 

a significant improvement of TeO
3
2− removal efficiency was observed, suggesting an adapta-

tion of the microbial consortium to the presence of this oxyanion [165]. Furthermore, TeO
3
2− 

was almost completely bioconverted to its elemental state in the form of Te-nanostructures 

associated with the loosely bound EPS fraction surrounding the sludge, suggesting a pivotal 

role played by EPS and its functional groups in the biogenesis of Te-nanoprecipitates. In this 

regard, the possibility to easily recover Te-nanostructures associated with the EPS fraction 

opens new possibility to combine oxyanion removal with the recovery of Te0 [165].

4. Microbial generation of Se- and Te-nanostructures

It is nowadays recognized the key role played by bacteria not only as tool for bioremedia-

tion purposes of highly contaminated Se- and Te-matrices, but also as a mean by which the 

less toxic and bioavailable elemental form of these chalcogens (i.e., Se0 and Te0) are gener-

ated and recovered. Indeed, yet Se and Te are elements featured by unique chemical-physical 

(i.e., semiconductive, photoconductive and catalytic) properties [166–169], which result to 

be emphasized in the nanosized material containing Se0 and Te0 as building blocks, forming 

nanoparticles (NPs) and/or nanorods (NRs). Se and Te as nanoscale structures are charac-

terized by a large surface-to-volume ratio and a large surface energy as compared to their 

bulk counterparts [8], which make them suitable for biotechnological applications, such as: 

biomedicine, electronics, environmental engineering and agricultural industries [168, 170], 

to name a few. Since bacteria are considered inexpensive catalysts, their use for the produc-

tion of Se- and Te-based nanostructures is an attractive choice over the chemical synthesis 
processes [79]. Thus, microorganisms capable of generating biogenic nanomaterials are seen 

as green and cost-effective exploitable methods to synthesize high-quality nanostructures [10], 
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whose process occurs at standard conditions (i.e., near neutral pH, controlled temperature 

and pressure), and, more importantly, avoiding the use of harsh reducing agents as well as 

the production of toxic wastes deriving from the chemical synthesis approaches [171].

Considering the peculiar photoconductive, semiconductive and optical properties of Se, the 

use of Se-based nanomaterials has been investigated in a wide range of applications, such as in 

the production of new optical devices, photovoltaic solar cells, photographic exposure meters 

and rectifiers and photo-assisted fuel cells [172–175]. Moreover, Se-nanostructures resulted 

to act as good catalyst for both the chelation of mercury ions (Hg2+) present as contaminants 

in different polluted environments [176], and the degradation of several toxic chemical com-

pounds (e.g., trypan blue dye) [177], as well as an efficient bio-sensor for H
2
O

2
 in different 

matrices [178]. Similarly, Te is a narrow band-gap p-type semiconductor, which is featured 

by high photoconductivity, piezoelectricity and thermoelectricity [168, 169]. These versatile 

properties led to the exploitation of Te-nanomaterials as optoelectronic, piezoelectric and 

thermoelectric devices, infrared detectors and gas sensors [179, 180], to name a few. Further, 

since these chalcogen-nanostructures showed great adsorptive ability, biological reactivity 

and antioxidant functions, their use in biomedicine have been recently explored [8, 170, 181]. 

Both Se- and Te-nanomaterials resulted efficient tools in protecting living organisms from 
DNA oxidation [181], as well as promising antimicrobial and anticancer agents [182–187]. 

In this regard, several Se-nanostructures produced by different microorganisms have been 
tested for their antimicrobial efficacy, highlighting their ability to prevent the growth of 
pathogenic bacteria (i.e., E. coli, P. aeruginosa, S. aureus) either in the form of planktonic cells 

or as biofilms [182, 183, 186, 187]. Particularly, biogenic Se-nanomaterials resulted to be more 

efficient as compared to those synthesized by mean of chemical processes, showing a strong 
inhibitory effect of pathogenic bacterial growth at lower concentrations [183]. Moreover, stud-

ies carried out to evaluate the cytotoxicity of biogenic Se-nanostructures toward human cell 

lines (i.e., fibroblasts and dendritic cells) revealed their high biocompatibility [187], which is a 

fundamental feature for their possible biomedical applications. Although Te-nanostructures 

produced by microorganisms are less studied for biomedical applications than those contain-

ing Se, recently the potential of such nanomaterials as antimicrobials has been assessed [186], 

showing their good efficacy in inhibiting pathogens growth. Further, a promising techno-

logical application of biogenic Te-based nanostructures regards the production of quantum 

dots (QDs), which are semiconductors nanocrystals featured by unique electronic and optical 
properties, due to quantum confinement effects [188].

5. Summary

Bioremediation strategies of Se- and Te-polluted environments based on the ability of micro-

organisms to bioprocess these toxic oxyanion species is an environmental-sustainable choice 

to reclaim contaminated soils, groundwater, surface water bodies and sediments. The primary 

microbial process after biosorption is the bioreduction of chalcogen-oxyanions into their less 

toxic and bioavailable elemental forms (i.e., Se0 and Te0) generating, as end-products nanoscale 

materials, which can be recovered from the biomasses and used for technological purposes.
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