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Abstract

In this chapter, an experimentally and numerically conducted investigation of the existence 
of high chaotic spiking in the dynamics of semiconductor lasers with AC-coupled optical 
feedback, the bifurcation diagram by feedback strength attenuation and the bias current 
as a control parameter was done. A semiconductor laser subjected to an external opti-
cal feedback can present a big change of dynamic behaviors, such as periodic and quasi-
periodic oscillations, chaos, coherence collapse, and low-frequency fluctuations (LFF’s) 
that degrade the laser characteristics. The chaotic instability is experimentally investigated 
on feedback strength as a control parameter, and the resulted dynamic is monostability. 
Finally, we indicated that the observed chaotic dynamic is a good candidate to hide infor-
mation in order to investigate the resonance phenomena, which is important for chaos to 
encrypt data in optical communication, where data disappear when modulated in a chaos 
carrier. The aim of this chapter is to investigate the encryption area in the chaotic system 
when the applied frequency is 1–500 MHz, for satisfying the secure communication.

Keywords: chaos communication, chaotic instability, chaos modulation, hidden 
frequency, resonance phenomena

1. Introduction

In communication, one requests the data to be transferred efficiently. In another expression, 
the data must be transferred fast and with very low deformation. In classical communication 

sketches, the maximum limits for high efficiency is enjoined with the properties of the chan-

nel, while in chaos communication, this maximum limit is dependent on the characteristic of 

the dynamical system being utilized [1]. Chaos mathematically and physically was studied 

to describe an attitude of dynamical systems that are extremely sensitive to the initial state of 
the system, that is, a tiny disturbance in the initial condition produces significantly varying 
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



attitude, known as the butterfly effect [2]. It indicates that the long-term prognosis is hopeless 

even if the system is deterministic, which is defined as a deterministic chaos [2]. The state 

of a dynamical system develops with time that may exhibit dynamics [2]. Several systems 

dynamic display the chaotic behavior everywhere; however, in most states, the chaos exists 

only in a subset space, for a group of initial conditions may lead to the same chaotic area, 

for example, the chaotic attitude may take place on the attractor [3]. Methods for steadying 

changeful cases in a nonlinear dynamical system employing a tiny perturbation fall into two 

general groups: feedback and non-feedback sketches. A concept of chaos and instabilities can 

be controlled efficiently utilizing feedback (closed-loop) system to steady changeful cases, 
which was proposed by Ott et al. [4] in 1990 [5].

In this chapter, the chaos optical communication was generated. Then the chaos control with 

feedback attenuation as a control parameter was investigated experimentally. The bias cur-

rent as a control parameter was investigated numerically, and also the chaotic instability of 

the semiconductor laser was demonstrated experimentally. Finally, we find the encryption 
range in the chaotic carrier by applying frequency of 1–500 MHz, and then we observed the 

low-frequency fluctuations (LFF) phenomena with high frequency.

2. Chaotic spiking generation

The dynamical chaos is an irregular oscillation for time evolutions in nonlinear dynamical 

systems, appearing clearly in their outputs as a deterministic manner and it is different from 
random processes [6]. Nonlinearity of a system is one of the important factors to observe 

chaos [7]. Semiconductor lasers have been shown to be relevant devices in the research of 

dynamical systems [8]. The intensity of the light emitted by a semiconductor laser is stable 
when there is no external perturbation, while the semiconductor lasers are easily destabi-

lized by external perturbation, since they are the introduction of an extra degree of freedom 

to lasers. When the light of the laser is reflected and part of it re-enters into the laser, the 
laser intensity can become unstable, displaying a broad range of dynamical behaviors [9]. 

The semiconductor laser-based oscillators’ operation in the chaotic regime can be achieved 
by applying optical feedback [10], optoelectronic feedback [11], or optical injection [12], and 

their chaotic behavior appears either in the amplitude or in the wavelength regime. A semi-

conductor laser subjected to external optical feedback can present a large variety of dynamic 

behaviors, such as periodic and quasi-periodic oscillations, chaos, coherence collapse, and 

LFF that degrade the laser characteristics [13]. One special unsteady attitude is known as 
LFF [14, 15], that occurring repeatedly when the laser operates near to the threshold and 

also submitted to moderate optical feedback from the external cavity in which the round-
trip time that is much longer than the period of the solitary laser’s relaxation oscillation 
frequency [5].

Theoretically, the LFF was demonstrated as an impact between the local chaotic attractor 
and the antimode [16] as a chaotic route by the drift [16] or as a contest between steady and 

unsteady external cavity modes. While it was experimentally explained that LFF is strongly 
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dependent on the injection current. Initially, the LFF was known in the low-injection cur-

rent close to the threshold, whereas lately it was also noticed in a high-current injection 

[16]. Therefore, LFF is a general event in semiconductor lasers by an optical feedback [16]. 

Several people studied in chaotic generation and control, theoretically and experimentally, 

and therefore, we show part of it. Al-Naimee et al. published several papers in semicon-

ductor lasers with optoelectronic feedback, optical feedback, and optical injection. In 2009, 

they demonstrated experimentally and numerically the presence of slow chaotic spiking 

sequences in semiconductor laser dynamics with optoelectronic feedback, where the times-

cale of these dynamics was wholly determined by the high-pass filter which included in the 
feedback loop [17]. Then, they were presented in 2010; the experiment studied the analy-

sis of chaos generation showing the generation of a mixed spectrum in the time series and 

the attractor is presented. They stated that the control of chaotic behavior can be achieved 
by applying a low level of perturbation signals [18]. They are also studied; the quantum 

dot light emitting diode (QD-LED) model was examined first under bias current without 
any external perturbation where it exhibits chaotic phenomena since the model has multi-

degrees of freedom [19]. The nonlinear dynamics of a semiconductor quantum-dot (QD) 
laser subject to external optical feedback was examined by using a dimensionless model in 

[19, 20]. It is perturbed by both small signal and direct current modulations (DCM). Then, 
this system exhibits mixed-mode oscillations (MMOs) under DCM [19]. Quantum dot light 
emitting diode dimensionless model displays homoclinic chaos; it is also able to reproduce 
mixed mode oscillations and chaotic spiking regimes [21]. Then, in 2015, they presented 

an experiment of the existence of chaotic spiking in the dynamics of a semiconductor laser 

output with an optical feedback using nonlinear optical fiber loop mirror [22]. Also, they 

presented in 2016, experimentally, the efficient bandwidth of chaotic signals which has been 
measured and can be increased by injecting current which is an important parameter in 

chaos communication [23].

3. Chaos in optical communication

3.1. Generation of optical chaotic carrier

The excellent model for nonlinear optical system is the semiconductor laser with feed-

back for chaotic dynamics [24]. Semiconductor lasers are different from other lasers in the 
low reflectivity of the internal mirrors in the laser cavity. That domain usually is from 10 
to 300% of an intensity in the Fabry-Perot semiconductor lasers. Therefore, the feedback 
effects are important in the semiconductor lasers. A large absolute value of a line width 
enhancement factor α is another difference, which is α =  − 2 to −6, convened in semicon-

ductor lasers, while the value of line width in another laser is roughly 0. This information 

drives to interesting and an assortment of dynamics of several other lasers. The optical 

feedback reflectivity is from weak to moderate, the output power of the laser shows inter-

esting dynamical attitudes like a steady state, periodic and quasi-periodic oscillations, 
and chaos for the variety of system variables. The external reflectivity scopes are not just 
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interesting but also really significant in current implementations of semiconductor lasers 
like an optical information storage arrangement. A semiconductor laser dynamical behav-

ior with optical feedback is mainly influenced by three parameters in the system, which 
include the reflectivity and the length of the external mirror and the bias injection current. 
The dynamic behaviors of a semiconductor laser with optical feedback are not simple and 

strongly dependent on the feedback reflectivity. According to the behaviors of the laser 
output, by an increase of the feedback, reflectivity can be characterized by the dynamics of 
the output power into five regions (I–V) [25, 26]; depending on the phase of the returned 

light into the laser cavity, the laser line width is increased or decreased for the very tiny 

feedback regime I. The laser shows mode hopping among several external cavity modes 

(regime II) by an increase of the feedback scale. At moderate levels of the feedback ampli-
tude reflectivity around 1%, chaos can be observed, that corresponds to the regimes III and 
IV. The coherence collapse occurs in the laser output power, with further increase of the 
feedback level, in which the line width is drastically broadened and the coherence length 

of the laser is much reduced. These regions are very important in actual optical data stor-

age systems. A very high-feedback level (regime V) corresponds to a stable laser operation. 
They are much interested in the regimes III and IV, which show chaotic dynamics [24]. 

These regions are shown in Figure 1 [27].

Here we present the experimental configuration for a semiconductor laser with optical 
feedback in order to investigate the existence of fast, chaotic spiking in the dynamics of 

a laser; this is schematically shown in the Figure 2. A closed-loop optical system consists 

of a semiconductor laser (1310 NM) (NOYSE FIBER SYSTEM). The output laser is con-

nected to the 2 by 2 direction coupler (DC); the two output DCs are connected together 
to a variable optical attenuator (VOA), while another branch of the DC is connected to a 
photodetector (NEW FOCUSE; Model 1811–125 MHz an InGaAs/PIN). The output signal 
from photodetector is observed with a four-channels digital storage oscilloscope (DSO) 
(TEKTRONIX-TDS2024B), used to analyze the time series with the possibility of direct fast 
Fourier transformation. Then the results are analyzed by a personal computer with origin 
program. The round-trip time of external cavity of the laser used is 50 ns, which is given 

by this formula:

    τ  
ext

   = 2nL / c   (1)

where L is the length of the fiber which is equal 5 m, n is a refractive index of the fiber core 
(silica glass), and c is the speed of light in vacuum.

The effect of the attenuation feedback strength is a control parameter for generating cha-

otic behavior in the semiconductor. In our experiment, a VOA is used to control the atten-

uation feedback strength (0–15) dB. Figures 3–7a represent the time series of the nonlinear 

dynamic, which are important to show the time evolution of photon density. Figures 3–7b 

shows the phase space (attractor) of the oscillator by using an embedded technique with 
appropriate delays; the trajectories are different in diameters and dense and its looks very 
strange (strange attractor). While the Figures 3–7c represent the power spectra of the cha-

otic signal, the FFT figures are exponentially decayed to distinguish chaotic signal from 
other signals like noise; this agrees with [28]. The spiking rate and amplitude of the chaotic 

signal decrease with increasing the attenuation feedback strength as shown in Figure 8 which 
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is representing the bifurcation diagram. The bifurcation diagram represents the peak-to-

peak laser output intensity versus the attenuation in feedback strength as a control param-

eter. In this plot the spiking rate and amplitude of the chaotic signal can be observed as 
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Figure 1. Regimes of optical feedback effects occurring for different values of the external reflectivity and the external 
cavity length [27].
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decreasing gradually with increasing feedback strength; this result agrees with reference 

[22]; this type of feedback is called negative feedback. The bifurcation diagram for optical 

attenuation from 0 to 8.5 dB means high-feedback strength, the dynamics of the oscillator 
is chaotic with high intensity. When the optical attenuation increases from 9 to 12 Db, the 
dynamics of the oscillator becomes less because of the low ratio of the feedback strength 

and from 12.5 to 15 Db, the dynamics of the oscillator becomes constant because the chaos 
goes into saturation.

3.2. Chaotic instability of the semiconductor laser

By the chaotic evolution, the self-mixing outputs of the semiconductor lasers observed 
the bistability and multistability. In a periodic case, the output laser shows hysteresis in 

addition to simply periodic oscillation [25]. Based on these phenomena, proposed a novel 

application, for example, by counting the fringes obtained from bistable self-mixing inter-

ference between the internal field and an optical feedback light in the laser cavity, the dis-

placement measured is performed. From asymmetric waveforms showing hysteresis, a 
direction of displacement is simultaneously determined [25]. In many different systems, 

by using intrinsic or hybrid optical circuits, the optical bistability was observed. If a sys-

tem has two output states for the same value of input over some range of input values, 

the system is considered optically bistable. Under some operating conditions, the two 
optical cases originate from the stable-state and transient characteristics of the nonlinear 

optical system. That input and output relation is described by a multivalued function 

and has many stable and transient states in a nonlinear system which known as multista-

bility [29]. In our experiment of chaotic instability, by using the configuration setup in  

Figure 2, the result appears that the chaotic instability of optical feedback by optical 

feedback attenuation as a control parameter is monostability, as shown in Figure 9. This 

figure is obtained by using a bifurcation diagram from 0 to 15 dBm and again plots the 
bifurcation diagram from 15 to 0 dBm in the same time to conserve the initial conditions 
of the chaotic system.

LS
VOA

PD   DSO

PC

  OF

DC 

50:50

Figure 2. Experimental setup of semiconductor lasers with optical feedback systems. LS: semiconductor laser 1310 nm, 
OF: optical fiber, DC 50:50: directional coupler 2 by 2 single mode, VOA: variable optical attenuator, PD: photodetector, 
DSO: digital storage oscilloscope, and PC: personal computer.
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Figure 3. The effect of attenuation feedback strength of 0 dB (a) time series (b) attractor (c) FFT.
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Figure 4. The effect of attenuation feedback strength of 2.5 dB (a) time series (b) attractor (c) FFT.
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Figure 5. The effect of attenuation feedback strength of 6 dB (a) time series (b) attractor (c) FFT.

Coherence Resonance in Optical Feedback Chaos: Hiding Frequency in Chaos Communication
http://dx.doi.org/10.5772/intechopen.71389

163



Figure 6. The effect of attenuation feedback strength of 10 dB (a) time series (b) attractor (c) FFT.
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Figure 7. The effect of attenuation feedback strength of 15 dB (a) time series (b) attractor (c) FFT.
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Figure 8. Bifurcation diagram of chaotic laser intensity as a function of the attenuation feedback strength (dB).

Figure 9. Chaotic instability of optical feedback as a function of the attenuation feedback strength (dB).
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3.3. Encryption of message

There are three primary message encryption methods utilizing optical communications chaos 

[30], which will be explained in a next section.
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Figure 10. The schematic diagram of chaos encryption, (a) CMA, (b) CSK, and (c) CMO [31].
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• Chaotic masking (CMS): with a transmitter laser (TL), a chaotic carrier is generated. Then, 
the message is directly added to the chaotic carrier, see Figure 10a.

• Chaotic shift keying (CSK): the injection current of the transmitter laser is used to modulate 
the message directly. Therefore, the transmitter laser produces the chaotic carrier for a mes-

sage concealed in it, as shown in Figure 10b.

• Chaotic modulation (CMO): it involves adding the output power of the transmitter laser to 
the message. Therefore, this mixer of the signal and message is sent back to the transmit-

ter laser through a feedback loop as a modulation to produce a chaotic carrier as shown in 

Figure 10c [30].

There are two kinds of chaos modulation such as direct current modulation and external 

modulation of the semiconductor laser [32]; in our experiment, the external modulation was 

used. The external modulation in optical communication divides into two types. A first kind 
is dependent on the absorption modification of a semiconductor material when the external 
electric field is applied, which is known as an electro-absorption modulator, while the second 
kind relies on the refractive index variation observed in several crystals under an external 

electric field that is called an electro-optic modulator. Additionally, with the interferometry 
structure, like a Mach-Zehnder structure, there can be a modulation of the intensity of a light 

wave because a change in the refractive index itself does not allow modulation of the intensity 

of a light wave. A Mach-Zehnder structure enables to convert the induced phase modulation 

into the desired intensity modulation.

4. Electro-absorption modulation

The effective band gap Eg of a semiconductor material decreases when an external voltage 
is applied; hence, this fact is important in this kind of modulation. Then, if the frequency 

υ of an incoming light wave is chosen so that its energy E = hυ is smaller than the bandgap 

when no voltage is applied, the material will be transparent. In another word, the effec-

tive band gap will be reduced when an external voltage is applied, which means that the 

wave of light will be absorbed by a material when E > Eg, that is, a shift of a semiconduc-

tor absorption edge under the effect of the external voltage is delineated in Figure 11. 

Through duly selecting the wavelength signal so that it expertise a significant variation 
in the absorption when the voltage is applied, consequently it becomes possible to per-

fect optical modulation controlled via an electrical signal. An ideal absorption against 

the function of applied voltage transfer for an electro-absorption modulator is shown in 

Figure 11.

Since the refractive index of a semiconductor material and the absorption is linked by 

Kramers-Kronig relations of the kind

  𝛥n (ω)  =   c __ π     ∫ 
0

  
+∞

     𝛥𝛼 ( ω   ′ ) 
 ______ 

 ω   /2  −  ω   2 
   d  ω   ′   (2)

Chaos Theory168



where ∆n is change in the refractive index produced by a variation in the coefficient of absorp-

tion ∆α and c is the speed of light in a vacuum, to achieve an optical modulation shifting by 
the absorption edge and also to make a change in the refractive index of the material; hence, 

the modulation occurred in the signal of a phase or instantaneous frequency. Hence, via an 

electro-absorption modulator, some amount of frequency chirping will be introduced. The 

produced frequency chirp will usually be lower than when a semiconductor laser direct cur-

rent modulation is used, as shown Figure 11 [32].

In this chapter, the experiment setup of semiconductor lasers and signal generators in order 

to satisfy chaos modulation and study the resonance phenomena is shown in Figure 12. This 

experimental setup consists of a fiber-coupled semiconductor laser source (HP/Agilent model 
8150 A optical signal source) which is connected with a signal generator (Agilent N9310A 
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Figure 11. (a) Absorption of a semiconductor as a function of wavelength with and without an external an applied 
electric field. (b) Typical loss versus applied voltage curves for an electro-absorption modulator [32].
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LS 

PD DSO 

P�

D�

50:50 

FG 

C

Figure 12. Experimental setup of chaos modulation [LS: semiconductor laser 850 nm, FG: function generator, DC 50:50: 
directional coupler 2 by 2 multi-mode optical fiber, C: adaptor FC: FC connector].
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RF signal generator 9–3 GHz); the output power of the laser source is connected by a DC 
multimode fiber optics 2 by 2. Then, the two branch outputs are connected together by an FC 
adaptor to make a loop mirror, while the reflected light from coupler is split in two ways, one 

Figure 13. Experiment of chaos modulation 10 MHz (a) time series (b) FFT.
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directed towards the cavity of semiconductor laser as feedback and the other detected by a 

fast InGaAs photodetector (rise/fall time < 1 ns, bandwidth 1.2 GHz, and the spectral response 
range is 800–1700 nm). Then the detected signal is amplified by an oscilloscope (GOS −652G 

Figure 14. Experiment of chaos modulation 500 MHz (a) time series (b) FFT.
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(20 MHz)); after that the output signal is observed by a four-channel oscilloscope DSO model 
GWinstek GDS-3504 (500 MHz −4GS/s) which is used to analyze the time series with the 
possibility of direct fast Fourier transformation. Then the results are analyzed by a personal 
computer with an origin program.

Figure 15. Experiment of chaos modulation 259 MHz (a) time series (b) FFT.
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The intrinsic dynamic resonance in the photon-carrier interaction determines the modulation 

response of semiconductor lasers. To investigate the resonance phenomena for satisfying the 

encryption of secure optical communication, a frequency of 1–500 MHz is applied. We see that 

the external frequency in the pumping current is able to enhance the regularity of the drop-out 

Figure 16. Experiment of chaos modulation 200 MHz (a) time series (b) FFT.
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Figure 17. Distribution of change of applied power(dBm) as a function of applied frequency (MHz).

Figure 18. Bifurcation diagram of the laser intensity as a function of the external modulation frequency.
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time series emitted by the laser. Frequency in this experimental setup can also enhance the 
response of the laser to an external periodic drive as shown in Figures 13–16 which represent 

the chaos modulation. Coherence resonance is a manner in the chaotic dynamic, that is, regu-

larity of the time between power dropouts for a given value of the feedback strength [33]. This 

phenomenon occurs by applying an external noise signal to the chaotic system [34], while the 

laser with optical feedback may display chaotic dynamics with fast pulses at the time scale of 

the time delay and much slower power drops [33]. In our experiment the coherence resonance 

phenomena appear when applied different frequencies. Figures 13–16a show the time series 

as a sinusoidal wave for different frequencies applied, the amplitude applied from the signal 
generator to modulate frequency is between −10 and 20 dBm, and the current density of the 
chaos signal is fixed at 595 μW/volt. The LFF was investigated for high-frequency injection-
current modulation in a semiconductor laser with optical feedback. This result appears in 

Figure 16a at a frequency applied at 200 MHz; then, they observed resonant oscillation of the 

laser output power that was synchronized with the modulation, which is common in semi-

conductor lasers with optical feedback. However, LFF appeared for the detained modulation 
frequency from an external cavity mode. This result agrees with [16]. The power spectrum 

of different frequencies is analyzed, observing a sharp peak, low spiking peak, and hidden 
frequency peak. A sharp frequency peak in the modulation period for certain frequencies [(1–
138), 140, (247–258), 260, (266–270), (272–278), 340, (344–346), 370 & 371, and (378–500 MHz)] 
corresponded to the amplitudes ( − 10, − 6.5, − 3.6, 1.7, 7.6, 10, 13, 15, and 20 dBm), while the low 
spiking frequencies appear at 144, 259, 271, 280, 300–304, 338, 339, 341–343, 347 & 348, 368 & 
369, and 372 to 377 MHz corresponding to amplitude 20 dBm, as shown in Figure 15b. Then 

Figure 19. The distribution of the bifurcation diagram.
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the area of hidden frequencies is in 139, 141–143, 145–239, 261–265, 279, 281–299, 305–337, and 

349–367 MHz, which corresponds to amplitude 20 dBm, as shown in Figure 16b. Figure 17 

shows the changes in applied power with increased frequency. In this figure, one notices the 
increase in the applied power from the signal generator (−10 to 20 dBm) with an increase in 
the frequency modulation. Figure 18 shows the bifurcation diagram of the laser intensity as 

a function of the external modulation frequency, in accordance with [35]. In this figure, one 
observed that the dynamic is chaotic behavior when applied to different frequencies. Figure 19 

shows the distribution of the bifurcation diagram. Figure 19 shows different regions—insta-

ble regions (0– MHz and from 172 to 253 MHz) and then the stable regions (85–171 MHz and 
255–500 MHz). These regions are important in satisfying an encryption message in the inves-

tigations of secure communication.

5. Theory of semiconductor lasers with optical feedback

A laser is described theoretically by three variables: the electric field in the laser, the polar-

ization of the laser medium, and the population inversion to induce the laser oscillation 

[25]. Theoretically, the semiconductor lasers’ static characteristics with optical feedback 
can be investigated by the relations among the reflectivity of internal cavity and external 
reflector, the gain in the medium, and other static laser parameters. However, the dynamic 
characteristics must be described with time-dependent equations of the systems. A laser 

is essentially a chaotic system; however, every laser does not show chaotic oscillations. 

According to the scales of the decay rates in the differential equations, lasers are classi-
fied into three categories. When we need all of three rate equations to describe a laser, the 
laser is a chaotic system and it is called a class C laser. Actually, infrared oscillating gas 

lasers like NH3 and Ne-Xe lasers exhibit chaotic oscillations in their output powers [25]. 

The second one is a class B laser, in which the time constant of the polarization is very 
fast and the polarization equation is adiabatically eliminated. Then, the laser is described 

by the two equations of field and population inversion, and it is a stable laser if there is 
no external perturbation. The third one is a class A laser, whose field equation is enough 
to describe the system, and it is the most stable class of lasers. The polarization term is 

adiabatically eliminated for class B semiconductor laser; this effect is replaced by a linear 
relation between polarization and the field. Semiconductor lasers population inversion 
is replaced by density carriers N produced by a recombination of the electron hole. The 

absolute square of the field amplitude (which is equivalent to the photon number) and the 
density carriers are frequently used as the variant of an equation rate for semiconductor 

lasers [25]. The dynamics of intensity fluctuation in a single-mode semiconductor laser is 
modeled by the Lang-Kobayashi model, which are historical milestone papers for semi-
conductor lasers’ chaotic dynamics [36], which include the effect of optical feedback time 
delay [37]. The Lang-Kobayashi equations for the complex amplitude electric field E (t) and 
the carrier number N (t) are written as follows [38]:

    
dE (t) 

 ____ 
dt

   =   1 __ 
2
   (1 + ia)  [G (t)  − γ] E (t)  + KE (t −  τ  

f
  )  exp  (−  𝜔𝜏  

f
  )  +  √ 

________
 2𝛽N (t) X    (3)
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dN (t) 

 _____ 
dt

   =   i __ q   −  γ  
d
   N (t)  − G (t)    |E (t) |    2   (4)

where G(t) is the optical gain defined by this formula:

  G (t)  =   
g [N (t)  −  N  

o
  ] 
 _________ 

1 + s   |E (t) |    2 
    (5)

ί: is the bias current and |E(t)|2: the laser intensity or the number of photons inside the cav-

ity which is calculated from the square of the electric-field amplitude, that is, I = |E(t)|2. α 
is a line width enhancement factor, N

o
 is a transparency carrier number, g is a differential 

gain coefficient, s is again saturation coefficient, γ is a photon decay rate, γ
d
 is a carrier decay 

rate, β is a spontaneous emission rate, τ
f
 is a delay time, and K is the feedback strength. 

The spontaneous emission processes are considered by introducing independent Gaussian 
noise sources X with zero mean and unity variance into the rate equation. These equations 
represent the nonlinear dynamical system which produced chaos in the semiconductor laser 

with OFB.

6. Conclusions

The generated chaos in the semiconductor laser with optical feedback could be controlled by 

the feedback strength parameter. The chaotic instability was experimentally investigated with 

feedback attenuation as a control parameter and the resulting dynamics was monostability. 
Then, we indicated that the observed chaotic dynamic is a good candidate to hide informa-

tion in order to investigate the resonance phenomena, which is an important part of chaos to 

encrypt data in optical communication, where data disappears when modulated in a chaos 

carrier. Therefore, the best regions for hiding frequency are 145–239 MHz, 281–299 MHz, 305–

337 MHz, and 349–367 MHz. Finally, LFF appears with high frequency from 25 to 500 MHz.
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