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1. Introduction   

As safety and efficiency issues of transportation - hand-in-hand with the intelligent vehicle 

concept – have gathered ground in the last few years in the automotive research community 

and have penetrated into the automotive industry, vision-based applications have become 

increasingly important in driver assistance systems (Kastrinaki et al., 2003; Bertozzi et al., 

2002). The primary targets of the safety and efficiency improvements are intelligent cruise 

control (e.g. vehicle following), lane keeping and lane departure warning systems, 

assistance in lane changing, avoidance of collision against vehicles, obstacles and 

pedestrians, vision enhancement and traffic sign recognition and signalling. Our focus of 

interest here is stereo machine vision used in the context of lane departure warning and lane 

keeping assistance. The primary purposes of our vision system are to determine the vehicle's 

position and orientation within the current lane, and the shape of the visible portion of the 

actual lane on structured roads and highways. That is, we face a somewhat simplified 

simultaneous localization and mapping (SLAM) problem here, with the assumption of a 

structured man-built environment and a limited mapping requirement. The localization is 

achieved through the 3D reconstruction of the lane's geometry from the acquired images. 
 

  

Fig. 1. Images acquired with our wide-baseline stereo vision system in a typical highway 

scene. The overlaid epipolar lines in the left image correspond to the marked points in the 

right image. O
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Source: Stereo Vision, Book edited by: Dr. Asim Bhatti,  
ISBN 978-953-7619-22-0, pp. 372, November 2008, I-Tech, Vienna, Austria
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In monocular lane detection systems, reconstruction usually relies on a number of 
assumptions concerning the scene geometry and the vehicle motion, such as flat road and 
constant pitch and roll angles, which are not always valid (as also stated in Kastrinaki et al., 
2003; Marita et al., 2006). Stereo vision provides an effective and reliable means to extract 
correct range information without the need of relying on doubtful assumptions (Hartley & 
Zisserman, 2006). Nevertheless, there are some stereo systems that still make use of such 
assumptions while providing a higher level of robustness compared to monocular systems. 
For example, certain systems use inverse perspective mapping (IPM) to remap both the left 
and the right images to the road's plane, i.e. to  generate a "bird's view", where lane 
detection is performed while stereo disparity can be exploited in vehicle detection by 
analysing the difference between the remapped images (Bertozzi & Broggi, 1998). Another 

solution is to use a stereo pair in standard configuration (parallel optical axes and image 
coordinate axes) and the Helmholtz shear equation to relate the precomputed sparse stereo 
disparity to the distances measured in the road's plane and also to classify the detected 3D 
points to "near-road" and "off-road" points (Weber et al., 1995). Some algorithms perform a 
sparse stereo reconstruction of the 3D scene through the classical stereo processing steps of 
feature detection, correlation-based matching to solve the correspondence problem and 
triangulation (Nedevschi et al., 2005). Stereo matching is performed by making use of the 
constraints arising from the epipolar geometry, that is, the search regions are simplifed to 
epipolar lines (Hartley & Zisserman, 2006), as shown in Figure 1. In the standard 
arrangement, the correspondence problem simplifies to a search along corresponding 
scanlines, thus, such a setup is more suitable for real-time applications (Weber et al., 1995). 
Even if the cameras are in general configuration it is possible to virtually rotate the cameras 

and rectify the images with a suitable homography (Hartley & Zisserman, 2006). However, 
this transformation is time-consuming and when sub-pixel accuracy can be achieved in 
feature extraction, image warping can jeopardize the overall accuracy (Nedevschi et al., 
2006). This consideration is increasingly valid for lane detection systems where the scene's 
depth can easily reach 60 to 100 meters. 

Even if up-to-date tracking methods (involving dynamical scene and ego-motion models) 

are used to make the reconstruction more robust, the precision and even the feasibility of the 

reconstruction using any of the techniques mentioned above is seriously affected by the 

precision of the camera parameters that are typically determined prelimarily with camera 

calibration. IPM techiques (and also the one based on the Helmholtz shear equation) may 

fail when the relative orientations of cameras with respect to the road's plane are not 

precisely determined (Weber et al., 1995; Broggi et al., 2001). Since epipolar lines and the 

rays at the triangulation step are highly dependent on the camera parameters, both stereo 

matching and 3D reconstruction may prove unsatisfactory (Marita et al., 2006). These facts 

highlight the importance of an accurate calibration and motivate a thorough sensitivity 

analysis in the design of such safety-critical systems. 

In this chapter, we investigate the effects of parameter uncertainties on the quality of 3D 

geometrical reconstruction. We propose an off-line and far-range camera calibration method 

for stereo vision systems in a general confguration. Due to the high depth range, we restrict 

our analysis to perspective cameras. The cameras are calibrated individually by using fairly 

common planar patterns, and camera poses with respect to the road are computed from a 

specifc quasi-planar marker arrangement. Since a precise far-range arrangement might be 

difficult and costly to set up, we put up with an inexpensive and less precise arrangement, 

and formulate the maximum likelihood estimate of the camera parameters for it. We 

demonstrate how our method overperforms the widely used reprojection error 
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minimization method when significant errors are present in the marker arrangement. By 

applying the presented methods to real images, we give an estimate on the precision of 3D 

lane boundary reconstruction. 

The chapter is organized as follows. We outline our preliminary lane detection algorithm for 

stereovision in Section 2. Next, a brief overview is given of existing calibration methods and 

their applicability in the field in Section 3. Then, in Section 4, we present an intrinsic camera 

calibration and a single-view pose estimation method. The proposed stereo calibration 

method and the overall sensitivity analysis, including epipolar line uncertainty are derived 

in Section 5. In Section 6, evaluation of the methods based on real data is presented. Finally, 

Section 7 concludes the chapter. 

2. The lane detection algorithm 

In the current section, we suppose that our wide-baseline system with two forward-looking 

grayscale cameras fixed to the side mirrors of a host vehicle (we refer to Figure 1) is already 

calibrated and the camera poses are known. Then we return to the problem of calibration in 

details in Section 3. The outline of the algorithm is depicted in Figure 2. 
 

 

Fig. 2. Outline of a lane keeping assistant system based on the lane boundary detection and 

a stereo lane reconstruction algorithm. The algorithm highly depends on the camera 

parameters. ROI stands for Regions-of-Interest. 

In order to minimize the resource requirements of the algorithm, we avoid using dense 

stereo reconstruction and image rectification. In sparse methods, interesting features are 

defined and extracted from the images by a feature detector.  

2.1 Lane marking extraction 
The presented algorithm currently relies on the presence of lane markings. We have 

developed a lane marking detector that is capable of extracting perspectively distorted 

www.intechopen.com



 Stereo Vision 

 

4 

bright stripes of approximately known metrical width over a darker background. The lane 

marking extraction is performed with 1-dimensional templates of precomputed width per 

scanline within precomputed regions-of-interest (ROI). The ROI computation requires the a 

priori knowledge of the camera parameters as the ROI boxes in the images are determined 

from rectangular regions specified metrically in the ground plane (which does not exactly 

match the road’s surface). In the current study, we focus on the pure lane extraction 

algorithm working on independent successive frames without considering temporal 

relations and only using the known camera parameters as a priori information. Tracking of 

the lane boundary curves over time (e.g. with a Kalman filter) can be added easily to this 

framework. It gives more robustness and stability to the estimated parameters. Solutions for 

an elaborate dynamical modeling of the problem exist in the literature (Eidehall & 

Gustafsson, 2004; Bertozzi et al., 2002). Thus, the presented algorithm can be considered as 

an initialization stage for lane (and object) tracking (see Figure 2).  
 

 

 

Fig. 3. Intermediate results of automatic lane marking extraction for the image of the left 

camera. The ROI and expected stripe width computation (top-left), ROI boxes over the input 

image (top-right), segmentation results (bottom-left), patch analysis results (bottom-right). 

The first part of the algorithm is performed independently and simultaneously in the two 

images. Intermediate results are shown in Figure 3. Lane marking segmentation consists of a 

lane marking enhancement step and a binarization step. Binarization uses automatic 

threshold computation. This is followed by a patch analysis stage where several properties 

of the identified patches are determined, for example, patch area and eccentricity of the 

ellipse with equivalent second central moments (the ellipse is only a means to measure 

elongatedness of the patches). These properties are then used to filter the detected patches: 

small and more or less circular patches are removed. Next, the ridge of each patch is 

determined along scanlines. After this step, the identified lane markings are represented as 
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chains of points (primitives). If two primitives overlap in the horizontal direction, the 

external one is removed in order to avoid ambiguities at feature matching and to avoid the 

detection of the boundary of a potential exit lane (slip road)  next to the current lane. The 

points grouped into these chains are radially undistorted before proceeding. 

2.2 Lane reconstruction 
The second part of the algorithm uses stereo information. The primitives are matched by 

cycling through the points of each primitive belonging to either boundary of the lane in the 

left image and then by computing the intersection of the corresponding epipolar lines with 

the primitives belonging to the same boundary in the right image. Presently, we describe the 

primitives as polylines. An alternative solution is to fit low-order models (e.g. line or 

polynomial curve segments) to the ridge points for each lane marking, and compute the 

intersection of the epipolar lines with these models. The matched points identifying lane 

boundary sections detected in both images are then triangulated into 3-space. The 

reconstructed 3D points belonging to the lane’s boundary are used to find the road’s surface. 

The road surface model used is a second-order polynomial in z , which is the longitudinal 

coordinate of the vehicle reference frame and linear in the lateral coordinate x . The x -axis 

of the vehicle reference frame is defined to point from the right to the left. As we use right-

handed reference frames, the remaining axis y  points upwards. The road surface model 

explicitely contains the vehicle’s roll angle ϕ  and pitch angle ϑ  measured with respect to 

the road, the vertical road curvature vc  and the vertical distance h  between the road’s 

surface and the origin of the vehicle’s reference frame (the height coordinate): 

 2v z
2

c
zxh)z,x(y +ϑ+ϕ+= . (1) 

This model is currently fitted to the triangulated 3D boundary-points in the least-squares 

(LS) sense.  An alternative method would be to use a robust fitting method, e.g. RANSAC 

(Fischler & Bolles, 1981). 

Mono systems usually rely on the assumption 0)z,x(y = , i.e. the vehicle motion is 

simplified to a planar motion, the road’s surface is modeled as a constant plane in the 

vehicle’s reference frame or equivalently, vehicle pitch and roll angle, as well as, the vertical 

curvature of the road is neglected. This may cause instabilities in the next step, when a lane 

model is fitted to the back-projected feature points as depicted in Figure 4. 

 

 

Fig. 4. An example of divergence present at lane model fitting when the left and right 

cameras are not interpreted as a stereo pair and instead the 0)z,x(y = assumption is used. 

www.intechopen.com



 Stereo Vision 

 

6 

In Figure 4, the point chains – shown as connected squares - represent the identified and 

reprojected lane markings while the continous double-curves represent the fitted 

polynomial lane model. The left and right-side chains converge due to an unmodeled 

pitching. It should be noted that some mono systems are able to estimate vehicle pitching by 

optimizing the pitch angle until the reprojected primitives become parallel. In Figure 4, at 

the left-side boundary, an outlier segment is present that is resulted from an imperfect 

segmentation. 

In our stereo approach, as soon as the road’s surface is found, all the detected points are 

projected onto it, including those that were ruled out at stereo matching. Then a double-

polynomial lane boundary model is fitted to the 3D data as shown in Figure 5. Some of the 

roads are designed using constantly varying curvature (e.g. in Europe) while others include 

straight and circular segments (e.g. in the United States). Corresponding to a constantly 

varying curvature, clothoid lane models may be used (Nedevschi et al., 2005, Kastrinaki et 

al., 2003) (European case), but we experienced that the LS-fitting is relatively unstable when 

the polynomial order is higher than two. Again, a robust model fitting method such as the 

RANSAC could be used to account for some outliers and make the detection more stable. 

Figure 6 shows some outputs of the discussed lane geometry reconstruction algorithm. 

 

 

Fig. 5. Example of polynomial lane model fitting that followed the road surface detection 

based on stereo data. The image shown in Figure 3 and its right pair were used as input. 

There is a slight vehicle pitching (note the different scales on the axes) as shown in the side 

view of the road surface (bottom) but the lane profile (top) shows that the reprojected 

primitives are parallel, just like the true lane boundaries. 

2.3 On reconstruction errors 
Reconstruction errors can have multiple sources. An imperfect segmentation causing 

outliers can disturb stereo feature matching, road surface model fitting and horizontal lane 

profile model fitting, the effect on the latter two being more severe. In most of the cases, the 

effects caused by outliers can be moderated or even eliminated by using robust algorithms 

at the model fitting stage. Ambiguities at feature matching are rare in the discussed lane 

boundary detection algorithm since horizontally overlapping boundary segments are 

removed as a prevention (the epipolar lines are almost horizontal). However, feature 

matching becomes a difficult problem when the lane detection algorithm is extended by 
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vehicle, obstacle or guard rail detection. In such cases, area-based matching techinques are 

popular and ambiguities may occur at repeating patterns. Also, imprecisions in feature 

matching cause errors in 3D reconstruction, especially if the 3D point is far from the vehicle. 

As mentioned earlier, the ROI computation, feature matching and 3D reconstruction require 

the knowledge of the camera parameters (see Figure 2) that are determined by calibration. 

Any imprecision in the camera parameters may jeopardize the whole procedure. In such a 

case, the computed epipolar lines do not exactly pass through the corresponding points at 

point feature matching. Therefore, in case of area-based matching, the correlation threshold 

may not be reached along an epipolar line and the point pair to match may be rejected. 

Globally, this results a decreased number of reconstructed feature points per snapshot. This 

may cause, e.g. missed obstacles if obstacles are searched based on a vicinity criterion of the 

reconstructed points. In the meantime, the mentioned threshold should be kept as high as 

possible to avoid false matches. Even if matches are accepted, their localization may be 

imprecise which, together with the imprecisely known camera parameters can cause 

signficant errors in the reconstruction by triangulation. Considering further processing 

stages, high reconstruction errors can affect the model fitting stage seriously (similarily to 

the case shown in Figure 4). Therefore, extra care is required at camera calibration. 
 

  

  

Fig. 6. Some results of the discussed stereo reconstruction algorithm. The reconstructed 3D 

lane geometry is reprojected to the source images. 
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3. Camera calibration preliminaries 

There are several common ways to calibrate a stereo rig. For example, it is possible to  

compute the fundamental matrix F  from point correspondences (e.g. by using the well 

known normalized 8-point algorithm or the 7-point algorithm) without any knowledge of 

the scene or motion. It has been shown that the reconstruction based on this information 

only is possible up to a projective transformation (Hartley & Zisserman, 2006). The camera 

matrices determine F  up to scale, but not vice-versa. If additional knowledge either of the 

motion or of the scene’s geometry (e.g. parallel scene lines or planes) an affine or a metric 

reconstruction may be reached. This is still not enough to achieve a "ground truth" (true 

Euclidean) lane reconstruction. The reconstruction algorithm should not rely on such scene 

constraints as these might not always be available in a road scene. We can state that exact 

information on the vehicle's reference frame is required in such applications. F  does not 

provide information on the 3D Euclidean reference frame but camera models do (Hartley & 

Zisserman, 2006). Consequently, we need to determine the two camera models first, only 

then can we proceed with computing F  and the epipolar lines for stereo matching. In 

general form, the model of a single camera relating a 3D world point 3
R∈W  (given in 

metrical coordinates) to its 2D image denoted by 2R∈I  is as follows: 

 
in ex

Φ ( , , )=I p p W , (2) 

where 
in

p is a vector formed of the intrinsic camera parameters and 
ex

p  is the 6-vector of the 

extrinsic camera parameters, the latter representing the 6-Degrees-of-Freedom (DoF) 

Euclidean transformation (i.e., a 3D rotation and a 3D translation) between camera and 

world reference frame. The mapping Φ  may model certain non-linear effects (e.g., radial 

and tangential lens distortions), as well. These distortions can be - in certain cases - 

neglected, or can be removed from Φ  by an adequate non-linear image warping step. The 

remaining linΦ , representing the pinhole camera model, is linear in a homogeneous 

representation: 

 
3x3

[ | ]= −I KR E t W# #      

0

0

u

0 v

0 0 1

α γ⎡ ⎤
⎢ ⎥= β⎢ ⎥
⎢ ⎥⎣ ⎦

K  (3) 

where 
3x3

E  is the identity matrix, 2
P∈#I  and 3P∈#W  are homogeneous representations of the 

points and K  is the camera calibration matrix incorporating the relative focal lengths α  

and β , the skew γ  and the principal point T

0 0
(u ,v ) . These are all intrinsic parameters 

contained in 
in

p . R  is the 3-DoF rotation matrix, and t  is the camera position. R  and t  

correspond to 
ex

p . 

Calibration of a monocular camera consists of determining the camera parameters 
in

p  and 

ex
p  from properly measured i i

UW I  point correspondences. We note here that for the 

intrinsic parameters, novel methods tend to use planar calibration patterns instead of 3D 

calibration objects (Malm & Heyden, 2003; Zhang, 2000; Sturm & Maybank 1999). A single 

planar arrangement does not provide enough information for estimating all the intrinsic 

paremeters, however, a solution for 0γ =  and known aspect ratio /β α  exists (Tsai, 1987). 

Algorithms for calibrating from planar patterns are developed for the stereo case, as well 
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(Malm & Heyden, 2001), but those determine the relative pose between the cameras while 

the absolute poses are required in our application. 

As to lane-related applications, Bellino et al. have used a single planar pattern and the 

aforementioned method for calibrating a monocular system used in heavy vehicles (Bellino 

et al, 2005). The authors used a fixed principal point and did not involve γ . They have 

investigated the reconstruction errors of two target points on the ground plane vs. the tilt 

angle of a calibration plane given with respect to the vertical position. The target points 

were placed up to 11.5 m from the camera and their positions were measured with a laser-

based meter for validation. They found that the inclination of the plane had considerable 

effect on the quality of the result. 

A more general intrinsic parameter estimation is given in (Hartley & Zisserman, 2006) for 

multiple planes with unknown orientations. Homographies (i.e., perspective 2D-to-2D 

mappings) 
j

H  between the planes and the image are estimated first. Each 
j

H  gives rise to 

two constraints on the image of the absolute conic (IAC) ω . The IAC is formulated as 
T 1( )−=ω KK . The constraints are linear in the elements of ω , namely T

1 2
0=h ωh  and 

T T

1 1 2 2
=h ωh h ωh , where i

h  is the i-th column of 
j

H . Since ω  is the homogeneous 

representation of a conic, it has 5 DoF, so 3 planes suffice to estimate ω . K  can be 

computed from 1−ω  by Cholesky-factorization (Hartley & Zisserman, 2006), or by using 

direct non-linear formulas (Zhang, 2000). In the literature, some comparisons can be found 

between the method of Tsai and the method of Zhang (Sun & Cooperstock, 2005; Zollner & 

Sablatnig, 2004). It turns out, that Zhang's model and his method overperforms the others 

with respect to residual errors and convergence. The price payed is the relatively high 

number of iterations, which is not a serious problem in case of off-line applications. 

Having determined the intrinsic camera parameters, the rotation matrix R and the 

translation vector t need to be recovered. This is called pose estimation and a single general 

planar arrangement with at least 4 points suffices for a unique solution (Lepetit & Fua, 

2005). A rough pose estimation can be performed by first estimating the homography 

between the world plane and the image and then by re-using the orthogonality constraints 

with known  camera calibration matrix K (Malm & Heyden, 2003; Lepetit & Fua, 2005). 

The planar pattern used in intrinsic calibration is unsuitable for far-range systems, because it 

minimizes errors for close-range (as also stated in Marita et al., 2006; Bellino et al., 2005). For 

this purpose, Broggi et al. used a medium-range grid painted on the ground (Broggi et al., 

2005) while Marita et al. used vertical X-shaped markers placed on the ground in front of the 

vehicle in a distance up to 45 m (Marita et al., 2006). In the latter work, the intrinsic and the 

extrinsic parameters of each camera are computed separately. Extrinsic parameters are 

computed by minimizing the reprojection error in the image for the available control points. 

A constrainted Gauss-Newton minimization is used with the constraints T =R R Ι . The 

calibration is validated by comparing the 3D reconstruction errors of the control points to 

the actual 3D measurements. However, there is no information available about the accuracy 

of the control point setup. Alternatively, line features can also be used for pose estimation 

(Kumar & Hanson, 1994).  

With the road/ lane following application in mind, and making use of the calibration 
methods used in computer vision, we present here a calibration scheme and method that is 

www.intechopen.com



 Stereo Vision 

 

10 

optimal under some reasonable assumptions. It should be emphasized that the proposed 
method takes into consideration the errors present in the 3D setup. 

4. Calibration of a single camera 

4.1 Camera model 
We use a pinhole camera - extended with a fifth-order radial distortion model and a tunable 

distortion centre (Hartley & Zisserman, 2006) - as our camera model: 

 
P x xD 2 4

1 2

P y yD

x c cx
(1 d r d r )

y c cy

−⎛ ⎞ ⎛ ⎞⎛ ⎞
= = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

D , (4) 

where T

x y
(c ,c )  is the distortion center, 

1
d  and 

2
d  are the distortion coefficients, while 

T

P P
(x , y )  is the point perspectively projected to the normalized image plane and D  is the 

corresponding distorted point on this plane. Thus, the distortion model is applied between 
the projection step and the rasterization step, the latter being modeled with the homogenous 

transformation represented by the camera calibration matrix K , like in equation (3). Lens 
distortion models involving tangential distortion are also available in the literature (Heikkila 
& Silvén, 1997). An explicit tangential distortion model is not required in our case, as the 
distortion center, with its two additional parameters, models imperfect alignment of the 

lenses and of the sensor. Therefore, we have, in total, the nine intrinsic parameters  
T

in 0 0 1 2 x y
( , , ,u ,v ,d ,d ,c ,c )= α β γp  for each camera. 

4.2 Intrinsic calibration 
Intrinsic calibration is performed separately for the two cameras. We used a hand-held 

checkerboard pattern shown in m  different orientations to the camera. Alternatively, a pattern 

with circular patches could have been used (Heikkila & Silvén, 1997, Zollner & Sablatnig, 

2004). Corners in the checkerboard pattern can be localized with sub-pixel accuracy with our 

corner detector based on a robust saddle-point search in small regions around the corners. 

For an initial guess of in
p , we used the method of Zhang, however we extended it with 

some optional constraints: 
12 21

ω = ω (for 0γ = ), 2 2

11 22

−ω = ω β α  (for a fixed aspect ratio, e.g. 

square pixels), and finally 
13 0 11

uω = − ω  and 
23 0 22

vω = − ω  (for a  fixed principal point). The 

problem is usually overdetermined because of the great number of the control points 
available. Having carried out a homography estimation for each image, the solution for ω  is 

obtained with a simple SVD-based method that gives a least-squares solution while exactly 

fulfilling the constraints. K  is determined using the formulae arising from 1 T− =ω KK . 

Next, for each of the m  views, the 6 extrinsic parameters *

ex, j
p  ( j 1,2...m= ) are determined, 

that is, the planar pose estimation problem is solved for each view. For this, we used the 

orthogonality constraints satisfied by 1

j

−K H , where 
j

H  denote the homography matrix 

estimated for the j-th view. Since measurements are noisy and orthogonality is not exactly 
satisfied in practice, some tolerances were used in the orthogonality test. In the 

representation of the rotation, we used the Rodrigues-vectors 
j j j
= ϕr a , where 

j
a  represents 

the rotation axis and 
j j

|| ||ϕ = r  is the rotation angle. This has several advantages over the 

rotation matrix-based representation (Lepetit & Fua, 2005). 
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As the set of parameters 9

in
ˆ R∈p  and * *T *T T 6m

ex ex,1 ex,m
ˆ ˆ ˆ( ,..., ) R= ∈p p p  determined earlier minimize 

an algebraic error, a refinement of the parameters is preferable by minimizing a 
geometrically meaningful error. A reasonable choice is to minimize the sum of the 
reprojection errors in all the m  images for all the n  feature points: 

 * 2 * * * * 2 * * 2

in ex ij ij ij ij 2 2

i, j i, j

ˆ ˆ ˆf ( , ) d ( , ) || || || ||= = − = −∑ ∑p p I I I I I I , (5) 

where *

ij
I  is the measured location of the i-th corner in the j-th image and *

ij
Î  is the 

reprojection of the world point *

ij
W  using the parametrized camera model (2). *I  is the 

measurement vector containing all the *

ij
I 's and *Î  contains all the *

ij
Î 's. d  denotes 

Euclidean distance in the pixel reference frame. The cost function (5) can be minimized 
using a gradient-based iterative method. It can be shown, that (5) is a Maximum Likelihood 
(ML) cost function, provided the checkerboard pattern is precise, significant errors are due 
to the corner localization, and the errors have uniform Gaussian distribution all over the 
images. These assumptions make it possible to estimate the deviation σ  of the detection 

noise in the image simply as the standard deviation of the residual errors * *

ij ij
ˆ( )−I I  evaluated 

at the optimum. In order to determine the quality of the calibration, the estimated noise 

deviation σ̂  is then back-propagated to the camera parameters through a linearized variant 

of the camera model (2). 

4.3 Optimal pose estimation per view 
The relative orientations of the views with respect to the imaged checkerboards 

(incorporated in *

ex
p̂ ) are of no interest for us from the point of view of our application. 

Instead, for both cameras, we need an estimate of the pose 
ex

p̂  with respect to the vehicle's 

reference frame. To determine the poses, the vehicle with the mounted cameras is stopped 
over an open flat area and marker plates - with an X-shape on each - are placed in front of 
the vehicle (see Figure 7). Similar arrangements has already been used (Marita et al., 2006). 
 

  

Fig. 7. An image pair of the calibration scene with overlayed marker detection and 

calibration results. The dashed boxes are the search regions for template matching, while the 

solid boxes correspond to the detected markers. The solid lines represent the vanishing lines 

of the world reference planes. 
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The feature points are the centres-of-gravity (CoG's) of the individual X-shapes. The 3D 

marker locations 
i

W  were measured by a laser-based distance meter from two reference 

points. The locations of the reference points are measured with respect to the vehicle. 
i
I 's 

are extracted from the images using normalized cross-correlation with an ideal X-shaped 

template. We derive the pose estimation formula for one camera first and based on that we 

derive it for the stereo case. The initialization of the algorithm is done with the pose 

estimation method based on the orthogonality criteria discussed in Section 4.2. Therefore, an 

initial guess is available for 
ex

p , and this is to be fine-tuned by using a geometrically 

meaningful expression. The measurement of the 3D point locations and the detection of 

their image are two independent measurements modeled with two independent Gaussian 

distributions. If we have N  markers and we introduce the vector of all the measured 3D 

coordinates T T T

1 N
: ( ,..., )=W W W , and the vector of all the measured pixel coordinates 

T T T

1 N
: ( ,..., )=I I I  , then the likelihood functions for W  and I  are: 

 

( )
2

3N W

W

1 1
L( | ) exp || ||

22 det( )

⎧ ⎫= − −⎨ ⎬
⎩ ⎭π

C
W W W W

C

, (6) 

 

( )
2

2N I

I

1 1
L( | ) exp || ||

22 det( )

⎧ ⎫= − −⎨ ⎬
⎩ ⎭π

C
I I I I

C

. (7) 

Here, 2 T 1|| || ( ) ( )−− = − −
C

a b a b C a b  denotes the squared Mahalanobis distance between the 

vectors a  and b  with respect to the covariance matrix C . 
I

C  and 
W

C  denote the 

covariance matrices of the measurement vectors I  and W , respectively. The likelihood 

function of all the measurements is the product of L( | )I I  and L( | )W W  because of the 

independence. Therefore, the Maximum Likelihood Estimate (MLE) for the expected 2D and 

3D locations I  and W  of the feature points can be found by minimizing the function 

 2 2

I W
g( , ) || || || ||= − + −

C C
I W I I W W . (8) 

I  and W  are related by the camera model (2), so 
in ex

Φ ( , , )=I p p W . Both I
C  and W

C  are 

block-diagonal provided the measurement of the control points are independent from each 

other. The blocks in the diagonals are 
Ii

C  (the 2x2 covariance matrices of each markers' 

localization errors in the image) and 
Wi

C  (the 3x3 covariance matrices of the markers' 

localization errors in 3-space), respectively. Thus, (8) can be rewritten as 

 { }
N

2 2

ex i in ex i i iIi Wi

i 1

g( , ) || ( , , ) || || ||

=

= −Φ + −∑ C C
p W I p p W W W . (9) 

Several important conclusions can be drawn from equation (9). The first is that the 

covariance matrices of the measurements are involved, so this ML cost function can not be 

used when no uncertainty information is available of the measurements. In such cases the 

cost function (5) could be used for pose estimation, as well. The second one is that the 
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expected 3D locations represented by 
i

W  are involved, therefore not only the searched 6 

extrinsic parameters in 
ex

p  are to be optimized, but the marker locations of the 3D 

calibration arrangement, as well. This adds extra 3N dimensions to the parameter space. 

Optionally, the 3N extra dimensions can be eliminated by approximating 
i

W  with the 

closest point to the measured 3D point 
i

W  on the ray through the radially corrected image 

point 
i
I . 

5. Optimal stereo calibration and sensitivity analysis 

5.1 Optimal two-view calibration and pose estimation 
Up to this point we considered the two cameras independently. Clearly, it is possible to 

determine the extrinsic parameters of the left (
exL

p ) and right cameras (
exR

p ) independently 

(Marita et al., 2006). However, this model does not take into consideration that the 3D 

control point setup is common for the two views. Also, equation (9) requires the knowledge 

of the exact intrinsic parameters 
in

p , however, only its estimation 
in

p̂  is available from 

intrinsic calibration. These problems can be solved by formulating the MLE for the overall 

problem that involves all the measurements including those available from checkerboard-

based calibration and for both cameras. As a result, the cost function to minimize becomes 

slightly more complex: 

 

* * * * * 2 * * * 2

inL exL inR exR exL exR L L inL exL 2 R R inR exR 22 2

L R

2 2 2

L L inL exL R R inR exRW IL IR

1 1
h( , , , , , , ) || ( , ) || || ( , ) ||

|| || || ( , , ) || || ( , , ) ||

= − + − +
σ σ

+ − + − + −
C C C

p p p p p p W I I p p I I p p

W W I I p p W I I p p W

, (10) 

where the first two terms come from the intrinsic calibration performed independently for 

the left and right camera (see the right side of equation (5)), the last two terms represent the 

localization errors in the images in the X-marker-based calibration and the third term 

represents the errors in the world point locations in the X-marker-based pose estimation. 

Each measurement influences the solution weighted with the inverse of its uncertainty. The 

outline of the proposed algorithm is as follows. 

1. Perform an intrinsic calibration independently for the two views by using planar 

patterns and by minimizing the cost function (5). Compute 
L

σ̂  and 
R

σ̂ . 

2. Set up a far-range planar arrangement of visible control points for stereo pose  

estimation (as suggested by Figure 7). Locate the markers and estimate the 

measurement covariances both for the images and for the 3D arrangement. 

3. Initialize the yet unknown extrinsic parameters 
exL

p  and 
exR

p  with respect to the road 

by solving the pose estimation problem based on the orthogonality criteria 

independently for the two views. Initialize W  with the measured 3D locations and 

minimize cost function (10). 

5.2 Sensitivity of the camera parameters 
Supposing that the optimal solution of (10) has been found (this can be checked with a 

residual analysis together with a linearity test of the cost function h ), the overall quality of 
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the calibration can be characterized by performing a sensitivity analysis. First of all, the cost 

function (10) can be approximated as 

 2 2

mm m
ˆh( ) || ( ) ( ) || || ( ) ( ) ||= − − − ≈ − − −

C C
q m m m m m m J q q , (11) 

where q  is the vector of all the parameters to optimize, m  is the vector of all the 

measurements * *

L R L R
, , ,I I I I  and W . 

m
C  is the block-diagonal covariance matrix of all these 

measurements. m̂  contains, on the one hand, the image points * *

L R L R
ˆ ˆ ˆ ˆ, , ,I I I I  reprojected 

using the camera model, on the other hand, the optimized world point coordinates Ŵ .  m  

represents the “ground thruth” values of the parameters that are always unknown and 
m

J  

is the analytically computed Jacobian matrix of the mapping ˆUq m  evaluated at the 

optimal parameter vector ˆ ≈q q . 

The measurement uncertainty incorporated in 
m

C  can be back-propagated to the 

parameters, as T 1 1

q m m m
( )− −=C J C J . Since we are primarily interested in the uncertainty of the 

intrinsic parameters 
inL

p  and 
inR

p  and of the poses 
exL

p  and 
exR

p , the corresponding two 

30x30 sub-matrix should be extracted from 
q

C . It is important that nothing prevents the 

parameters of the two cameras to cross-correlate. Therefore, at the uncertainty estimation of 
any computation involving the parameters of both cameras, the 30x30 covariance matrix has 
to be considered instead of the two 15x15 blocks corresponding to the two cameras, 
independently.  

5.3 Uncertainty of the epipolar lines 
In the feature matching stage of the lane detection algorithm, we compute the intersection of 

epipolar lines and 2D primitives (polylines or curves). It is well known that the fundamental 

matrix required for epipolar line computation can be derived from the camera parameters 

(Hartley & Zisserman, 2006). We use the formulation 

 T T 1

R R L L R L L
[ ( - )]− −

×=F K R R R t t K , (12) 

where the indices L and R refer to the left camera and right camera, respectively. [ ]×⋅  

denotes the 3x3 matrix of rank 2 corresponding to the cross product operator, so that 

=[ ]××a b a b . Then the epipolar line 
R
l  in the right image corresponding to a point 

L
I#  in the 

left image can be computed as 
R L
=l FI# , where both R

l  and  
L
I#  are homogeneous 3-vectors. 

The epipolar constraint T

R R
0=l I#  assures that the line 

R
l  passes through the point 

R
I# , which 

is the right image of the same world point, as shown in the left side of Figure 8. 

Uncertainty in the camera parameters propagates to the derived fundamental matrix and to 

the epipolar lines. If the vector of the involved camera parameters is denoted by p , then the 

formula (12) can be interpreted as a mapping p fU  where f  is a vector formed from the 

elements of F . If this mapping can be approximated by a linear mapping in the range of the 

noise, and Gaussian distributions are supposed just like in earlier derivations, then the 

forward propagation of covariance can be given as 

 T

f f p f
=C J C J , (13) 
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where 
p

C  is the covariance matrix of p , 
f

C  is a covariance matrix associated to F  and 
f

J  

is the Jacobian matrix of the mapping p fU  evaluated at the mean values ˆ ≈p p  and ˆ ≈f f  

(hat over the letter denotes estimated values and bar denotes the unknown ground thruth). 

f
J  is either available analytically as the partial derivatives of (12) with respect to the camera 

parameters or it can be approximated numerically. To avoid ambiguities, F is always 

normalized so that || || 1=F . 
 

 

Fig. 8. Epipolar geometry of cameras in general configuration (left). The 3D point 
i

W  given 

in the vehicle reference frame is "seen" as 
Li
I  and 

Ri
I  in the pixel reference frames. The 

nature of epipolar line uncertainty (right). 

Next, the uncertainty present in the fundamental matrix can be forward-propagated to the 

epipolar lines very similarily, by linearizing the mapping 
R R

/ || ||f l lU . It is known that the 

set of epipolar line samples corresponding to a given confidence level form a line conic that 

is bounded by a point conic envelope of 5 DoF (Hartley & Zisserman, 2006). This is 

illustrated in the right side of Figure 8. The point conic can be analytically derived if the 

covariance matrix lR
C  of the epipolar line R

l  is known. The envelope conic for a given 

confidence level λ  (99% for example) characterises very well the sensitivity of an epipolar 

line. However, it is more practical to use the distribution of the angle between the epipolar 

line and the u-axis of the image reference frame to characterize uncertainty. If T

R
(a,b,c)=l , 

this angle can be expressed as 

 arctan( a / b)Θ = − . (13) 

Moreover, the mapping R
Θl U  should also be linearized in order to propagate the 

covariance of the epipolar lines to Θ . As a result, the complete chain of the uncertainty 

propagation from the camera parameters to the angle Θ  is 
R

Θp F lU U U .  

A practical verification of the uncertainty computations is done by Monte-Carlo simulations. 

A high number of samples { }k
p  were generated of p  with mean the estimated camera 

parameters p̂  and covariance matrix 
p

C  that is extracted from  the computed 
q

C  matrix as 

described in Section 5.2. Then by selecting a point 
L
I  in the left image, the corresponding 

epipolar line and k
Θ  are computed for each sample k

p . Finally, the standard deviation of 

the set { }k
Θ  is calculated. This way, to any point 

L
I  in the left image, a single value is 
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associated that characterizes the uncertainty of the corresponding epipolar line. If the output 
of the computationally expensive Monte-Carlo approach coincides with the results received 
from the discussed cheaper linear approximation method, then the non-linear 

R
Θp F lU U U  mapping is nearly linear in the range of the uncertainities around p̂ . 

5.4 Uncertainty in the reconstruction 
The main reason why camera parameter uncertainties are studied is to predict 

reconstruction errors due to an imprecise knowledge of the camera parameters. The errors 

in stereo point reconstruction can be simulated with a Monte-Carlo method that is very 

similar to the one discussed in Section 5.3. The estimated camera parameters are perturbed 

corresponding to the estimated parameter covariance matrix and for each parameter set, 

several 3D points are reconstructed. As a result, point clouds are formed in 3-space that 

correspond to reconstruction errors. Similarily, one can go further, and apply further steps 

of those detailed in Section 2, e.g. road surface model fitting and lane model fitting for each 

generated set of parameters. Some results based on real data are presented in Section 6. 

6. Evaluation on real images 

6.1 Numerical results of the two-step camera calibration method 
A setup with two analog 1/ 3" b&w CCD cameras with a resolution of 720x576 pixels and 

8 mm lenses with 34° horizontal field-of-view were mounted on the side mirrors of a test 

vehicle. For various reasons, the acquired images were resized to a size of 480x384 pixels 

when the recorded videos were post-processed in order to remove interlacing effects. For 

intrinsic calibration, we used a checkerboard pattern with 11x7 control points and a square 

size of 3 cm. Images were taken in 16 different views (which is much more than required) 

and a constrainted minimization with 0γ =  has been carried out by using the Levenberg-

Marquardt method. As a result, the estimated focal lengths are (777.6, 849.8) ± (3.3, 4.1) 

pixels for the left camera, and (776.1, 847.2) ± (3.0, 3.5) pixels for the right, the principal point 

is located at (215.7, 201.9) ± (10.4, 7.6) pixels in the image of the left camera and at (236.0, 

168.7) ± (8.8, 6.9) pixels in that of the right one.  The uncertainties given here correspond to 

the 99% confidence interval of the uncertainty in the parameter space that is calculated by 

back-propagating the standard deviation of the residual reprojection errors given in the 

image to the parameters, as mentoned in Section 4.2. The above uncertainties are only given 

for reference; clearly they do not completely characterise the uncertainty (cross-covariance 

information is also required). The standard deviations of the residual errors were 0.26 and 

0.23 pixels for the left and right cameras, respectively. The distortion centers are located 

approximately at the principal points while the estimated radial distortion coefficients are  

(-0.505, 0.878) ± (0.044, 0.540) for the left camera and (-0.516, 0.957) ± (0.041, 0.540) for the 

right one. Note that the second coefficient is estimated with a relatively high uncertainty 

(alternatively, it could be forced to zero). 

In the second step, 24 X-markers of size 50x50 cm were placed in front of the vehicle along 

four lines at a distance of 3 meters laterally and in a depth range from 10 to 40 meters. Single 

rows of markers were placed at a time to have a clear view on each, that is, to avoid masking 

due to the perspective effect (see Figure 7). Marker distances from two reference points were 

measured with a laser-based distance meter and the 3D locations were computed by 

triangulation. Also, errors in the reference point locations, distance measurements, non-ideal 
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marker-placing and deviations with respect to the planar ground assumption were 

estimated and forward-propagated to the computed 3D locations resulting in an estimate of 

each Wi
(i 1,2...N)=C  (see Bodis et al., 2007, for more details). The resulted 99% covariance 

ellipsoids of the 3D measurements are plotted in Figure 9C for some markers. Using a quasi-

Newton optimization with a termination criterion of 10-5 on the relative change in the 

parameter values, the minimization of (10) converged in 116 iterations. For comparison, we 

also minimized (5), like if there would be no covariance information. A comparison of the 

results provided by the two approaches is shown in Fig. 9A-B. 

It is clear from the results (Figure 9A-B) that inappropriate modeling of the problem or the 

lack of covariance information misleads the optimization when the 3D marker locations are 

not known precisely. Naturally, the high reprojection errors shown in Figure 9A is 

undesirable because it is directly related to the corresponding 3D reconstruction errors. 

Because camera skews were forced to be zero, we had 2x8 intrinsic parameters, 2x16x6 

extrinsic parameters with respect to the checkerboards and 2x6 extrinsic parameters with 

respect to the road (or stopped vehicle). As to the measurements, we had 2x2x16x11x7 

coordinates from the checkerboard corners, while 2x2x24 image coordinates and 3x24 world 

coordinates were available from the X-marker based measurement. In total, there were 220 

parameters and 5096 measured values. In Figure 9C, we can see that the covariance 

ellipsoids of the estimated 3D locations are much smaller than those of the measured 

locations. This is what we expected from a regression-like problem. 
 

 

Fig. 9. A-B) Markers reprojected to one of the source images of the right camera using the 

camera parameters that resulted from the minimization of A) the cost function given in (5), 

B) the proposed cost function (10). C) 99% condence levels of the 3D location measurements 

for three 50x50 cm marker plates placed at 20, 25 and 35 m (outer ellipsoids) and 99% 

confidence level of the position estimate after optimization, from 
q

C  (inner ellipsoids). 

6.2 The sensitivity of point reconstruction 
The evaluation of the calibration is performed by simulating the effects of parameter 

uncertainties represented by 
p

C  on 3D point recunstruction by triangulation. 

The reference points to reconstruct by Monte-Carlo simulations were chosen from the 

calibration scene: the estimated marker centers were shifted by 25 cm vertically to lie on the 

ground surface. The left and right images of these 3D points were computed by using the set 

of the optimal camera parameter estimates (see the top of Figure 10). Then, 1000 perturbed 

parameter sets were generated around the estimated parameters corresponding to Cp. There 

are 2x14 estimated camera parameters that are to be considered here, zero skew being fixed, 
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so 
p

C  is a 28x28 matrix. A 3D subspace of the generated distribution  is shown at the bottom 

of Figure 10. This corresponds to the 99% confidence level of the 3D location of the left 

camera given in the vehicle’s reference frame. The sizes of this ellipsoid are ±14 laterally (X),  

±35 cm in depth (Z) and ±10 cm in the direction perpendicular to the ground (Y). The 

ellipsoid is elongated in the longitudinal (Z) direction because the estimation of the camera 

positions in this direction is more sensitive to the uncertainty in 3D marker locations of the 

planar and far-range calibration scene. Interestingly, this does not mean that any 3D point 

can be reconstructed with a maximum precision of ±35 cm, because reconstruction quality is 

affected by the covariances between all the 28 parameters, as well. 

After that the points were radially corrected in both images by using the perturbed radial 

distortion parameters in each experiment, they were reconstructed by using the simple mid-

point triangulation method. The resulted 3D point clouds are shown in Figure 11 and their 

measured extent are plotted in Figure 12. 

 

 
 

 

Fig. 10. The points to be reconstructed (triangulated) by Monte-Carlo simulations are the 

marker centers shifted vertically to the ground surface (top). 99% covariance ellipsoid of the 

left camera’s position and verification of the generated noise in parameter space, 1000 

experiments (bottom). 99.4% of the points fell inside the ellipsoid in this realization. 
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Fig. 11. Different views of the reconstructed 3D point clouds resulted from the Monte-Carlo 

simulations. YZ (top-left), XY (top-right) and XZ (bottom) view, where X is the lateral, Y is 

the height and Z is the longitudinal (depth) coordinate in meters. 1000 experiments were 

carried out. 

 

  

Fig. 12. Standard deviation (in meters) of the point clouds’ sizes for each of the 24 reference 

points when only the optimal camera parameters are perturbed. 

The largest deviation is 25 cm in the longitudinal (Z) direction at a distance of 40 meters 

from the car. This means that the "extent" (the 99% confidence interval) of the corresponding 

3D point cloud is ±64 cm. In the direction perpendicular to the ground, the 99% confidence 

interval is ±5 cm and in the lateral direction, it is ±10 cm. We should emphasize that this 
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only characterizes reconstruction errors due to uncertainty present in the camera parameters 

and not due to errors in stereo matching. 

In order to simulate the effects of a random error (but not outliers) present at the stereo 

matching of point features, as well, random 2D Gaussian noise has been added to the image 
point locations in each experiment. We repeated the whole experiment with different 
standard deviations that ranged from 0 to 0.66 pixels in 0.11 pixels steps. In the case of a 2D 
Gaussian distribution, 0.33 pixels correspond to a 99% confidence interval of ±1 pixels while 
0.66 corresponds to ±2 pixels. This is the simulated precision of the feature localization and 
stereo matching solution. The resulted point reconstruction errors are shown in Figure 13. 
 

 
 

 

Fig. 13. Maximum reconstruction errors in the X and Y (top) and Z (bottom) directions vs. 

the simulated point feature localization and stereo matching errors in the image while the 

optimal camera parameters are perturbed corresponding to 
p

C .  
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In Figure 13, both 3D and 2D errors are given as the 99% confidence interval of the 

corresponding distribution. It can be seen that the effects of the localization and feature 

matching noise in the image starts to dominate the uncertainty present in the camera 

parameters from ±0.5 pixels (Z plot). As we expected, the depth coordinate is the most 

sensitive one. 

It should be noted that although parameter uncertainty is simulated as a random noise in 

order to measure the uncertainty of the parameter estimates with respect to the true 

parameters, the error of a single realized calibration remains constant when the calibrated 

system is on-line. In contrast, feature localization is realized in every acquired frame. 

However, the random perturbation is still valid, since we are interested in the deviation of 

the reconstructed features from the true ones. 

6.3 Uncertainty of the epipolar lines 
Next, the sensitivity of the epipolar lines was analysed as described in Section 5.3. The 

epipolar line uncertainty was characterized by the deviation of the line’s angle with respect 

to its mean value. To every pixel center in the left image, the angle deviation of the 

corresponding epipolar line in the right image is associated. The resulting surface is shown 

in Figure 14. 

 

Fig. 14. Epipolar line uncertainties. Every pixel in the left image has an associated epipolar 

line uncertainty. The uncertainty is encoded in gray level values over the pixels of the left 

image (left side), while the side view of the resulting surface is compared with that of the 

eight-point algorithm (right side). 

The angle deviation was not only computed by Monte-Carlo simulations but also with the 

linear covariance-propagation method detailed in Section 5.3. The difference between the 

two resulted surfaces is the linearity error surface that is also shown in the right side of 

Figure 14 (the side view of this error surface is a curve around zero degrees). 

As a reference, we plotted the surface received from the eight-point algorithm used to 

determine the fundamental matrix. Since this method breaks down in the case of flat 

arrangements, we used the center and all the four corners of the markers in both images (five 

times more reference points than those used in the second step of the calibration procedure). 

We should also mention that the eight-point algorithm, or more generally the fundamental 

matrix, in itself does not suffice for the specific purpose because – as discussed in Section 3 - it 

does not provide Euclidean information about the camera poses with respect to the scene. 
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The uncertainty in the angle of epipolar lines does not significantly depend on the horizontal 

coordinate of the corresponding point (the epipolar lines are almost all horizontal). Although 

the objective function during optimization was not the uncertainty in the epipolar lines itself, it 

is clear from Figure 14 that this is minimal in the interesting zone. This is due to the specific 

arrangement (the marker locations and the horizon are overlayed for this purpose). The 

minimum of the angle deviation is around 0.2° and the maximum is 0.5°. 

6.4 The sensitivity of road surface detection and lane model fitting 
In order to see how the uncertainty in the camera parameters affect the quality of road 

surface reconstruction, we have used the Monte-Carlo technique, once again. In each of the 

100 experiments, the feature (primitive or point chain) matching, the stereo point 

reconstruction and the road surface model were recomputed. The computations were 

performed for each frame over a 50 frames sequence, which corresponds to 2 seconds in 

real-time. The computed optimal camera parameters were perturbed corresponding to the 

estimated parameter covariance 
p

C . The pitch angle, roll angle and height parameters 

resulted from the road surface model fitting are shown in Figure 15. Although there are 

some outliers (e.g. at frame indices 4, 10 and 49, that may correspond to surfaces with 

relatively high residual errors), the sensitivity of the estimation remains constant. In other 

words, the LS-fitting, in itself, is not very reliable in all circumstances, but the sensitivity 

estimation still remains stable over time. The standard deviations are around 0.11°, 0.36° 

and 5.4 cm, for the pitch, roll and height parameters respectively. The stability of fitting 

could be increased by using a robust fitting method or a weighted least-squares (WLS) 

method by giving more weight to the farther reconstructed points or primitives. This is 

because much more points constitue closer primitives than the farther ones so that farther 

points are not really involved in model shaping (we refer to Figure 5). 
 

 

Fig. 15. Uncertainties in road surface model fitting due to uncertainties present in the 

camera parameters. 100 experiments in each of the 50 successive frames are evaluated. The 

curves represent mean values and the bars represent the standard deviations. There are 

outiers in model fitting but the computed sensitivities remain stable over time. 

Finally, Figure 16 shows the effects of the computed camera parameter uncertainties on lane 

geometry reconstruction demonstrated on the frames already shown in Figure 6.  Figure 16 

demonstrates that the proposed off-line calibration method together with the discussed 

stereo lane reconstruction method gives acceptable lane reconstruction accuracy, but in the 

meantime, the derived errors are not insignificant, and thus, they can not be neglected, even 

if special care has been taken at calibration. 
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7. Conlusions 

A novel off-line static method has been proposed for calibrating the cameras of a stereo 
vision-based driver assistance system. We formulated the maximum likelihood cost function 
for the stereo calibration problem. The resulting method involves the optimization of the 3D 

marker locations and covariance information of the measurements. Therefore, the method is 
only applicable, when an appropriate preliminary estimation of the uncertainties of the 
calibration measurements can be given. Moreover, a method for estimating the sensitivity of 
the parameters has been presented. It has been shown on real data, that when measurement 
uncertainties are available, our approach co-minimizing errors in the image together with 
errors in 3-space gives significantly better results than one can achieve by using the common 
reprojection error minimization. Thus, we have put extra effort in estimating measurement 
uncertainties at calibration. A stereo lane reconstruction algorithm has also been presented 
and by Monte-Carlo simulations of a triangulation method, we have demonstrated how the 
computed parameter uncertainties affect the precision of 3D reconstruction. The estimated 
reconstruction errors can be used when defining the safety margins in a decision algorithm 
that may trigger an actuation in a critical situation (e.g. unexpected lane departure or 

collision). The study should draw attention to the reconstruction errors arising from the non-
ideal nature of camera calibration which is increasingly important in safety-critical systems. 
Covariance information is also required when using a Kalman-filter for lane tracking. 
 

  

  

Fig. 16. Uncertainties in lane reconstruction due to uncertainties present in the camera 

parameters. 100 experiments are overlayed. 
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The procedure followed in the estimation of 3D point reconstruction uncertainties can be 

applied to estimate the output quality of a vehicle or obstacle detection algorithm. This is 

meant without a tracking algorithm that should decrease the errors by involving temporal 

information. It should be noted that, in general, tracking increases robustness, but the vision 

algorithm without tracking should still be reliable in itself, as well. 

The proposed optimization method and far-range calibration arrangement of “ground 

thruth”  control points is relatively elaborate compared to markerless on-line methods, while 

it is indispensable to integrate some kind of on-line parameter estimation - or at least 

parameter checking – in such systems. This is critical because the cameras are subject to 

shocks and vibrations and  the parameters (mostly the extrinsic parameters) may change 

over time. Thus, the presented methods and results will serve as a reference to evaluate 

some on-line calibration methods that are presently developed. 
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