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Abstract

Diabetic retinopathy (DR) is the most prevalent microvascular complication of diabetes 
and a leading cause of preventable blindness in the working-age population. However, 
due to a lack of suitable biomarkers, its prediction in asymptomatic patients is insuffi-
cient. Currently, DR is diagnosed at a stage when typical morphologic lesions become 
fundoscopically visible. Yet, chronically elevated blood glucose levels lead to characteris-
tic alterations in retinal vessel caliber, blood flow, oxygen saturation, and the capillary net-
work, which precede DR lesions. Furthermore, emerging evidence suggests that retinal 
neurodegenerative changes occur early in diabetes, initiating a disintegration of the reti-
nal neurovascular unit prior to the appearance of microvasculopathy in DR. This chapter 
will discuss recent research achievements toward understanding the complexities of DR 
pathophysiology. It will focus on the nomination of potential imaging biomarkers for the 
prediction of DR development and progression using innovative structural, functional, 
and metabolic imaging techniques, including optical coherence tomography angiography 
(OCTA), retinal oximetry, ultra-wide field FA, and corneal confocal microscopy (CCM). 
Validation of these biomarkers would allow the identification of patients at high risk of 
developing DR and might initiate a swift move to early diagnosis and individualized care.

Keywords: diabetic retinopathy, biomarker, retinal blood flow, retinal oxygen 
saturation, retinal neurodegeneration, corneal confocal microscopy, ultra-wide field 
imaging, disorganization of the inner retinal layers, imaging, OCT, OCTA

1. Introduction: the role of biomarkers in disease prediction

The prevalence of diabetes mellitus is increasing worldwide. The International Diabetes 

Federation estimated that 415 million people had diabetes in 2015, 90% of whom were 
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diagnosed with type 2 diabetes. With these trends continuing, 642 million patients with 

diabetes are expected by 2040 [1].

Patients with diabetes are at substantially increased risk of developing complications. In 

light of the cost of interventions implemented throughout the natural history of these com-

plications, diabetes constitutes a tremendous clinical and public health burden that exceeds 
the resources of healthcare systems even in the most affluent countries. The International 
Diabetes Federation has reported that most countries spent 5–20% of their total healthcare 

budget on diabetes in 2015, which amounted to 673 billion US dollars in health expenditure 
worldwide. This figure is expected to increase to about 802 billion US dollars by 2040 [1].

The complications of diabetes are commonly divided into macrovascular complications 

including myocardial infarction, heart failure, and stroke, and microvascular complications 

including diabetic nephropathy, neuropathy, and retinopathy. Diabetic retinopathy (DR) is 

the most common microvascular complication of diabetes. The incidence of DR increases with 

the duration of diabetes. After 20 years, nearly all patients with type 1 diabetes and more than 

60% of those with type 2 diabetes will develop signs of DR [2].

Current treatment guidelines target proliferative disease and macular edema, two sight 

threatening complications. The most common approaches are intravitreal injections of vas-

cular endothelial growth factor (VEGF)-inhibiting agents or corticosteroids, laser treatments, 

and surgical interventions. These treatments are often sight saving, but are invasive and 

cost-prohibitive. Therefore, we need to shift our focus to targeting upstream events at earlier 

stages of non-proliferative DR (NPDR).

The major health economic burden caused by the increasing number of patients diagnosed 

with diabetes raises the need to identify patients at high risk of developing DR and sight 

threatening complications. Reliable biomarkers that help to predict the development and pro-

gression of the disease have to be defined.

A biomarker is traditionally defined as “a characteristic that is objectively measured and eval-
uated as an indicator of normal biological processes, pathogenic processes, or pharmacologi-

cal responses to a therapeutic intervention” [3]. In order to be useful in the prevention of DR, 

a biomarker should (1) non-invasively detect early preclinical disease before the first clinical 
signs of the disease appear, (2) be causally linked or be an indicator of a causal mechanism 

that leads to the development of the disease, and (3) be consistently and strongly associated 

with the disease [3, 4]. Suitable biomarkers should identify patients at low risk to defer DR 

screening intervals facilitating cost-effective management and optimized resource allocation. 
Furthermore, biomarkers should help to predict the progression of DR to the vision-threat-

ening stage, and may forecast the response to different treatment modalities, facilitating indi-
vidualized care [5]. Important factors for valid biomarkers are reproducibility and validity 

in different populations. Furthermore, their measurements must be quick, cost-effective, and 
applicable in daily clinical decision-making [5].

To date, many serum variables have been proposed to be associated with DR incidence 

and progression. According to the Diabetes Control and Complications Trial (DCCT), a 

median glycated hemoglobin (HbA1c) of 7.2% reduced DR incidence by 76% in patients 
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with type 1 diabetes, and DR progression by 54% over a period of 6.5 years [6, 7]. Patients 

with type 2 diabetes had a 25% reduction of DR with good glycemic control [8]. Even 

though HbA1c remains the most widely accepted biomarker nowadays [5], the “Joslin 
50-Year Medalist Study,” which focused on the identification of endogenous protec-

tive factors in patients with a diabetes duration of at least 50 years (therefore named 

“Medalists”) showed that longitudinal glycemic control was unrelated to diabetic com-

plications. However, the presence of specific advanced glycation end products (AGEs) 
(plasma carboxyethyl-lysine and pentosidine) was strongly associated with the develop-

ment of diabetic vasculopathy complications [9].

Cytokines from aqueous humor or vitreous sample have also been considered in the search 

for a DR biomarker. Increased levels of vascular endothelial growth factor (VEGF), platelet-

derived growth factor (PDGF), transforming growth factor beta (TGF-β), and nitric oxide (NO) 
are commonly found in DR. However, these biomarkers can only be assessed using invasive 

methods. As tears are more accessible than serum and intraocular fluids (i.e., vitreous or aque-

ous humor), research has also started to focus on the presence of potential markers in this 

body fluid. Candidate biomarkers in tear fluid include nerve growth factor (NGF), lipocalin-1, 
lactotransferrin, lysozyme C, lacritin, lipophilin A, immunoglobulin lambda chain, heat shock 

protein 27 (HSP 27), and tumor necrosis factor-α (TNF-α) [10].

Ocular imaging biomarkers would offer the advantage of gaining an insight in the actual 
pathologic evolution of DR non-invasively. The most important candidates for such biomark-

ers will be discussed in the following chapter.

2. Microvascular changes in diabetic retinopathy

2.1. Retinal vessel caliber

Diabetic retinopathy is diagnosed clinically by the presence of microaneurysms and small 

hemorrhages visualized during fundoscopy. Assessing the presence and number of micro-

aneurysms as well as their rate of formation and disappearance has been suggested to be an 

appropriate marker of retinal vascular damage and therefore DR progression [11]. However, 

there are microvascular changes that have been shown to antecede fundoscopically visible 

lesions of DR including microaneurysms.

Within the last decades and with the implementation of specialized computer software sys-

tems, grading of retinal vessel diameters to document generalized vessel narrowing or widen-

ing has become increasingly sophisticated, objective, and reliable. Multiple population-based 
studies have used these systems to calculate retinal vascular caliber in terms of the central 

retinal artery and vein equivalent (CRAE, CRVE), which summarizes the average diameter of 

the internal lumen of the vessel, reflecting the visualized erythrocyte column [12]. In sum, the 

results of these studies provide evidence for an association between larger venular caliber and 

DR in patients with type 1 [11, 13] as well as type 2 diabetes [14, 15], therefore being consistent 

with clinical experience. However, reported findings on arteriolar caliber remain contradictory. 
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The population-based Multi-Ethnic Study of Atherosclerosis (MESA) study showed that arte-

riolar calibers are dilated in patients with diabetes [13], whereas other researchers claim that 

arteries tend to constrict in diabetes [14, 16].

The discrepancy between results of different studies may be due to differences between the 
study cohorts in demographic (e.g., distribution in age) and metabolic traits including blood 

glucose levels, duration of diabetes, and cardiovascular risk factors (such as hypertension/

hyperlipidemia) as well as differences in sample size, follow-up period, and the methods 
applied. Before retinal vascular caliber assessment can be used as a biomarker in clinical prac-

tice, age-, sex-, body size-, and blood pressure-specific normative data are required.

2.2. Autoregulation of retinal vessel diameter

Besides a “static” measurement of retinal vessel diameter, “dynamic” changes in the diabetic 
retinal vasculature can be assessed too. The potential for an efficient diameter change in order 
to adjust blood flow according to changes in arterial blood pressure (pressure autoregula-

tion) and retinal metabolism (metabolic autoregulation) is reduced in the early stages of DR 

[17]. Vasoactive molecules activate pericytes and smooth muscle cells to regulate the capil-

lary diameter [18]. A dysfunction in pressure autoregulation of retinal arterioles implies that 

changes in the arterial blood pressure are directly transmitted to the retinal microcirculation 
[19]. The fact that pressure autoregulation decreases with increasing severity of DR highlights 

the destructive effect of arterial hypertension on the retinal microcirculation [17, 20].

Luminance flicker stimulation is an example to test the capability of retinal vessels to adapt 
perfusion to changes in retinal metabolism. Exposure to flickering light stimulates retinal 
neuronal cells to release local vasodilating metabolites, most importantly nitric oxide [21], 

which consequently leads to retinal vasodilatation. This results in an increase in retinal blood 

flow in healthy individuals [22]. Several studies have reported that the flicker light-induced 
vasodilation is reduced in patients with diabetes [17, 23, 24] and even in patients with predia-

betes [25], being equivalent in magnitude to patients with manifest diabetes. Thus, monitor-

ing retinal vascular reactivity may provide an early marker of autoregulation and endothelial 

dysfunction in the retinal microcirculation that clinicians could follow non-invasively.

2.3. Retinal blood flow

Besides measurement of retinal vessel caliber, numerous other techniques such as laser 

Doppler velocimetry, laser Doppler flowmetry (LDF), fluorescein angiography (FA), color 
Doppler, and Doppler optical coherence tomography (OCT) imaging have been proposed 

for quantifying retinal blood flow in patients with diabetes [26–30]. Contradicting results 

concerning retinal blood flow have been published. This may reflect the complexities of the 
pathological alterations that occur in the diabetic retina.

Most studies suggest that in patients without or with mild non-proliferative DR (NPDR), reti-
nal blood flow is reduced [26, 27]. Evidence from animal studies in streptozotocin-treated rats 

also suggests decreased retinal blood flow in the very early stages of DR [31]. In more severe 

Early Events in Diabetic Retinopathy and Intervention Strategies12



stages of NPDR, research has provided evidence that retinal blood flow increases above nor-

mal levels [28–30], which may arise from the increased demand caused by tissue hypoxia due 
to capillary basement membrane thickening and capillary occlusion [29, 32]. In proliferative 

disease, retinal blood flow is decreased again as measured with different techniques: Blair 
et al. used the dye dilution technique to measure the mean circulation time (MCT) calculated 
as the difference between the mean venous and arterial retinal passage times, which turned 
out to be statistically significantly longer in the eyes with proliferative DR (PDR) than in 
healthy eyes or eyes with NPDR [33]. Laser Doppler flowmetry (LDF), which measures blood 
flow at the optic nerve head (ONH), and color Doppler imaging, also showed a greater reduc-

tion in total retinal blood flow in patients with PDR than in patients with NPDR or healthy 
individuals [34, 35]. Recently, several groups have demonstrated the potential of Doppler 

OCT for assessing retinal blood flow in the diabetic eye. Doppler OCT can also detect volu-

metric blood flow and provide information about the structural anatomy. As shown with the 
techniques mentioned above, eyes with PDR had statistically significantly decreased retinal 
blood flow compared with normal eyes [36], especially those that had been treated with pan-

retinal photocoagulation [28, 37, 38]. However, acute elevations in blood glucose can still trig-

ger an increase in blood flow [26]. This finding suggests that the chronic hyperglycemic state 
in diabetes mellitus is associated with a reduction in retinal blood flow, but the retina still is 
able to respond to increased metabolic rates associated with acutely raised blood glucose by 

increasing retinal blood flow.

2.4. The capillary network

The structure of the retinal capillary network is unique. It has to feed one of the highest meta-

bolically active tissues while limiting the extent of the vascular beds to a minimum in order 
to prevent optical interference to the photoreceptors [39]. The inner retina is perfused by four 

interconnected capillary plexi that include the peripapillary capillary plexus which is found 
in the retinal nerve fiber layer (RNFL) adjacent to the optic nerve head (ONH), the superfi-

cial capillary plexus in the ganglion cell layer (GCL), as well as an intermediate (ICP) and a 
deep capillary plexus (DCP), which are located at the two borders of the inner nuclear layer 
(INL) [40]. Currently most segmentation algorithms display the ICP and DCP as one capillary 

layer. The three vascular layers unite in the center of the macula to form a terminal capillary 

ring surrounding the foveal avascular zone (FAZ). The outer retina and the photoreceptors 

are dependent on blood supplied by diffusion from the choriocapillaris. The early changes 
in capillary architecture and perfusion in patients with diabetes have not yet been definitely 
established, as assessing the human retinal microvasculature in vivo is very difficult due to its 
small size and low optical contrast.

FA, introduced in 1961, has been the gold standard imaging technique for assessing the reti-

nal capillary network [41]. The value of this imaging modality is undeniable, but so are its 

limitations. First, dye leakage and the superimposition of capillary beds from the different 
retinal layers into a single two-dimensional image hinder a proper differentiation between 
the superficial and deep capillary plexi [42]. Furthermore, FA is a time-consuming and inva-

sive technique which does not render it optimal for DR screening or frequent longitudinal 
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 evaluation. In addition, intravenous fluorescein dye injections can occasionally cause adverse 
side effects, nausea/vomiting, urticaria and rarely, but critically, anaphylactic reactions in 
healthy people [43].

Optical coherence tomography angiography (OCTA) is a further advance in retinal micro-

vascular evaluation and may represent a significant breakthrough in ophthalmic imaging, 
especially in diabetes care. Intravenous injection of extrinsic fluorescent dye is no longer 
required with this technology, but the perfused capillary architecture is non-invasively visu-

alized with erythrocyte motion as an intrinsic contrast. A recent study has demonstrated that 

shorter acquisition times and a higher number of motion artifact-free images can be achieved 

using swept source technology [42].

Several features of early disruption of microvascular perfusion in the development 

and progression of DR have already been investigated and objectively quantified using 
OCTA. Diabetic macular ischemia, clinically defined as an enlargement and disruption of 
the foveal avascular zone (FAZ) and capillary dropout in adjacent parafoveal areas [44], is 

thought to have predictive potential for DR progression [45]. The considerable inter-subject 

variability in FAZ size even in healthy people and the large overlap in FAZ size between 

healthy individuals and patients with diabetes have to be considered though [46]. Hence, 

FAZ size alone was suggested to be a poor diagnostic variable [47], and qualitative FAZ 

assessment (e.g., with FAZ outline and regularity) may constitute a more reliable biomarker 

for the ischemic state of the macula in the diagnosis of DR, either complementary to or in 

place of a quantitative assessment [48].

OCTA is also reproducible for the measurement of vessel density in healthy eyes and eyes 

with DR. Compared with a healthy control group, patients with diabetes but without DR 

were shown to feature reduced parafoveal and perifoveal vessel density, and intercapillary 

areas increase as DR progresses [47, 49, 50]. A more consistent and severe decrease in vessel 

density has been observed in the superficial capillary network than in the deep plexus in most 
studies [51, 52]. Accordingly, mean vessel density in the superficial retinal layer, being highly 
inversely correlated to best-corrected visual acuity (BCVA), has already been proposed to be 

the best marker for a reliable differentiation between healthy eyes and those with DR [53]. 

Similarly, the total avascular area in the central 5.5-mm-diameter area was shown to distin-

guish eyes with DR from control eyes with 100% sensitivity and specificity. It was, therefore, 
suggested that total avascular area may be an excellent biomarker in the diagnosis of DR [47].

Compared with FA, where the edges of non-perfused areas appear fuzzy or cannot be 

detected at all, OCT angiograms clearly delimit the border between sparse-capillary areas 

and dense-capillary areas in most cases [52, 54]. Choi et al. also found impairment of flow in 
the choriocapillaris at all stages of DR, supporting the concept that choriocapillaris alterations 

may play a role in the pathogenesis of DR [55].

OCTA color-coded perfusion density mapping enhances areas of low capillary perfusion 

density in the SCP, DCP and the choriocapillaris in patients with diabetes. Additional trend 

analysis has shown a statistically significant decrease in capillary perfusion density values as 
DR progressed [56].
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OCTA techniques have also been used to study the development and progression, as well 

as the treatment response of clinically visible signs of DR. Microaneurysms can be identi-
fied in OCTA, but with a significantly lower sensitivity compared with conventional FA 
[52]. Nevertheless, OCTA provides additional information about their originating capillary 

plexus. Significantly, more microaneurysms were found in the intermediate/deep capillary 
plexus than in the superficial one [54, 57]. Additionally, it has been proposed that OCTA is 

more useful to evaluate clinically active microaneurysms, which are a major cause of diabetic 

macular edema (DME) [58]. Intraretinal microvascular abnormalities (IRMA), on the other 
hand, were well detected by both FA and OCTA [54].

The significance of the individual evaluation of the integrity of the deep capillary plexus, 
impossible with FA alone, is further supported as macular outer retinal changes on spectral-

domain OCT (SD-OCT) correspond to areas of capillary non-perfusion at the level of the DCP 

in patients with DR. The spectrum of outer retinal alterations encompassed different degrees 
of thinning of the outer nuclear layer (ONL), disruption of the photoreceptor lines, and focal 

photoreceptor layer thinning [59].

Diagnosis of retinal neovascularization on FA depends on identifying characteristic patho-

logic vessels with profuse leakage in late angiographic phases. With OCTA, spots of neo-

vascularization that were not identified with FA were visualized as an abnormal flow signal 
above the inner limiting membrane, which may further help in the identification of patients 
requiring treatment [47, 55].

Certainly, there are limitations to the OCTA systems in their current state that have to be 

acknowledged including the incidence of motion artifacts and the relatively small field of 
view [41], but these can be improved with future development efforts [60]. In summary, 

OCTA enables the visualization of early microvascular perfusion abnormalities represent-

ing imminent DR development and simultaneous monitoring of the treatment response of 

pathognomonic lesions of DR. It could therefore provide clinicians and scientists in clinical 

trials with valuable and reliable biomarkers, using an imaging technology that is safely toler-

ated by patients.

2.5. Retinal oxygen supply

Capillary non-perfusion and tissue ischemia are well-known hallmarks of diabetic retinopa-

thy. While FA provides information about the anatomic state of retinal vessels, changes in 

retinal oxygenation reflect metabolic dysfunction. Oxygen saturation (SO2) in retinal vessels 
is a direct measure of retinal oxygen metabolism [18].

Using retinal oximetry, retinal SO2 can be measured non-invasively in major retinal arterioles 
and venules. The retinal oximeter records fundus images reflected from the retina at two 
different wavelengths, one being sensitive to oxygen (600 nm), and one being insensitive to 
oxygen (570 nm). An inverse linear relation between the optical density ratio measured at the 
two wavelengths and SO2 is assumed. Retinal oxygen saturation can be presented numeri-
cally and as a color saturation map [61]. Low variability as well as high reproducibility and 

repeatability have been shown for retinal oximetry measurements in healthy individuals and 
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in diseased retinas [62–64]. Furthermore, there have already been a number of approaches to 

compile normative databases for retinal oximetry measurements in Caucasian [61] and mul-

tiethnic populations [65], to set a basis for comparability for future clinical trials. Age is the 

most important factor that should be accounted for in the interpretation of retinal oximetry 
measurements. Beside age and ethnicity, other demographic factors do not seem to influence 
retinal oximetry results markedly [61, 65, 66]. Additionally, no statistically significant differ-

ence in SO2 levels between patients with type 1 and type 2 diabetes could be observed [61].

Oxygen saturation levels in retinal vessels seem to steadily increase with progressing sever-

ity of DR, even if it is not fully elucidated if both, arterioles and venules [67, 68], or solely 

venules are affected by this increase [69]. Compared with healthy individuals, the change in 

SO2 levels only becomes statistically significant at more advanced stages of severe NPDR or 
PDR. Some investigators support the concept that in earlier stages of DR, increased levels of 

SO2 are detected in retinal venules only, which stands for a decreasing oxygen extraction in 
these patients, whereas in patients with PDR, SO2 levels are also increased in retinal arteri-

oles, resulting in unchanged levels of oxygen extraction [70].

The metabolic results reflected by retinal oximetry also seem to correlate with the extent of 
retinal ischemia measured in FA [67].

At first, the findings of increased oxygen saturation levels in patients with diabetes with or 
without DR seem to conflict with the traditional concept of DR being an ischemic disease. 
However, this observation can be explained by at least three mechanisms: (1) capillary non-
perfusion and shunting (2) thickening of the basement membrane of capillary vessel walls, 

and (3) greater affinity of hemoglobin for oxygen [71]. Capillary non-perfusion in conjunc-

tion with the formation of shunt vessel is already known from histologic studies in the dia-

betic retina. In capillary shunting, while some vessels dilate, others constrict, leading to blood 

flow bypassing parts of the capillary network. Blood is then transported faster through these 
dilated preferential channels, resulting in a shortened arterio-venous passage time and there-

fore a reduced oxygen extraction time [72]. Further, with thickening of the capillary basement 

membranes, inevitably, oxygen diffusion from the blood to the retinal tissue is hindered as the 
transport distance increases [73]. All these mechanisms lead to a maldistribution of oxygen. 
Oxygen cannot be delivered to the retinal cells in these ischemic areas, which makes venular 
blood relatively hyperoxic and retinal tissue relatively hypoxic. As a compensatory response, 
oxygen demand will increase, and more blood will be directed to the tissue. Therefore, oxy-

genation in arterioles increases too [68].

Intraocular injections of substances inhibiting the production of vascular endothelial growth 

factor (VEGF), as well as laser treatment and vitrectomy are therapeutic for complications in 

advanced DR and all of them influence retinal oxygen metabolism.

The vitreous cavities of patients with PDR who have undergone vitrectomy have lower 

oxygen tension than those who do not have diabetes [74]. Anti-VEGF injections can reduce 

diabetic macular edema and retinal neovascularization leading to a gain in visual acuity in 

patients with diabetic maculopathy and/or PDR. The introduction of this treatment modal-

ity has considerably improved the visual rehabilitation for patients with DR, but still, some 
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patients respond better to the treatment than others. Interestingly, a recent study indicates 
that together with arterial blood pressure, SO2 in retinal arterioles may predict visual acuity 

and central retinal thickness (CRT) in patients with diabetic macular edema after anti-VEGF 

treatment [75]. Retinal laser treatment destroys retinal tissue and therefore reduces oxygen 
consumption in treated retinal areas, which in turn reduces hypoxia and the subsequent pro-

duction of VEGF [76]. The effects of this treatment can be detected with retinal oximetry. A 
slight increase in SO2 in retinal venules and unchanged SO2 in retinal arterioles was mea-

sured immediately after treatment in patients with diabetic maculopathy and patients with 

PDR, resulting in reduced oxygen extraction. Three months after treatment, arteriolar and 
venular SO2 were both increased, but arteriovenous SO2 difference was unchanged compared 
with pretreatment levels [77]. A more recent study in patients with treatment-naive PDR sug-

gested that pre-laser retinal SO2 was not able to predict immediate post-treatment activity of 

neovascularization, but post-treatment changes in SO2 were closely linked to disease activity 

3 months after photocoagulation. Each 1% increase in retinal venular SO2 was independently 

associated with a 30% higher risk of increased PDR activity despite laser treatment. This 

implies that if photocoagulation is successfully performed, the amount of the hypoxic retinal 
tissue is decreased. In the adjacent vital retinal tissue, oxygen is extracted efficiently from reti-
nal arteries, which lowers the venous SO2 and the arteriovenous SO2 levels [78]. Therefore, 

investigation of oxygen supply may be a potential non-invasive marker of angiogenic disease 
activity in the monitoring of the treatment response in DR. Prospective studies are under way 

to further validate retinal oximetry as a biomarker in DR.

3. The identification of lesions in the retinal periphery

Increasing evidence from research suggests that the first lesions in DR develop in the periph-

ery of the retina and that these lesions are potentially associated with DR progression [79, 

80]. The gold standard for determining the severity of DR is the extended modified Airlie 
House classification, which was first used in the Early Treatment Diabetic Retinopathy Study 
(ETDRS) in 1991 [81]. This rigorously standardized grading scale comprises 13 distinct levels, 

ranging from the absence of DR to the most severe manifestations of the disease localized in 

the central posterior 90° of the retina, representing approximately 30% of the entire retinal 
surface. The ETDRS grading scale is an established measure of disease activity and predic-

tive of the risk of DR progression and visual loss over time [82]. However, due to imaging 

limitations, a systematic assessment of the retinal periphery was not feasible when the origi-

nal ETDRS criteria were created. Therefore, the presence of pathologic features outside the 

7-fields of ETDRS photography was not accounted for in this grading scale. With the advent 
of commercially available high-resolution ultrawide-field (UWF) scanning laser ophthalmo-

scopes, peripheral retinal lesions within and outside the area of the 7-standard ETDRS fields 
can now be evaluated [83]. Instead of 30° captured by a single ETDRS photo, these UWF 

imaging systems cover up to 200° in a single image, representing approximately 82% of the 
retinal area. Combining low-powered green (532 nm) and red (633 nm) laser light, a compos-

ite color image with a resolution of 14 μm can be acquired in just a quarter of a second. The 
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high-resolution scanning laser ophthalmoscopy UWF technique allows improved imaging 

through media opacities such as cataracts, and images can even be acquired without pupil-

lary mydriasis.

There are a number of examples in the literature showing that UWF imaging is comparable to 
conventional retinal imaging techniques for DR grading. In these studies, images were evalu-

ated for the presence of predominantly peripheral lesions (PPLs), defined as lesions with 
more than 50% of the lesion located outside one of the ETDRS fields. Compared with eyes 
without PPL, it is estimated that eyes with PPL at baseline have a 3.2-fold increased risk of 

a 2-step or more DR progression and a 4.7-fold increased risk for progression to PDR over 

4 years, independent of baseline DR severity and HbA1c levels [84].

Identification of DR lesions with non-mydriatic UWF imaging has been compared with stan-

dard non-mydriatic multifield fundus photography (NMFP) in large population-based DR 
teleophthalmology programs. Determining the risk for DR progression associated with an 

individual’s retinal findings in imaging is fundamental in such programs for appropriate 
risk assessment as well as timing of screening intervals. Ungradable images generally result 

in referral for comprehensive eye examination because the severity of DR cannot be ascer-

tained. The efficiency of DR teleophthalmology programs could be improved by reducing the 
unnecessary referrals due to ungradable images, which would lead to considerable savings 

in logistical complexities, travel arrangements, and time burdens for patients and the health-

care system [83]. UWF imaging can reduce the ungradable image rate by 71% and image 

evaluation time by 28% compared with NMFP [85]. UWF imaging additionally resulted in 

a more severe DR level in 9–15% of eyes [84, 86]. Non-mydriatic UWF images were shown 

to compare favorably with dilated ETDRS photography in determining DR severity, and 

discrepancies between ETDRS and UWF images were found to be mostly attributable to 
hemorrhages or microaneurysms [83, 87]. Silva et al. suggested that approximately one third 
of lesions including hemorrhages, microaneurysms, IRMA, and neovascularization were 
found predominantly outside the ETDRS fields, being more frequent in temporal than nasal 
fields [83]. Furthermore, UWF imaging substantially increases the identification of periph-

eral non-diabetic lesions such as lattice and other retinal degenerations, retinal tears and 
holes, and choroidal lesions [88]. The utility of UWF imaging has also been demonstrated in 

comparison with conventional slit-lamp biomicroscopy in a “real-life” clinical setting [89], 

and in comparison with the gold standard dilated fundus examination with scleral indenta-

tion, where Optomap showed high specificity and moderate sensitivity for lesions poste-

rior to the equator, but low sensitivity for lesions anterior to the equator [90]. It was even 

proposed that assessing of UWF combined with OCT images allows more eyes with higher 

grades of DR to be detected than in a clinical examination alone or combined with imaging 
in a clinical setting [91].

The ETDRS extensively evaluated FA but did not provide evidence for a substantially 
improved ability to predict subsequent DR progression applying this technique. However, 

due to the limited field of view, traditional FA may miss major areas of peripheral capillary 
non-perfusion and neovascularization. The advent of UWF FA has provided the opportu-

nity to visualize both the central and peripheral retina in a single examination [92]. Sim et al. 
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evaluated the association between peripheral retinal ischemia of UWF FA images and central 

ischemia in DR, and observed a moderate correlation between the peripheral ischemic index 
and FAZ area, as well as peripheral leakage index and FAZ area in eyes which have not been 

treated with laser yet [44]. Similarly, 3.9 times more non-perfusion, 1.9 times more neovascu-

larization, and 3.8 times more panretinal photocoagulation scars could be detected in UWF 
FA compared with the 7-standard field ETDRS images [93]. An increase in retinal non-perfu-

sion was associated with worsening DR [94]. As peripheral non-perfusion probably underlies 

the development of PPL [80], the identification of PPL may be a potential surrogate marker 
for estimating the location and extent of peripheral non-perfusion [94].

Current study results assessing the value of UWF FA in eyes with diabetic macular edema 

(DME) are still contradictory [28, 93, 94].

Besides the paramount advantages of incorporating UWF imaging into the diagnosis and 

management of DR, certain limitations including low portability and the need for extensive 
imager training to obtain high quality images must be acknowledged [95]. UWF imaging sys-

tems are still expensive but their cost is likely to decrease over time with further technological 
innovations and market competitions.

In summary, peripheral lesions identified in UWF imaging may substantially alter the risk 
of DR onset, progression and outcome. Currently a new DR severity grading scale will be 

established combining clinical with imaging information from UWF photographs and angio-

grams. A large longitudinal multicenter study sponsored by the Diabetic Retinopathy Clinical 

Research Network (DRCR.net) has been designed to assess the relation between baseline vari-

ables on UWF color fundus photographs and UWF FA with long-term DR outcomes [95].

4. Disorganization of the retinal inner layers for diabetic macular  

edema prediction

Diabetic macular edema (DME) is one of the most vision-threatening manifestations of DR, 
affecting almost 30% of patients with a duration of diabetes mellitus of more than 20 years [96].

Elevated levels of vascular endothelial growth factor (VEGF) are a major contributor to reti-

nal microvascular dysfunction and the development of DME. VEGF interferes with tight 
junctions of the vascular endothelium, leading to a breakdown of the blood retinal barrier 

and consequently leakage into the retinal tissue [97]. Therefore, repetitive intraocular injec-

tions of anti-VEGF agents are a first-line therapy among the currently available treatments 
for DME. These injections have demonstrated efficiency in reducing macular thickness and 
improving best-corrected visual acuity (BCVA) [98]. However, while beneficial for some 
patients, others do not respond to intraocular drug injections. Furthermore, the resolution 

of DME may not be followed by a recovery in visual function. To date, no reliable methods 
exist to determine which individuals with DME will or will not respond to available treat-
ments. The implementation of predictive biomarkers would guarantee an efficient therapeu-

tic selection to identify patients with a limited prognosis of visual recovery despite ongoing 
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 therapeutic actions, where early visual disability support instead of burdensome treatment 

schedules may be warranted. SD-OCT provides high-resolution imaging of the retinal struc-

ture and allows insight into the pathogenesis of DME in vivo. Central retinal thickness (CRT) 

measured with OCT is commonly used in the evaluation and management of DME. However, 
CRT only explains 27% of the variation in visual acuity [99]. Various other OCT measures 

have been studied, but none of these measures has been consistently demonstrated to account 

for visual outcomes in patients with DME, and most of these studies were conducted retro-

spectively in mixed treatment cohorts. Examples of these measures include the integrity of the 
ellipsoid zone (EZ) (formerly described as the inner segment/outer segment photoreceptor 

junction) [100, 101], the integrity of the external limiting membrane [101, 102], the visibility of 

the cone outer segment tips (COST) [103], as well as the presence of subretinal fluid [104] and 

hyperreflective foci [105, 106].

Furthermore, intraretinal cystoid fluid has been named as a predictor of poor response to anti-
VEGF treatment in a prospective study [101], as well as in two post hoc analyses [107, 108] 

in large datasets of patients with DME using a machine-learning approach. Recently,  
disorganization of the retinal inner layers (DRIL) has been suggested to be a valid predictive 

biomarker for visual outcomes in patients with DME. DRIL was defined as the inability to 
distinguish boundaries between any two of the inner retinal layers (including the ganglion 

cell-inner plexiform layer (GCIPL) complex, the inner nuclear layer, and the outer plexiform 
layer) in >50% of the foveal 1-mm zone [103]. DRIL in the central millimeter is strongly asso-

ciated with visual acuity in eyes with center-involving DME. Resolving DRIL seemed to be a 
good indicator of subsequent visual improvement [109]. In addition, the presence and extent 
of DRIL before treatment are correlated with BCVA outcomes to anti-VEGF therapy after the 

loading dose of ranibizumab in treatment naive patients with DME [101]. Similarly, patients 

with DME showed gain in visual acuity if DRIL resolved compared with non-resolvers, 
whose visual acuity worsened. This correlation between DRIL and visual acuity could not be 

substantiated for eyes with macular edema due to other causes [110]. Additionally, it is well 

known that approximately 55% of patients with DME have co-existent macular capillary non-
perfusion [111], which may be masked angiographically by leakage from the edema. Macular 
capillary non-perfusion hinders efficient transport of oxygen and nutrients to the inner reti-
nal layers, which in turn compromises inner retinal integrity and may therefore lead to the 

appearance of DRIL in OCT scans. This concept has been substantiated by a recent study 

reporting 84.4% sensitivity and 100% specificity of DRIL in detecting angiographic evidence 
of capillary non-perfusion in the macula [112].

The exact mechanisms of DRIL affecting VA have yet to be determined, but their correlation 
in eyes with DME is plausible as DRIL may represent an interruption in anatomic structures 
within these inner retinal layers including axons and nuclei of bipolar, amacrine, and/or hori-
zontal cells, and therefore a disruption in the visual pathway from photoreceptors to retinal 

ganglion cells.

These data suggest that DRIL is a robust biomarker of visual acuity in eyes with present 

or resolved DME, correlating better with visual acuity than other OCT measures includ-

ing CRT. Future multicenter longitudinal studies have to validate the predictive potential 
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of DRIL by prospectively collecting data on the visual outcome of patients with DME, with 
additional studies to clarify the histologic equivalent accompanying the appearance of DRIL 

in SD-OCT [103].

5. Diabetic retinopathy as a neurodegenerative disease

5.1. The neurovascular unit

Fundoscopic clinical examination of patients with DR reveals pathognomonic features includ-

ing hard exudates, hemorrhages, microaneurysms, and cotton wool spots. However, it does not 
reveal the complex organization of the neurosensory retina. Similar to other tissues through-

out the central nervous system, neurons, glia, microglia, and blood vessels are organized into 

neurovascular units that work interdependently in close coordination in the retina [113].

The complex interconnections in the neurovascular unit prompted early anatomists to call this 
tissue the retina, literally a network of cells [114]. The capillary networks of the inner retina 

are in close contact with neurons of the inner nuclear and ganglion cell layer. These capillaries 

consist of a basal lamina with a single layer of adherent endothelial cells surrounded by peri-

cytes, glial, and microglial cells on the external surface. Microglia interact directly with retinal 
pericytes and are intimately associated with retinal neurons [115].

This intimate physical contact and functional integration are essential for vision and facilitate 

physiologic adaptation in response to varying conditions. Neuronal activity evokes localized 

reactions including vasodilation and increased blood flow to meet the energy demands of 
neuronal signal transduction and transmission [114]. In addition to the coordination of meta-

bolic demand, close signaling interdependence manifests itself in the blood-retinal barrier, 

which controls the flux of fluids and metabolites into the retinal tissue [116].

The diabetic environment causes the neurovascular unit to disintegrate both in early and late 

DR with the physiology of the neurovascular unit being similarly altered as it is in diseases of 

the brain such as stroke [117], Alzheimer’s, and Parkinson’s diseases [118]. Although DR has 

traditionally been considered merely a microvascular diabetic complication, recent studies 

support the concept that retinal neurodegeneration precedes and contributes to the forma-

tion of microvascular abnormalities in DR. These findings suggest that DR should at least be 
considered a combined neuro-vascular degeneration [113].

5.2. Retinal neurodegeneration

Signs of neurodegeneration were not visible in fundus examination in the era of the ETDRS. 
Therefore, these changes did not contribute to the characterization or diagnosis of the disease. 

However, retinal neurodegeneration has widely been accepted as part of DR over the last 

decades.

These abnormalities in retinal neural tissue lead to well-studied functional changes that typi-

cally precede the clinical diagnosis of DR, and in some cases occur even prior to the diagnosis 
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of diabetes. Neurofunctional impairment becomes apparent as a dysfunction in dark adap-

tion [119], abnormal contrast sensitivity [120], and altered microperimetry [105], as well as 

electroretinogram (ERG) results. The electroretinogram (ERG) is one of the most effective 
diagnostic tools in this context, with the oscillatory potential implicit time being the most 
consistent and widely reported aspect of the ERG that changes early in DR [121]. A delay in 

implicit time in multifocal ERG (mfERG) has been shown to be highly predictive (86% sensi-
tivity and 84% specificity) of new retinopathy development at specific locations over 3 years 
in patients with early stages of DR at baseline [122, 123]. The European Consortium for the 

Early Treatment of Diabetic Retinopathy (EUROCONDOR) trial currently tests mfERG 

for its use and potential in DR prediction. However, while ERG is a very sensitive tech-

nique to detect neurofunctional deficits, it is also a quite burdensome and time-consuming 
examination.

Anatomical evaluation of retinal neurodegeneration has become possible with the imple-

mentation of SD-OCT. In OCT, the most useful measure for identifying diabetes-induced 

neurodegeneration is the thickness-reduction of the retinal nerve fiber layer (RNFL) and the 
ganglion cell complex, consisting of the ganglion cell layer (GCL) and the inner plexiform 
layer (IPL). Retinal ganglion cells (RGCs) are the retinal neurons in which the apoptotic 

process related to diabetes is first detected [124]. An impaired integrity of these cells com-

promises information processing and the transmission of visual signals to the brain. The 

damage primarily affects the RGC’s nuclei and dendrites, as shown by a diffuse thinning of 
the combined retinal ganglion cell-inner plexiform layer (GCIPL). Secondarily, their axons 
are affected too, as indicated by a reduction of the retinal nerve fiber layer (RNFL) thick-

ness [125]. A significant thinning of the GCIPL complex alone [126] or in combination with 

thinning of the RNFL has already been shown in patients with type 1 diabetes even without 

any fundoscopically manifest signs of DR [127, 128]. A longitudinal analysis in patients with 

type 1 diabetes depicted an average progressive thickness loss of 0.25 μm/year and 0.29 μm/

year in the RNFL and the GCL + IPL, respectively, over a 4-year follow-up period in patients 

with no or minimal DR, independent of age, sex and even Hb1Ac. Intriguingly, the extent 
of thickness loss was similar to that of patients with severe glaucoma [129]. Research results 

are also consistent in finding reduced RNFL and GCIPL thicknesses in patients with type 2 
diabetes [130–132].

Further, relation between structural signs of diabetic retinal neurodegeneration and func-

tional deficits has been investigated thoroughly. Reduced GCIPL complex thickness has been 
shown to significantly correlate with impaired visual function assessed by contrast sensitiv-

ity and pattern ERG amplitudes in patients with diabetes without DR [131]. In patients with 

type 1 diabetes and no or minimal DR, GCL thickness was an important predictor of loss of 

macular visual function measured by the Rarebit perimetry [133].

Research has also started to focus on the temporal and causal relationship of neurogenic 

and vascular changes in DR. Preliminary results of the EUROCONDOR study suggest that 

in patients with no or mild DR, retinal vessel caliber is independently associated with struc-

tural changes of the neuroretina. Specifically, CRAE was statistically significantly associated 
with macular GCL thickness and CRVE with RNFL thickness at the optic disc [134]. An 
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association of venular dilatation and thinning of the RNFL along with deficits in the ERG 
was detected in adolescents with type 2 diabetes, showing that the structural changes are 

accompanied by early vascular dysfunction [135].

The mechanisms behind this neurodegeneration are not completely clear. Increased apoptosis 

in neuronal tissue may be caused by chronic hyperglycemia, when neuronal cells experience 
up to 4-fold increase in glucose uptake. If hyperglycemia is prolonged, nerves are damaged 

[136]. Additionally, glucose and glutamate accumulation in the extracellular space, increased 
oxidative stress, inflammation and imbalance in the production of neuroprotective factors 
are other factors thought to be involved in the development of neurodegeneration in the set-

ting of DR [137]. Apoptosis of the retinal ganglion cells also tends to be accompanied by 

reactive changes in macroglial cells, known as “reactive gliosis.” Apart from astrocytes, the 
predominant type of macroglia is the Müller cell, which is unique to the retina. One of the 
most prominent characteristics of reactive gliosis is that Müller cells overexpress glial acidic 
fibrillary protein (GFAP), which is considered a sensitive indicator of central nervous system 
injury, and is normally only expressed by retinal astrocytes [138]. Müller cells span the entire 
retina, surround all blood vessels, and produce molecules that contribute to the modulation 

of blood flow and vascular permeability. In addition, they are essential for the survival of 
neurons. Therefore, glial cells, and especially Müller cells, are thought to play a key role in the 
pathogenesis of both retinal microangiopathy and neurodegeneration. Unfortunately, Müller 
cells can currently not be imaged in vivo.

Because neurons cannot be replaced, DR becomes irreversible with continuous disease pro-

gression. The identification of biomarkers that predict the development of neurodegeneration 
as well as mediators in the cross talk between neurodegeneration and microangiopathy is 

crucial for the development of new therapeutic strategies in DR. Safe and effective neuropro-

tective agents could possibly prevent neuronal apoptosis and vision loss but also impede the 

impairment of neurovascular coupling. Consequently, microvascular impairment and clini-

cally apparent DR could be delayed. Evidence from the numerous studies mentioned above 

suggests that diabetic retinal neurodegeneration most likely precedes the microvasculopa-

thy of DR. Functional examinations, like mfERG as well as structural evaluation of the inner 
retinal layers with SD-OCT may permit an early detection of the disease. However, further 

longitudinal studies are required to clarify the precise temporal relation between neurode-

generation and the microvascular alterations of DR.

5.3. Neurodegeneration outside the retina

Neurodegenerative changes occur outside the retina too. The cornea is one of the most densely 

innervated structures of the human body. A rich network of sensory nerves, known as the 

subbasal nerve plexus (SNP), derives from the ophthalmic division of the trigeminal nerve 
and lies between the corneal epithelium and Bowman’s membrane [139]. This layer can be 

visualized with corneal confocal microscopy (CCM), a highly reproducible [140] in vivo 

imaging technique that provides diagnostic efficiency comparable to that of intra-epider-

mal nerve fiber density (IENFD) assessment [141, 142]. IENFD is the current gold stan-

dard for evaluating small nerve fiber damage, but is invasive, time-consuming and requires 
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significant laboratory expertise. Evaluation of small fiber neuropathy is essential, as they 
constitute 70–90% of peripheral nerves and are preferentially involved in the development 

of diabetic peripheral neuropathy (DPN). DPN affects at least 50% of patients with diabetes 
mellitus and is the main initiating factor for foot ulceration and subsequent lower extremity 
amputation [143]. Unfortunately, to date, the guidelines for DPN mainly advocate electro-

physiology besides clinical symptom testing, which is sensitive only for the detection of 

large fiber damage [144]. CCM could potentially serve as a non-invasive, objective bio-

marker for identifying small fiber damage and making an early diagnosis of DPN. The 
main changes in SNP morphology detected in patients with diabetes include a decrease 

in corneal nerve fiber density (CNFD), defined as the total number of major nerves per 
mm2; corneal nerve fiber length (CNFL), defined as the total length of all nerve fibers and 
branches (mm/mm2); and corneal nerve branch density (CNBD), defined as the number of 
branches emanating from major nerves per mm2 [145]. Previous studies have evaluated the 

relationship between SNP morphology and the development and progression of DR. SNP 

impairment appears to progress in parallel with DR and could even be demonstrated in 

patients with diabetes without DR [146–149]. This finding would support the concept that 
besides neuronal loss in the retina, corneal neurodegeneration might precede the develop-

ment of visible microangiopathy in DR too.

Even though recent studies indicate that inner retinal layer thinning representing retinal neuro-

degeneration is associated with DPN, the direct relation between SNP morphology and variables 

of retinal neurodegeneration has not yet been clarified. Eventually, CCM has the potential to be 
a surrogate for an early diagnosis of and an early biomarker for DR and DPN that could identify 

those at risk.

6. Conclusions

Diabetes mellitus is clearly a major health problem in an increasingly aging population 

worldwide. Diabetic retinopathy is a complex complication of this disease, which is influ-

enced by a range of local and systemic factors. Potential non-invasive biomarkers derived 

from innovative imaging modalities as introduced above offer precious information about 
the morphologic as well as functional state of the diabetic retina, which is not detectable on 

routine clinical examination. These promising biomarkers may allow personalized medi-
cine with treatment schedules tailored to patients’ individual needs. Furthermore, as the 

population principally affected by DR comprises working-age individuals, understanding 
of the pathophysiology of the disease and developing appropriate therapy are essential to 

halt decrease in productivity and an increasing need for social support. Besides this sig-

nificant economic benefit, the final validation of these biomarkers in prospective studies 
is expected to contribute decisively to the designing of clinical trials to identify new drug 
candidates that may prevent DR in the initial disease stages. Finally, and most importantly, 

this could result in a dramatic quality-of-life improvement for patients with diabetes and 

their families.
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